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Abstract

We present an improved “cooling schedule” for simu-
lated annealing algorithms for combinatorial counting
problems. Under our new schedule the rate of cool-
ing accelerates as the temperature decreases. Thus,
fewer intermediate temperatures are needed as the sim-
ulated annealing algorithm moves from the high tem-
perature (easy region) to the low temperature (difficult
region). We present applications of our technique to
colorings and the permanent (perfect matchings of bi-
partite graphs). Moreover, for the permanent, we im-
prove the analysis of the Markov chain underlying the
simulated annealing algorithm. This improved analysis,
combined with the faster cooling schedule, results in an
O(n7 log4 n) time algorithm for approximating the per-
manent of a 0/1 matrix.

1 Introduction

Simulated annealing is an important algorithmic ap-
proach for counting and sampling combinatorial struc-
tures. Two notable combinatorial applications are esti-
mating the partition function of statistical physics mod-
els, and approximating the permanent of a non-negative
matrix. For combinatorial counting problems, the gen-
eral idea of simulated annealing is to write the desired
quantity, say Z, (which is, for example, the number of
colorings or matchings of an input graph) as a telescop-
ing product:

(1.1) Z =
Z`

Z`−1

Z`−1

Z`−2
. . .

Z1

Z0
Z0,

where Z` = Z and Z0 is trivial to compute. By further
ensuring that each of the ratios Zi/Zi−1 is bounded, a
small number of samples (from the probability distri-
bution corresponding to Zi−1) suffices to estimate the

∗Department of Computer Science, University of Chicago,

Chicago, IL 60637. Email: {ivona,stefanko}@cs.uchicago.edu.

I.B. was supported by NSF grant CCR-0455666.
†College of Computing, Georgia Institute of Technology, At-

lanta, GA 30332. Email: {vazirani,vigoda}@cc.gatech.edu. V.V.

is supported by NSF grants CCR-0311541 and CCR-0220343.

E.V. is supported by NSF grant CCR-0455666.

ratio. These samples are typically generated from an
appropriately designed Markov chain.

Each of the quantities of interest corresponds to the
counting problem at a different temperature. The fi-
nal quantity Z = Z` corresponds to zero-temperature,
whereas the trivial initial quantity Z0 is infinite tem-
perature. The temperature slowly decreases from high
temperature (easy region) to low temperature (difficult
region). A notable application of simulated annealing
to combinatorial counting was the algorithm of Jerrum,
Sinclair and Vigoda [8] for approximating the perma-
nent of a non-negative matrix. In their algorithm, the
cooling schedule is uniform: the rate of cooling was con-
stant.

Our first main result is an improved cooling sched-
ule. In contrast to the previous cooling schedule for
the permanent, our schedule is accelerating (the rate of
cooling accelerates as the temperature decreases). Con-
sequently, fewer intermediate temperatures are needed,
and thus fewer Markov chain samples overall suffice. It
is interesting to note that our schedule is similar to the
original proposal of Kirkpatrick et al [13], and is re-
lated to schedules used recently in geometric settings
by Lovász and Vempala [14] and Kalai and Vempala
[11].

We illustrate our new cooling schedule in the
context of colorings, which corresponds to the anti-
ferromagnetic Potts model from statistical physics. We
present general results defining a cooling schedule for
a broad class of counting problems. These general re-
sults seem applicable to a wide range of combinatorial
counting problems, such as the permanent, and binary
contingency tables [1].

The permanent of an n × n matrix A is defined as

per(A) =
∑

σ

n
∏

i=1

ai,σ(i),

where the sum goes over all permutations σ of [n]. The
permanent of a 0/1 matrix A is the number of per-
fect matchings in the bipartite graph with bipartite ad-
jacency matrix A. In addition to traditional applica-
tions in statistical physics [12], the permanent has re-
cently been used in a variety of areas, e. g., computer
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vision [16], and statistics [15]. Jerrum, Sinclair, and
Vigoda presented a simulated annealing algorithm [8]
for the permanent of non-negative matrices with run-
ning time O(n10 log3 n) for 0/1 matrices.

