
CSC290/420 Machine Learning Systems for

Efficient AI

ML Programs as Loop-Intensive Code

Sreepathi Pai

October 6, 2025

URCS

Outline

Loop-Intensive Code

Single Loop Transformations

Multi-Loop Transformations

Autotuning: A brief introduction

Outline

Loop-Intensive Code

Single Loop Transformations

Multi-Loop Transformations

Autotuning: A brief introduction

Performance of Programs

� “Hot spots” in a program are those that consume the most
amount of execution time

� Often, a very small portion of the code (80/20 rule)

� Almost invariably, this hot spot lies in a loop

� Why?

Loops in ML Programs

� ML programs uses indexed data structures

� arrays, matrices, tensors

� Loops are used to access these data structures and perform

operations on them

� Nearly all operators in an ML program are composed of loops

� exceptions include data transformation operators

Loop Optimizations

� “Front-end” optimizations

� Generate enough work to keep the processor pipeline/cores full

of work

� Reduce branches

� i.e., increase (useful) ILP, MLP, and TLP.

� “Back-end” optimizations

� Reduce expense of work performed by the compute and

memory units

� Use appropriate functional units (e.g., SIMD units)

� And memory-related optimizations to increase cache hit rate

(or locality)

Loop Transformations

� Scientific code running on supercomputers is also

loop-intensive code

� Multiple decades of research on automatically transforming

loops to optimize them

� Specialized compilers for Scientific code, usually
vendor-provided

� IBM XLC (gone), Intel Compiler (icc, gone), NVIDIA/Portland

Group

� limited support in GCC (Graphite) and LLVM (Polly)

� Disclaimer: this class isn’t about understanding theory of loop
transformations

� that is content for an advanced compilers class

(CSC255/455++)

Loop Transformations for ML Programs

� Modern ML compilers inherit from this tradition

� Google’s XLA

� Apache TVM

� OpenAI Triton

� LF IREE

� All of them perform loop transformations

� Mostly automatically, but also under control of programmer

� Nearly all research on optimizing ML programs invariably boils
down to loop optimization

� I’m kidding, but only just.

Outline

Loop-Intensive Code

Single Loop Transformations

Multi-Loop Transformations

Autotuning: A brief introduction

Loop Unrolling

for(i = 0; i < N; i++) { for(i = 0; i < N/4; i+=4) {
c[i] = a[i]*b[2*i]; c[i] = a[i]*b[2*i];

} c[i+1] = a[i+1]*b[2*(i+1)];
c[i+2] = a[i+2]*b[2*(i+2)];
c[i+3] = a[i+3]*b[2*(i+3)];

}

� Replicate body of loop U times

� U is unroll factor

� Reduce iteration count of loop U times

� Resources: Registers, Functional Units

� Reduces number of instructions executed

� Loop overhead

Loop Splitting/Peeling

for(i = 0; i < N/4; i+=4) {
c[i] = a[i]*b[2*i];
c[i+1] = a[i+1]*b[2*(i+1)];
c[i+2] = a[i+2]*b[2*(i+2)];
c[i+3] = a[i+3]*b[2*(i+3)];

}

for(; i < N; i++) {
c[i] = a[i] * b[2*i];

}

� Break loop into multiple parts

� usually to handle irregular portions

� or meet alignment restrictions for vectorization

Loop Vectorization

// fictitious ISA
for(i = 0; i < N/4; i+=4) {

simd_value_4 c;
c = simd_mul_4(a[i], b[2*i])
simd_store_4(c[i], c);

}

for(; i < N; i++) {
c[i] = a[i] * b[2*i];

}

� Combine loop iterations to use SIMD instructions
automatically

� Only possible if loop has no dependence between iterations

� Legality of transformation can be checked by some compilers

� Others simply follow the user’s command

Loop Parallelization

for(i = thread_start;
i < (condition) && i < N;
i += thread_increment) {
c[i] = a[i]*b[2*i];

}

� Divide loop iterations across multiple compute units

� usually abstracted as threads

� so thread-level parallelism, TLP

� Can be combined with SIMD and ILP

Distributing Loop Iterations

� Block Distribution

� thread items = (N+num threads - 1)/num threads

� thread start = thread id * thread items

� thread increment = 1

� condition is thread start + thread items

� Round-Robin

� thread items = (N+num threads - 1)/num threads

� thread start = thread id * thread items

� thread increment = thread items

� condition is empty

Software Pipelining

for(i = 0; i < N; i++) {
a = 2 * B[i];
b = a + 1;
c = b / 2;

