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Abstract

We give a new, topological proof that the weak Hanani-Tutte theorem is true on
orientable surfaces and extend the result to nonorientable surfaces. That is, we show
that if a graph G cannot be embedded on a surface S, then any drawing of G on
S must contain two edges that cross an odd number of times. We apply the result
and proof techniques to obtain new and old results about generalized thrackles,
including that every bipartite generalized thrackle in a surface S can be embedded
in S. We also extend to arbitrary surfaces a result of Pach and Tóth that allows the
redrawing of a graph so as to remove all crossings with even edges (an edge is even
if it crosses every other edge an even number of times). From this result we can
conclude that crS(G), the crossing number of a graph G on surface S, is bounded
by 2 ocrS(G)2, where ocrS(G) is the odd crossing number of G on surface S. Finally,
we show that ocrS(G) = crS(G) whenever ocrS(G) ≤ 2, for any surface S.
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1 The weak Hanani-Tutte theorem on a surface

The theorem of Hanani and Tutte states that every drawing in the plane of a
nonplanar graph contains two non-adjacent edges which cross an odd number
of times. 4 There are several proofs of this theorem [4,14,5,6,13,7] starting with
the original papers by Hanani and Tutte. Kleitman’s proof [6] is particularly
short and elegant. All of these proofs invoke Kuratowski’s theorem and then
verify the result for subdivisions of K3,3 and K5. This approach seems hopeless
for surfaces other than the plane (the list of excluded minors is not even known
yet for the torus). 5 In [11,12] we gave a new proof of the Hanani-Tutte
theorem in the plane which avoids Kuratowski’s theorem and uses elementary
topological methods only.

Cairns and Nikolayevsky showed that the weak Hanani-Tutte theorem is
true for orientable surfaces with a short and elegant proof using homology
theory [3, Lemma 3]. In the spirit of our earlier paper we give a new proof
that is (1) algorithmic and (2) relies only on elementary/intuitive topological
techniques, and (3) applies to nonorientable surfaces as well. Part of the
argument is similar to our proof of the weak Hanani-Tutte theorem for the
plane [11,12] which proceeds by contracting edges. New ideas are needed to
deal with the case where every edge is a loop.

We call an edge even if it crosses every other edge an even number of times.

Theorem 1.1 If G can be drawn on a surface S so that all its edges are
even, then G can be embedded on that surface, i.e. drawn crossing-free, without
changing the embedding scheme.

2 Generalized Thrackles

A graph is a thrackle if it can be drawn such that any pair of edges intersects
exactly once, where a common endpoint of two edges counts as an intersection
of these two edges. Generalized thrackles were introduced by Woodall in
1972 [1, p. 359–363]. A generalized thrackle is a graph that can be drawn

4 We make the usual assumptions on drawings of graphs, see [8, page 230].
5 For the purposes of this abstract, a surface is a compact, connected surface without
boundary. By the classification theorem for surfaces, an orientable surface is homeomorphic
to a sphere with a number of handles attached, and a nonorientable surface is homeomorphic
to a sphere with a number of crosscaps.
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such that any pair of edges intersects an odd number of times (again counting
endpoints).

Cairns and Nikolayevsky proved the weak Hanani-Tutte theorem for ori-
entable surfaces in order to apply it to generalized thrackles, thereby extending
earlier work of Lovász, Pach, and Szegedy and establishing tighter bounds on
the number of edges of thrackles and generalized thrackles [3].

Theorem 2.1 (Cairns, Nikolayevsky) Let G be bipartite. Then G is a
generalized thrackle on some orientable surface if and only if G can be embed-
ded on that surface.

Our topological approach handles generalized thrackles very naturally and
we simplify and improve several results on generalized thrackles. Note that the
distinction between crossings and intersections in the definition of generalized
thrackles is not essential. Two edges cross (rather than intersect) if they
intersect at a point which is not an endpoint of either edge (we also assume
they do not touch). It is easy to see that a graph is a generalized thrackle if
and only if it can be drawn such that any pair of edges crosses (rather than
intersects) an odd number of times.

The following lemma establishes a link between generalized thrackles and
the weak Hanani-Tutte theorem. It cannot be extended to all graphs as it
is well-known that there are planar graphs that are not generalized thrackles
(e.g. the wheel W4, see [3]).

Lemma 2.2 If D is a drawing of a bipartite graph G on some surface S, then
we can find a drawing D′ of G on S such that two edges e and f cross oddly
in D if and only if they cross evenly in D′. In other words, we can flip the
crossing parity of all pairs of edges.