Our cooling schedule reduces the number of inter-
mediate temperatures in the simulated annealing for the
permanent from O(n2 log n) to O(n log2 n). We also im-
prove the analysis of the Markov chain used for sam-
pling. The improved analysis comes from several new
inequalities about perfect matchings in bipartite graphs.
The consequence of the new analysis and improved cool-
ing schedule is an O(n7 log4 n) time algorithm for esti-
mating the permanent of an 0/1 n × n matrix. Here is
the formal statement of our result:

Theorem 1.1. For all ε > 0, there exists a random-
ized algorithm to approximate, within a factor (1 ±
ε), the permanent of a 0/1 n × n matrix A in time
O(n7 log4(n) + n6 log5(n)ε−2). The algorithm extends
to arbitrary matrices with non-negative entries.

The remainder of the paper is organized as follows.
In Section 2 we present our new cooling schedule,
motivated by its application to colorings. We then focus
on the permanent in Section 3.

2 Improved Cooling Schedule

We begin by motivating the simulated annealing frame-
work in the context of colorings. We then present a
general method for obtaining improved cooling sched-
ules and show how it can be applied to colorings. We
conclude with the proofs of technical lemmas for im-
proved cooling schedules.

2.1 Counting Colorings. Our focus in this section
is counting all valid k-colorings of a given graph G. Let
G = (V, E) be the input graph and k be the number
of colors. A (valid) k-coloring of G is an assignment
of colors from [k] to the vertices of G such that no two
adjacent vertices are colored by the the same color (i. e.,
σ(u) 6= σ(v) for every (u, v) ∈ E). Let Ω = Ω(G) denote
the set of all k-colorings of G. For input parameters ε, δ,
our goal is to approximate |Ω| within a multiplicative
factor 1 ± ε with probability ≥ 1 − δ.

Before we present our new reduction, it is worth
illustrating the standard reduction (see e.g., [6]). Let
E0 = E = {e1, ..., em} (ordered arbitrarily), and, for
1 ≤ i ≤ m, let Ei = Ei−1 \ ei and Gi = (V, Ei).
Then the number of k-colorings of G can be written
as a telescoping product:

|Ω(G)| = kn
∏

i

|Ω(Gi−1)|
|Ω(Gi)|

For k ≥ ∆ + 2 where ∆ is the maximum degree of G,

it is possible to verify the following bound on the i-th
ratio:

1

2
≤ |Ω(Gi−1)|

|Ω(Gi)|
≤ 1,

Therefore we can estimate the i-th ratio by generating
random k-colorings of Gi and counting the proportion
that are also valid k-colorings of Gi−1. This reduces
the approximate counting problem of estimating the
cardinality of Ω(G) to m random sampling problems,
see Jerrum [6] for details on the reduction as a function
of the error parameter ε and confidence parameter δ.

We instead look at a continuous version of the prob-
lem, the anti-ferromagnetic Potts model from Statistical
Physics, which allows more flexibility in how we remove
edges. In addition to the underlying graph G and the
number of partitions k, the Potts model is also speci-
fied by an activity1 λ. The configuration space of the
Potts model, denoted [k]V , is the set of all labelings
σ : V → [k]. The partition function of the Potts model
counts the number of configurations weighted by their
“distance” from a valid k-coloring. The “distance” is
measured in terms of the activity λ and we will specify
it shortly. As the activity goes to zero, the partition
function limits to |Ω|.

Our reduction from approximating |Ω| to sampling
from Ω, works by specifying a sequence of activities
for the anti-ferromagnetic Potts model, so that the
partition functions do not change by more than a
constant factor between successive activities. This
allows us to reduce the activity to an almost zero
value while being able to estimate the ratios of two
consecutive partition functions. Then, as before, we can
approximate |Ω|. The advantage of the new reduction
lies in using fewer random sampling problems, namely
instead of m problems we now need to consider only
O(n log n) sampling problems to estimate |Ω|.

For λ > 0, the partition function of the Potts model
is

Z(λ) =
∑

σ∈[k]V

λM(σ)

where M(σ) = MG(σ) = |(u, v) ∈ E : σ(u) = σ(v)| is
the number of monochromatic edges of the labeling σ.

