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Abstract. We consider the problem of sampling connected induced sub-
graphs of a given input graph G. Our first result is that an efficient algo-
rithm to approximately sample connected induced subgraphs of a given
size (the size is specified in the input) does not exist unless RP=NP. We
then focus on the problem of approximately sampling connected induced
subgraphs with a bias, more precisely we consider a distribution where
the probability of a connected subgraph induced by S ⊆ V (G) is pro-
portional to λ|S|. When the input graph G has maximum degree d we

identify a threshold λd = (d−1)(d−1)

dd
. For 0 < λ < λd there exists a trivial

efficient sampler for the problem, and for λd < λ < 1 an efficient approx-
imate sampler does not exist unless RP=NP. Finally, we show local
Markov chains are unlikely to be effective at approximately sampling
connected subgraphs.

1 Introduction

Sampling a subgraph allows us to examine small sections of a graph without
having to look at the potentially massive graph as a whole [4,11,13]. When we
can approximately sample connected subgraphs, we gain information about the
occurrence of configurations in the graph [2,11]. There are several variants of
what sampling a connected subgraph means, the most common of which is to
examine spanning subgraphs as done in [5], where we sample edges such that the
graph is connected and every vertex is reachable. Another variant is counting
the number of induced subgraphs of a graph G that are isomorphic to another
graph H [17]. Exactly counting these connected induced copies is essential for
polynomial time execution for Barvinok’s algorithm, as done in [16].

In this paper we are concerned with fully polynomial approximate samplers
(FPAS), rather than the more common fully polynomial randomized approxi-
mation scheme (FPRAS) as we wish to sample connected subgraphs induced by
vertices rather than count them. Within this paradigm we consider two models
of sampling: fixed size and with bias λ > 0 (where each graph of size k is sam-
pled with probability proportional to λk). In Sect. 2 we look at the fixed size
case, where the connected subgraph we sample always has k vertices (for a given
k). This has been studied in an applied setting by [13] with various algorithms
given. The related problem of exactly counting connected induced subgraphs
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on k vertices is #W [1]-hard [7] and is also considered in combinatorial settings
[9,23]. We show in Theorem 1 that if there is an FPAS for the uniform distri-
bution of fixed sized connected subgraphs, then RP=NP. We then prove the
even stronger result that an FPAS on graphs of maximum degree three implies
RP=NP in Theorem 2.

Next we consider sampling with bias λ. Specifically, Theorem 3 shows sam-
pling with bias λ is efficient on a graph with maximum degree d for any
λ < λd = (d−1)d−1

dd and Theorem 4 proves an FPAS for connected induced
subgraphs with bias λ ∈ (λd, 1) implies RP=NP.

Finally, in Sect. 5 we give a tree such that no local Markov chain can efficiently
sample connected subgraphs of fixed size, and similarly with bias 1 > λ > 0 with
Theorems 5 and 6 respectively. This hints that local Markov chains likely are not
effective, as they do not perform well even on trees, where we know the problem
to be easy (using dynamic programming).

The following examples are mentioned to motivate sampling with bias λ
and the study of computational thresholds in this setting. The variant with
sampling biased by size is considered, for example, in the hardcore model in
statistical physics [6,12]. Weitz shows that on a graph of maximum degree d

for all λ < λc = (d−1)d−1

(d−2)d
we can efficiently approximately count independent

sets [24]. Sly then showed for all λ > λc we cannot efficiently approximately
count independent sets unless RP=NP [21]. Closer to our setting, Savoie et
al. sample simply connected subgraphs (that is, connected subgraphs with no
“holes”) on a grid, with bias λ on the perimeter [19].

We generally take a subgraph of G to be induced by a subset of the vertices
of G. However, in the proofs of Theorems 1, 2, and 4 we also induce subgraphs
of G induced by edges of G. We formally define both below.

Definition 1. For a graph G and S ⊆ V (G), let G[S] denote the subgraph of G
induced by S. Formally, V (G[S]) = S and E(G[S]) = {{u, v} | {u, v} ∈ E(G)
and u, v ∈ S}.

Similarly, let G[R] for R ⊆ E(G) be defined as V (G[R]) =
⋃

{u,v}∈R{u, v}
and E(G[R]) = R.