The lemma allows an easy topological proof of the following result which
extends Theorem 2.1 to nonorientable surfaces.

Theorem 2.3 Let G be bipartite. Then G is a generalized thrackle on some
surface if and only if G can be embedded on that surface.

In a subsequent paper, Cairns and Nikoleyevsky study generalized thrack-
les of non-bipartite graphs on orientable surfaces, using the following defini-
tion. A parity embedding of a graph is a drawing without crossings such that
even cycles are two-sided curves and odd cycles are one-sided curves. They
prove [2, Theorem 2]:
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Theorem 2.4 (Cairns, Nikolayevsky) G is a generalized thrackle on an
orientable surface S if and only if G has a parity embedding on the (nonori-
entable) surface obtained by adding a crosscap to S.

Again we can give a very simple proof of this result, which originally had
quite a lengthy proof. Our methods work just as well when S is nonorientable,
once we see how to extend the definition of parity embedding appropriately.
Let S ′ be the surface obtained by adding the crosscap X to the orientable
surface S. Observe that a closed curve in S ′ is one-sided if and only if it
passes through X an odd number of times. Therefore a parity embedding
in S ′ is an embedding in which the parity of cycle length equals the parity
of the number of times it passes through X. Now, for any nonorientable
surface with a specified crosscap X, we define an X-parity embedding to be
an embedding in which a cycle is odd if and only if it passes through X an
odd number of times. (For an orientable surface with one added crosscap X,
parity embedding is identical to X-parity embedding.) We can now state our
result, which generalizes Theorem 2.4.

Theorem 2.5 G is a generalized thrackle on a surface S if and only if G has
an X-parity embedding on the surface obtained by adding a crosscap X to S,
with the same embedding scheme.

3 Removing even crossings in arbitrary surfaces

The previous sections might leave the impression that results related to the
Hanani-Tutte theorem easily generalize to arbitrary surfaces, but this is not
actually the case as we will now see. In the plane, the weak Hanani-Tutte
theorem can be strengthened as follows:

Theorem 3.1 (Pach, Tóth) If D is a drawing of G in the plane, and E0 is
the set of even edges in D, then G can be drawn in the plane so that no edge
in E0 is involved in any crossings.

Pach and Tóth applied their result to establish a relationship between two
different notions of crossing numbers. The crossing number, cr(G), of a graph
G is the smallest number of crossings in a drawing of G. The odd crossing
number, ocr(G), is the smallest number of pairs of edges that cross oddly in
a drawing of G. By definition ocr(G) ≤ cr(G); however there are graphs for
which the two numbers differ [10]. On the other hand, Pach and Tóth showed
that cr(G) ≤ 2 ocr(G)2.

The redrawing procedure used in the proof of Theorem 3.1 can lead to an
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increase of the odd crossing number, and will, therefore, probably not lead to
better bounds of cr(G) in terms of ocr(G) (a linear bound is suspected). In a
previous paper we showed that Theorem 3.1 can be strengthened to avoid an
increase in the odd crossing number:

Theorem 3.2 (Pelsmajer, Schaefer, Štefankovič) If D is a drawing of
G in the plane, and E0 is the set of even edges in D, then G can be drawn in
the plane so that no edge in E0 is involved in any crossings and there are no
new pairs of edges that cross an odd number of times.

If we change the point of view from the plane to other surfaces, the situ-
ation changes: we can construct examples that show that the stronger Theo-
rem 3.2 fails on any surface other than the sphere. The original result of Pach
and Tóth, however, is true for arbitrary surfaces, as we can show.

Theorem 3.3 If D is a drawing of a connected graph G in some surface S,
and E0 is the set of even edges in D, then G can be drawn in S so that no
edge in E0 is involved in any crossings.

While the odd crossing number of the drawing does get increased in the
proof of this theorem, the result is strong enough to extend the result by Pach
and Tóth that cr(G) ≤ 2 ocr(G)2 in the plane to any surface, using essentially
the same proof given by Pach and Tóth for the planar case [9].

Corollary 3.4 For any surface S we have

crS(G) ≤ 2 ocrS(G)2.

Using Theorem 3.2 we were able to show that for the plane, ocr(G) = cr(G)
whenever ocr(G) ≤ 3. Even though Theorem 3.1 cannot be strengthened to
an analogue of Theorem 3.2, it does allow us to derive the following result.

Theorem 3.5 If G is a graph and S is a surface with ocrS(G) ≤ 2, then
ocr(G) = cr(G).
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