The partition function can be viewed as a polyno-
mial in λ. Notice that its absolute coefficient equals
|Ω|, the number of k-colorings of G. Moreover, Z(1) =
|Ω(Gm)| = kn is the sum of the coefficients of Z. It can
be shown that for k > ∆ the number of k-colorings of
G is bounded from below by (k/e)n (i. e., |Ω| ≥ (k/e)n).

1The activity corresponds to the temperature of the system.

Specifically, the temperature is 1/ lnλ, thus λ = 1 corresponds

to the infinite temperature and λ = 0 corresponds to the zero

temperature.
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If we used the trivial lower bound of |Ω| ≥ 1, we would
introduce an extra factor of O(log k) in the final running
time. Observe that the value of the partition function
at λ = 1/en is at most 2|Ω|:
(2.2)
|Ω| ≤ Z(1/en) ≤ |Ω|+Z(1)(1/en) ≤ |Ω|+kn/en ≤ 2|Ω|.

This will be sufficiently close to |Ω| so that we can obtain
an efficient estimator for |Ω|.

We will define a sequence

λ0 = 1, λ1, . . . , λ` ≤ 1/en, λ`+1 = 0,

where ` = O(n log n), and, for all 0 ≤ i ≤ `,

1

2
≤ Z(λi+1)

Z(λi)
≤ 1.

We estimate the number of k-colorings of G via the
telescoping product:

|Ω| = kn
∏

0≤i≤`

αi,

where αi = Z(λi+1)/Z(λi). We will estimate αi by sam-
pling from the probability distribution corresponding to
Zi. Before we describe how to estimate these ratios, we
first specify the cooling schedule (i.e., the sequence of
activities).

2.2 Intuition for Accelerating Cooling Schedule

for Colorings. We need to ensure that for consecutive
λi, λi+1 the ratio Z(λi+1)/Z(λi) is in the interval [ 12 , 1].
The polynomial Z has degree m since any labeling
has at most m = |E| monochromatic edges. Hence
it suffices to define λi+1 = 2−1/mλi, then Z(λi+1) ≥
(2−1/m)mZ(λi) ≥ Z(λi)/2. This specifies a uniform
cooling schedule with a rate of decrease 2−1/m.

If we had Z(λ) = knλm we could not decrease λ
faster than 2−1/m. Fortunately, in our case the absolute
coefficient of Z(λ) is at least |Ω| ≥ (k/e)n. To illustrate
the idea of non-uniform decrease, let fi(λ) = λi. The
polynomial fm will always decrease faster than Z. At
first (for values of λ close to 1) this difference will be
small, however, as λ goes to 0, the rate of decrease of
Z slows down because of its absolute term. Thus, at a
certain point fm−1 will decrease faster than Z. Once λ
reaches this point, we can start decreasing λ by a factor
of 2−1/(m−1). As time progresses, the rate of Z will
be bounded by the rate of polynomials fm, then fm−1,
fm−2, . . . , all the way down to f1 for λ close to 0. When
the polynomial fi “dominates” we can decrease λ by a
factor of 2−1/i. Note that the rate of decrease increases
with time, i. e., the schedule is accelerating.

2.3 General Cooling Schedule. Now we formalize
the accelerated cooling approach. We state our results
in a general form which proves useful in other contexts,
e. g., for the permanent later in this paper, and binary
contingency tables [1].

Let Z(λ) be the partition function polynomial. Let
s be the degree of Z(λ) (note that s = m for colorings).
Our goal is to find 1 = λ1 ≥ λ2 ≥ · · · ≥ λ` such
that Z(λi)/Z(λi+1) ≤ c (e. g., for colorings we took
c = 2). The important property of Z(λ) for colorings is
Z(0) ≥ (k/e)n (i. e., Z(λ) has large constant coefficient).
For some applications it will not be possible to make the
absolute coefficient large, instead we will show that a
coefficient aD of λD is large (for some small D). Finally,
let γ be an upper bound on Z(1)/aD. For colorings we
can take γ = en. The γ measures how small λ needs to
get for Z(λ) to be within constant factor of Z(0). Now
we present a general algorithm in terms of parameters
s, c, γ, D.