}

� Execute multiple iterations of a loop in parallel

� Beneficial when loop body contains a long dependence chain

� but iterations are independent

� Best understood as unrolling and reordering of instructions

within loop

Software pipelining example

for(i = 0; i < N/3; i+=3) {
a = 2 * B[i];
b = a + 1;
c = b / 2;

a1 = 2 * B[i+1];
b1 = a1 + 1;
c1 = b1 / 2;

a2 = 2 * B[i+2];
b2 = a2 + 1;
c2 = b2 / 2;

}

Software pipelining example (contd.)

for(i = 0; i < N/3; i+=3) {
a = 2 * B[i];
a1 = 2 * B[i+1];
a2 = 2 * B[i+2];

b = a + 1;
b1 = a1 + 1;
b2 = a2 + 1;

c = b / 2;
c1 = b1 / 2;
c2 = b2 / 2;

}

� Is software pipelining beneficial for:

� out-of-order processors?

� in-order processors?

Other Transformations

� Loop skewing

� Expose parallelism among iterations

� And many others

Outline

Loop-Intensive Code

Single Loop Transformations

Multi-Loop Transformations

Autotuning: A brief introduction

Multiple Loops

� Here, multiple loops can be independent loops or nested loops

� Independent: for(...) {} for(...) {}
� Nested: for(...) { for(....) {} }

� For loop transformations, nested loops often need to be
“properly nested”

� Only the innermost loop contains code

Loop Interchange

for(i = 0; i < M; i++) for(i = 0; i < M; i++)
for(j = 0; j < N; j++) for(k = 0; k < K; k++)
for(k = 0; k < K; k++) for(j = 0; j < N; j++)

c[...] = ... c[...] = ...

� Change order of nested loops

� Primarily a locality-enhancing transformation

� but may expose additional parallelism

Loop Blocking/Tiling

// matrix transpose
for(i = 0; i < M; i++)

for(j = 0; j < N; j++)
b[j][i] = a[i][j]

� Convert a loop (or a set of loops) to access data in a

“blocked” manner

� Primarily a locality-enhancing transformation

� In the loop above, reflect on the locality of b[j][i]

Locality

A[0,0] A[0,1]

A[1,0]

A[0,2]

A[1,1]

A[0,3]

A[1,2]

A[0,4]

A[1,3]

A[0,5]

A[1,4]

A[0,6]

A[1,5]

A[0,7]

A[1,6] A[1,7]

A[2,0] A[2,1] A[2,2] A[2,3] A[2,4] A[2,5] A[2,6] A[2,7]

A[3,0] A[3,1] A[3,2] A[3,3] A[3,4] A[3,5] A[3,6] A[3,7]

A[4,0] A[4,1] A[4,2] A[4,3] A[4,4] A[4,5] A[4,6] A[4,7]

A[5,0] A[5,1] A[5,2] A[5,3] A[5,4] A[5,5] A[5,6] A[5,7]

A[6,0] A[6,1] A[6,2] A[6,3] A[6,4] A[6,5] A[6,6] A[6,7]

A[7,0] A[7,1] A[7,2] A[7,3] A[7,4] A[7,5] A[7,6] A[7,7]

B[0,0] B[0,1]

B[1,0]

B[0,2]

B[1,1]

B[0,3]

B[1,2]

B[0,4]

B[1,3]

B[0,5]

B[1,4]

B[0,6]

B[1,5]

B[0,7]

B[1,6] B[1,7]

B[2,0] B[2,1] B[2,2] B[2,3] B[2,4] B[2,5] B[2,6] B[2,7]

B[3,0] B[3,1] B[3,2] B[3,3] B[3,4] B[3,5] B[3,6] B[3,7]

B[4,0] B[4,1] B[4,2] B[4,3] B[4,4] B[4,5] B[4,6] B[4,7]

B[5,0] B[5,1] B[5,2] B[5,3] B[5,4] B[5,5] B[5,6] B[5,7]

B[6,0] B[6,1] B[6,2] B[6,3] B[6,4] B[6,5] B[6,6] B[6,7]

B[7,0] B[7,1] B[7,2] B[7,3] B[7,4] B[7,5] B[7,6] B[7,7]

� Assume row-major ordering

� Each cache line contains two elements

� Cache capacity is four cache lines

� Arrows show order of access within each matrix

Loop after tiling

for(i = 0; i < M; i++)
for(j = 0; j < N; j+=B)

for(ii = i; ii < N && ii < (i + B); ii++)
for(jj = j; jj < N && jj < (j + B); jj++)

b[jj][ii] = a[ii][jj]