Algorithm for computing the cooling sched-

ule λ, given parameters s, c, γ, and D:

Set λ̂0 = 1, i = s and j = 0.

While λ̂j > 1/γ do

Set λ̂j+1 = c−1/iλ̂j .

If i > D + 1 and λ̂j+1 < (s/γ)1/(i−D),

Set λ̂j+1 = (s/γ)1/(i−D)

and decrement i = i − 1.
Increment j = j + 1.

Set ` = j.

The following lemma estimates the number of interme-
diate temperatures in the above cooling schedule, i.e.,
the length ` of the λ̂ sequence.

Lemma 2.1. Let c, γ > 0, D ≥ 0 and let λ̂0, . . . , λ̂` be
the sequence computed by the above algorithm. Then
` = O([(D+1) log(s−D)+s/(s−D)] logc γ). If c and D
are constants independent of s, then ` = O(log s log γ).

We will prove the lemma in Section 2.5. Note that
for colorings ` = O(n log n).

The following lemma shows that for the sequence
of the λi the value of Z(λ) changes by a factor ≤ c
for consecutive λi and λi+1. We postpone the proof to
Section 2.5.

Lemma 2.2. Let c, γ, D ≥ 0 and let Z1, . . . , Zq be a
collection of polynomials of degree s. Suppose that for
every i ∈ [q], the polynomial Zi satisfies the following
conditions:

i) Zi has non-negative coefficients,

ii) there exists d ≤ D such that the coefficient of xd in
Zi is at least Zi(1)/γ.
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Let λ̂0, λ̂1, . . . , λ̂` be the sequence constructed by the
above algorithm. Then

Zi(λ̂j) ≤ cZi(λ̂j+1) for every i ∈ [q] and j ∈ [`].

2.4 Applying the Improved Cooling Schedule

to Colorings. Before applying these general results to
colorings, we quickly review how to approximate the
ratios αi in the telescoping product (1.1) (see [6] for
details). We can approximate αi using the following
unbiased estimator. Let Xi ∼ πi denote a random
labeling chosen from the distribution πi defined by
Z(λi), (i. e., the probability of a labeling σ is πi(σ) =

λi
M(σ)/Z(λi)). Let Yi = (λi+1/λi)

M(Xi). Then Yi is an
unbiased estimator for αi:

E (Yi) = EXi∼πi

(

(λi+1/λi)
M(Xi)

)

=
∑

σ∈[k]V

(λi+1)
M(σ)

Z(λi)
=

Z(λi+1)

Z(λi)
= αi.

Assume that we have an algorithm for generating la-
belings X ′

i from a distribution that is within variation
distance ≤ ε/` of πi. We draw Θ(`/ε2) samples of X ′

i

and take the mean Y i of their corresponding estimators
Y ′

i . Then the expected value of Y i is E[Y i](1±ε/`) and
the variance can be bounded as V [Y i] = O(ε2/`)E[Y i]

2.

Therefore, by the Chebyshev’s inequality kn
∏`−1

i=0 Y i

equals |Ω|(1 ± 2ε) with probability ≥ 3/4.
If the algorithm generates a sample X ′

i from a
distribution within variation distance ≤ ε/` of πi in time

T (ε/`), then the computation of kn
∏`−1

i=0 Y i takes time
O(`2/ε2T (ε/`)).

Now we return to colorings, and conclude the
final running time of the algorithm. Recall that ` =
O(n log n). For k > 2∆, it is possible to generate
a labeling within variation distance ≤ ε′ of πi in
time T (ε′) = k

k−2∆n log(n/ε′) [3, 6]. Hence one can
approximate |Ω| within a multiplicative factor 1±ε with

probability ≥ 3/4 in O( k
k−2∆

n3 log2 n
ε2 ln(n/ε)) time. In

contrast, for k > 2∆ using the standard counting to
sampling reduction, Jerrum states a running time of

O( k
k−2∆

nm2

ε2 ln(n/ε)) where m is the number of edges.
For k ≤ 2∆ results on mixing time are known for certain
classes of graphs [5]. These are proved for k-colorings,
but most likely they can be extended to the non-zero
temperature.

2.5 Proof of Lemmas 2.1 and 2.2. The rest of this
section is devoted to the proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We define intervals:

Is = [(s/γ)1/(s−D),∞),

for i = D + 2, . . . , s − 1,

Ii = [(s/γ)1/(i−D), (s/γ)1/(i+1−D)],

and finally,
ID+1 = (0, (s/γ)1/2)].

Let `i be the number of λ̂ values lying in the interval
Ii. For i ∈ {D + 2, . . . , s − 1} we have the estimate:

`i ≤ logc

(

[(s/γ)1/(i+1−D)]i

[(s/γ)1/(i−D)]i

)

≤ D + 1

i − D
logc γ.

Similarly,

`s ≤ logc

(

γ

[(s/γ)1/(s−D)]s

)

≤ 2s− D

s − D
logc γ,

and

`D+1 ≤ logc

(

[(s/γ)1/2]D+1

[1/γ]D+1

)

≤ D + 1

2
logc γ.

Putting it all together, we get the bound

` ≤
s

∑

i=D+1

`i

≤
(

(D + 1)Hs−D +
2s − D

s − D
+

D + 1

2

)

logc γ,

where Hi =
∑i

j=1 1/j = O(log i) is the harmonic sum.
Therefore

` = O([(D + 1) log(s − D) + s/(s − D)] logc γ).

�

The log-derivative of a function f is (log f)′ = f ′/f .
The log-derivative measures how quickly a function
increases.

Definition 2.1. We say that a polynomial f is dom-
inant over a polynomial g on an interval I if
f ′(x)/f(x) ≥ g′(x)/g(x) for every x ∈ I.

Lemma 2.3. Let f, g : I → R+ be two non-decreasing
polynomials. If f dominates over g on I, then
f(y)/f(x) ≥ g(y)/g(x) for every x, y ∈ I, x ≤ y.

We partition the interval (0,∞) into subintervals
ID+1, . . . , Is such that xi dominates over every Z-
polynomial on the interval Ii. The λ̂j in Ii will be
such that xi decreases by a factor c between consecutive
λ̂. Therefore the Z-polynomials decrease by at most a
factor of c.

Lemma 2.4. Let g(x) =
∑s

j=0 ajx
j be a polynomial

with non-negative coefficients. Then xs dominates over
g on the interval (0,∞).
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Proof. It suffices to verify that (xs)′/xs ≥ g′(x)/g(x)
for every x > 0. �

Lemma 2.5. Let g(x) =
∑s

j=0 ajx
j be a polynomial

with non-negative coefficients such that g(1) ≤ γ and
at least one of a0, a1, . . . , aD is ≥ 1. Then for any
i ≥ D+1 the polynomial xi dominates g on the interval
(0, (s/γ)1/(i+1−D)].

Proof. The logarithmic derivative of xi is i/x. Hence
we need to prove that ig(x) ≥ xg′(x) for x ≤
(s/γ)1/(i+1−D).

Let d be the smallest integer such that ad ≥ 1.
From the assumptions of the lemma d ≤ D. For
x ≤ (s/γ)1/(i+1−D) the following holds

s
∑

j=i+1

jajx
j−d ≤

s
∑

j=i+1

sajx
j−D

≤
s

∑

j=i+1

saj

(

s

γ

)(j−D)/(i+1−D)

≤
s

∑

j=i+1

saj

(

s

γ

)

≤ 1.

Since i > d, for x ≤ (s/γ)1/(i+1−D) we have

xg′(x) =

i
∑

j=0

jajx
j +

s
∑

j=i+1

jajx
j

≤
i

∑

j=d

jajx
j + adx

d ≤
i

∑

j=d

iajx
j = ig(x).