A[0,0] A[0,1]

A[1,0]

A[0,2]

A[1,1]

A[0,3]

A[1,2]

A[0,4]

A[1,3]

A[0,5]

A[1,4]

A[0,6]

A[1,5]

A[0,7]

A[1,6] A[1,7]

A[2,0] A[2,1] A[2,2] A[2,3] A[2,4] A[2,5] A[2,6] A[2,7]

A[3,0] A[3,1] A[3,2] A[3,3] A[3,4] A[3,5] A[3,6] A[3,7]

A[4,0] A[4,1] A[4,2] A[4,3] A[4,4] A[4,5] A[4,6] A[4,7]

A[5,0] A[5,1] A[5,2] A[5,3] A[5,4] A[5,5] A[5,6] A[5,7]

A[6,0] A[6,1] A[6,2] A[6,3] A[6,4] A[6,5] A[6,6] A[6,7]

A[7,0] A[7,1] A[7,2] A[7,3] A[7,4] A[7,5] A[7,6] A[7,7]

B[0,0] B[0,1]

B[1,0]

B[0,2]

B[1,1]

B[0,3]

B[1,2]

B[0,4]

B[1,3]

B[0,5]

B[1,4]

B[0,6]

B[1,5]

B[0,7]

B[1,6] B[1,7]

B[2,0] B[2,1] B[2,2] B[2,3] B[2,4] B[2,5] B[2,6] B[2,7]

B[3,0] B[3,1] B[3,2] B[3,3] B[3,4] B[3,5] B[3,6] B[3,7]

B[4,0] B[4,1] B[4,2] B[4,3] B[4,4] B[4,5] B[4,6] B[4,7]

B[5,0] B[5,1] B[5,2] B[5,3] B[5,4] B[5,5] B[5,6] B[5,7]

B[6,0] B[6,1] B[6,2] B[6,3] B[6,4] B[6,5] B[6,6] B[6,7]

B[7,0] B[7,1] B[7,2] B[7,3] B[7,4] B[7,5] B[7,6] B[7,7]

Loop Fusion

for(i = 0; i < N; i++) for(i = 0; i < N; i++)
A[i] = B[i] A[i] = B[i]

A[i] = 2*A[i]

for(i = 0; i < N; i++)
A[i] = 2*A[i]

� Combine two loops into a single loop

� Reduces memory writes/communication

� Enhances cache locality

Other transformations

� Loop unroll-and-jam (fuse)

� for vectorization

� Software pipelining across producer/consumer loops

� execute loops on different cores

Frameworks

� Unimodular framework

� Classic framework supported by many HPC compilers

� Polyhedral framework

� Modern framework based on affine representations and

transformations

Outline

Loop-Intensive Code

Single Loop Transformations

Multi-Loop Transformations

Autotuning: A brief introduction

Parameters

� Loop transformations require parameters

� Which loop to unroll?

� Unrolling depth

� Tile sizes

� Which loops to fuse?

� No exact theory exists to compute these parameters

� to the best of my knowledge

� Program + Machine + Input determine values that deliver

optimal performance

Empirical Search

� Current method of choice is to empirically search the space of

parameters

� Brute-force search

� Intractable

� Sparse search

� Search over limited set of parameters (most current ML

frameworks)

� Search over full space, but “intelligently” (mostly HPC

software)

Autotuning

� Classic technique in high-performance computing to achieve

best performance

� Now used, in a limited way, by ML frameworks

� Heuristics-based search

� Empirical evaluation

Autotuning Algorithm (Brute Force/Limited Set)

for P in parameter_space:
compile program with P
run program and measure runtime
is runtime less than best known?

yes: remember P as best_P

return best_P

Autotuning Algorithm (Heuristic)

while not out of time:
pick P from parameter space using heuristic
compile program with P
run program and measure runtime
is runtime less than best known?

yes: remember P as best_P

return best_P

� The heuristic uses past experience to find new P values

� Examples of heuristics: evolutionary search, simulated

annealing, etc.

Loop-based Workflows

� Loop-based code + Optimizers + Autotuning

� Handwritten code, low-level

� Tensor code, high-level

� Optimizers: IREE, PLUTO

� Domain-specific Language + Schedule + Autotuning

� Halide

� TVM

� Tiled DSL + Autotuning

� OpenAI Triton

� Google Pallas

� NVIDIA cuTile / NVIDIA Tilus

	Loop-Intensive Code
	Single Loop Transformations
	Multi-Loop Transformations
	Autotuning: A brief introduction