�

Proof of Lemma 2.2. Let ID+1, . . . , Is be as in the proof
of Lemma 2.1. Let Qq(λ) = γZq(λ)/Zq(1). Notice
that the Qq satisfy the conditions required of g by
Lemma 2.5. Therefore xi dominates over every Qq (and
hence also Zq) on the interval Ii for i < s. Moreover,
Lemma 2.5 and Lemma 2.3 imply that xs dominates
over every Qq (and hence Zq) on the interval Is. Notice

that if λ̂j , λ̂j+1 ∈ Ii, then cλ̂i
j+1 ≥ λ̂i

j (where inequality

happens only if λ̂j+1 = (s/γ)1/(i−D)). Therefore all
of the Zq-polynomials decrease by a factor at most c

between consecutive values of λ̂. �

3 Permanent Algorithm

Here we describe the simulated annealing algorithm
for the permanent. We show the application of our
improved cooling schedule, and our improvement in the
mixing time bound for the Markov chain underlying
the simulated annealing algorithm. We present the new

inequalities which are key to the improved mixing time
result. This analysis is more difficult than the earlier
work of [8].

3.1 Preliminaries. Let G = (V1, V2, E) be a bipar-
tite graph with |V1| = |V2| = n. We will let u ∼ v
denote the fact that (u, v) ∈ E. For u ∈ V1, v ∈ V2

we will have a positive real number λ(u, v) called the
activity of (u, v). If u ∼ v, λ(u, v) = 1 throughout the
algorithm, and otherwise, λ(u, v) starts at 1 and drops
to 1/n! as the algorithm evolves. The activities allow
us to work on the complete graph on V1 and V2.

Let P denote the set of perfect matchings (recall
that we are working on the complete graph now), and let
N (u, v) denote the set of near-perfect matchings with
holes (or unmatched vertices) at u and v. Similarly,
let N (x, y, w, z) denote the set of matchings that have
holes only at the vertices x, y, w, z. For any matching
M , denote its activity as

λ(M) :=
∏

(u,v)∈M

λ(u, v).

For a set S of matchings, let λ(S) :=
∑

M∈S λ(M).
For u ∈ V1, v ∈ V2 we will have a positive real number
w(u, v) called the weight of the hole pattern u, v. Given
weights w, the weight of a matching M ∈ Ω is

w(M) :=

{

λ(M)w(u, v) if M ∈ N (u, v), and

λ(M) if M ∈ P .

The weight of a set S of matchings is

w(S) :=
∑

M∈S

w(M).

For given activities, the ideal weights on hole pat-
terns are the following:

(3.3) w∗(u, v) =
λ(P)

λ(N (u, v))

Note, for the ideal weights all hole patterns have
the same weight, in particular, w∗(N (u, v)) =
w∗(u, v)λ(N (u, v)) = λ(P) = w∗(P).

3.2 Markov chain definition. At the heart of the
algorithm lies a Markov chain MC, which was used
in [8], and a slight variant was used in [2, 7]. Let
λ : V1 × V2 → R+ be the activities and w : V1 × V2 →
R+ be the weights. The set of states of the Markov
chain is Ω = P ∪ N2. The stationary distribution
π is proportional to w, i. e., π(M) = w(M)/Z where
Z =

∑

M∈Ω w(M).
The transitions Mt → Mt+1 of the Markov chain

MC are defined as follows:
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1. If Mt ∈ P , choose an edge e uniformly at random
from Mt. Set M ′ = Mt \ e.

2. If Mt ∈ N (u, v), choose vertex x uniformly at
random from V1 ∪ V2.

(a) If x ∈ {u, v}, let M ′ = M ∪ (u, v).

(b) If x ∈ V2 and (w, x) ∈ Mt, let

M ′ = M ∪ (u, x) \ (w, x).

(c) If x ∈ V1 and (x, z) ∈ Mt, let

M ′ = M ∪ (x, v) \ (x, z).

(d) Otherwise, let M ′ = Mt.

3. With probability min{1, w(M ′)/w(Mt)}, set
Mt+1 = M ′; otherwise, set Mt+1 = Mt.

Note, cases 1 and 2a move between perfect and near-
perfect matchings, whereas cases 2b and 2c move be-
tween near-perfect matchings with different hole pat-
terns.

The key technical theorem is that the Markov chain
quickly converges to the stationary distribution π if the
weights w are close to the ideal weights w∗. The mixing
time τ(δ) is the time needed for the chain to be within
variation distance δ from the stationary distribution.

Theorem 3.1. Assuming the weight function w is
within a multiplicative factor 2 of the ideal weights for
all (u, v) ∈ V1 × V2 with M(u, v) 6= 0, then the mix-
ing time of the Markov chain MC is bounded above by
τ(δ) = O(n4(ln(1/π(M0)) + log δ−1)).

This theorem improves the mixing time bound by O(n2)
over the corresponding result in [8].

3.3 Simulated Annealing with New Cooling

Schedule. We will run the chain with weights w close
to w∗, and then we can use samples from the stationary
distribution to redefine w so that they are arbitrarily
close to w∗. For the Markov chain run with weights w,
note that

π(N (u, v)) =
w(u, v)λ(N (u, v))

Z
=

w(u, v)λ(P)

Zw∗(u, v)

= π(P)
w(u, v)

w∗(u, v)

Rearranging, we have

(3.4) w∗(u, v) =
π(P)w(u, v)

π(N (u, v))

Given weights w which are a rough approximation to
w∗, identity (3.4) implies an easy method to recalibrate

weights w to an arbitrarily close approximation to w∗.
We generate many samples from the stationary distribu-
tion, and observe the number of perfect matchings in our
samples versus the number of near-perfect matchings
with holes u, v. By generating sufficiently many sam-
ples, we can estimate π(P)/π(N (u, v)) within an arbi-
trarily close factor, and hence we can estimate w∗(u, v)
(via (3.4)) within an arbitrarily close factor.

For weights that are within a factor of 2 of the ideal
weights, it follows that π(N (u, v)) ≥ 1/4(n2 + 1), which
implies that O(n2 log(1/η̂)) samples of the stationary
distribution of the chain are enough to obtain a

√
2-

approximation w′ of w∗ with probability ≥ 1− η̂. The-
orem 3.1 (with δ = O(1/n2)) implies that O(n4 log n)
time is needed to generate each sample.

3.4 Algorithm for estimating ideal weights.

Now we can present the simulated annealing algorithm
for 0/1 matrices. The algorithm runs in phases, each

characterized by a parameter λ̂. In every phase,

(3.5) λ(e) =

{

1 for e ∈ E

λ̂ for e 6∈ E

We start with λ̂ = 1 and slowly decrease λ̂ until it
reaches its target value 1/n!.

At the start of each phase we have a set of weights
within a factor 2 of the ideal weights, for all u, v, with
high probability. Applying Theorem 3.1 we generate
many samples from the stationary distribution. Using
these samples and (3.4), we refine the weights to within
a factor

√
2 of the ideal weights. This allows us to

decrease λ̂ so that the current estimates of the ideal
weights for λ̂i are within a factor 2 of the ideal weights
for λ̂i+1.

In [8], O(n2 log n) phases are required. A straight-

forward way to achieve this is to decrease λ̂ by a fac-
tor (1 − 1/3n) between phases. This ensures that the
weight of any matching changes by at most a factor
(1 − 1/3n)n ≤ exp(1/3) <

√
2.

We use only O(n log2 n) phases by using the cooling
schedule presented in Section 2. In the notation of
Section 2, the permanent algorithm requires s = n, c =√

2, γ = n!, and D = 1. Thus, our total running time is
O(n log2 n) phases, O(n2 log n) samples per phase, and
O(n4 log n) time to generate each sample. Thus, the
total running time is O(n7 log4 n).

3.5 Analyzing Mixing Time: Key Technical

Inequalities. The following lemma contains the new
combinatorial inequalities which are the key to our
improvement of O(n2) in Theorem 3.1. In [8] simpler
inequalities were proved without the sum in the left-
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hand side, and were a factor of 2 smaller in the right-
hand side. Using these new inequalities to bound the
mixing time requires more work than the analysis of [8].

Lemma 3.1. Let u, w ∈ V1, v, z ∈ V2 be distinct
vertices. Then,

1.
∑

x,y:(u,y),(x,v)∈E

|N (u, v)||N (x, y)| ≤ 2|P|2.

2.
∑

x:(x,v)∈E

|N (u, v)||N (x, z)| ≤ 2|N (u, z)||P|.

3.
∑

x,y:(u,y),(v,x)∈E

|N (u, v)||N (x, y, w, z)| ≤ 2|N (w, z)||P|.

Proof.
1. We will construct a one-to-one map:

f1 : N (u, v) ×
⋃

x,y:(u,y),(v,x)∈E

N (x, y) → P ×P × b,

where b is a bit, i.e., b is 0/1.
Let L0 ∈ N (u, v) and L1 ∈ ∪x,y:(u,y),(v,x)∈EN (x, y).

In L0 ⊕ L1 the four vertices u, v, x, y each have degree
one, and the remaining vertices have degree zero or two.
Hence these four vertices are connected by two disjoint
paths. Now there are three possibilities:

• If the paths are u to x and v to y, they must both
be even.

• If the paths are u to v and x to y, they must both
be odd.

• The third possibility, u to y and v to x is ruled
out since such paths start with an L0 edge and end
with an L1 edge and hence must be even length;
on the other hand, they connect vertices across the
bipartition and hence must be of odd length.

Now, the edges (u, y) and (v, x) are in neither
matching, and so (L0 ⊕L1)∪{(u, y), (v, x)} contains an
even cycle, say C, containing (u, y) and (v, x). We will
partition the edges of L0 ∪ L1 ∪ {(u, y), (v, x)} into two
perfect matchings as follows. Let M0 contain the edges
of L0 outside of C and alternate edges of C starting
with edge (u, y). M1 will contain the remaining edges.
Bit b is set to 0 if (x, v) ∈ M0 and to 1 otherwise. This
defines the map f1.

Next, we show that f1 is one-to-one. Let M0 and
M1 be two perfect matchings and b be a bit. If u and v
are not in one cycle in M0 ⊕M1 then (M0, M1, b) is not
mapped onto by f1. Otherwise, let C be the common
cycle containing u and v. Let y be the vertex matched
to u in M0. If b = 0, denote by x the vertex that is
matched to v in M0; else denote by x the vertex that
is matched to v in M1. Let L0 contain the edges of M0

outside C and let it contain the near-perfect matching
in C that leaves u and v unmatched. Let L1 contain
the edges of M1 outside C and let it contain the near-
perfect matching in C that leaves x and y unmatched.
It is easy to see that f1(L0, L1) = (M0, M1, b).

The proofs for cases (2) and (3) of the Lemma follow
a similar approach. �

In fact, the following extension of the previous
lemma, is used in the proof of Theorem 3.1. This is
a weighted version of the previous lemma.

Lemma 3.2. Let u, w ∈ V1, v, z ∈ V2 be distinct
vertices. Then,

1.
∑

x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y)) ≤ 2λ(P)2.

2.
∑

x∈V1

λ(x, v)λ(N (u, v))λ(N (x, z)) ≤ 2λ(N (u, z))λ(P).

3.
∑

x∈V1,y∈V2

λ(u, y)λ(x, v)λ(N (u, v))λ(N (x, y, w, z))

≤ 2λ(N (w, z))λ(P).

To bound the mixing time we use the canonical
paths technique, and then bound the congestion, which
is the total weight of paths through any transition.
That follows the same basic approach used in previous
MCMC algorithms for the permanent [7, 8]. However,
to use the new inequalities in our analysis of the
congestion, we need to partition the analysis into several
cases based on the type of transition and canonical path.

4 Conclusion

With the improvement in running time of the approx-
imation algorithm for the permanent, computing per-
manent of n × n matrices with n ≈ 100 now appears
feasible. Further improvement in running time is an
important open problem.

Some avenues for improvement are the following.
We expect that the mixing time of the underlying chain
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is better than O(n4). Some slack in the analysis is in
the application of the new inequalities to bound the
congestion. In their application we simply use a sum
over y, whereas the inequalities hold for a sum over
x and y as stated in Lemma 3.2. It is possible that
fewer samples are needed at each intermediate activity
for estimating the ideal weights w∗. Perhaps the w∗

satisfy relations which allow for fewer samples to infer
them.
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