We will use the following formal definition of FPAS (see, e.g. [3]).

Definition 2. An algorithm A is a Fully Polynomial Approximate Sampler
(FPAS) for a problem B if for any δ > 0 and input to B the distribution of
the output of A is within δ of the distribution of B (on the given input) and A
runs in time polynomial with respect to its input and log δ−1. By distance we
mean the total variation distance, dTV (μ, ν) = 1

2 ||μ − ν||1.

2 Sampling Fixed Size Connected Subgraphs

In this section we show an FPAS for connected subgraphs of a given size is
possible only if RP=NP. Now we give the formal definition of our sampling
problem, which asks for a uniformly random sample from the set of all connected
subgraphs of a given size.
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Definition 3. Let Connected Induced Subgraphs of Given Size or
CISGS be the problem that on input (G,K) (for a graph G and non-negative
integer K) outputs uniformly random L ⊆ V (G) such that |L| = K and G[L] is
connected.

We show a FPAS for CISGS solves the Steiner Tree problem (see below).

Definition 4. (see [10]) Let Steiner Tree or ST be the decision problem of
whether there is a connected subgraph of G such that all vertices of a set S (the
vertices in S are called terminals) are included and the total weight of all the
edges used is no more than �. Formally, ST = {(G,S, φ, �) | ∃R ⊆ E(G) such
that G[R] is connected, S ⊆ V (G[R]), and

∑
r∈R φ(r) ≤ �}.

We will use the NP-Hardness of ST many times throughout the paper, which
Karp shows [10]. However we use the stronger result that when φ(e) = 1 for each
edge (often called the Cardinality Steiner Problem) ST is hard [10,25].

Theorem 1. If an FPAS exists for CISGS, then RP = NP.

Proof. Let (G, S, φ, �) be an instance of ST, where G has n vertices and m
edges, and φ(e) = 1 for all e ∈ E(G). Now let us give a brief outline of the proof.
Given an instance of ST we construct a graph G′ such that an FPAS for CISGS
on G′ allows us to obtain a solution to ST with high probability. We have 4 main
sections of this proof to accomplish this.

1. First we construct G′ and pick K based upon G,S, and �.
2. Then we create a function f that maps connected subgraphs of G′ to con-

nected subgraphs of G.
3. Next we give a combinatorial argument to show at least 2/3 of the connected

subgraphs of G′ of size K map to solutions of ST on G.
4. Finally we make the complexity argument to show the Theorem’s claim.

Now let us construct G′ such that if we can sample connected subgraphs
of G′ in polynomial time we will solve ST in polynomial time on G (using a
randomized algorithm). Let k = n3, c = k2, and K = |S| · k/2 + � · c.

Intuitively, G′ replaces vertices in S with complete graphs of size k whose
connected subgraphs provide high entropy (so that typical subgraphs will include
these vertices). On the other hand, it also replaces edges with paths of length
c so that including long paths consumes many vertices and therefore lowers
the entropy (hence typical solutions will avoid long paths). Let A be the set
of nodes in the “S-gadgets” (each a complete graph on k vertices), B be the
vertices forming the elongated edges, and let C be the unchanged vertices of
V (G). Formally, let G′ be such that V (G′) = A ∪ B ∪ C where

1. A =
⋃

s∈S,i∈[1,k]{vs,i} (where [1, k] = {1, ..., k}),
2. B =

⋃
e∈E(G),i∈[1,c]{ve,i}, and

3. C = (V (G) − S).
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Note we use vs,i and ve,i to give names to vertices we are creating. Now let
A′ be the edges between the nodes in A, B′ be the edges between the nodes in
B, and C ′ be the edges between A,B, and C. Thus E(G′) = A′ ∪B′ ∪C ′, where

1. A′ =
⋃

s∈S{{vs,i, vs,j} | i �= j, i, j ∈ [1, k]} and
2. B′ =

⋃
e∈E(G),i∈[1,c−1]{{ve,i, ve,i+1}} (making paths for each e ∈ E(G)).

3. Finally, we need to connect the paths to the original vertices and the complete
graphs. Fix an arbitrary ordering of V (G′) and let

C ′ =
⋃

{u,v}=e∈E(G)

{{ve,1,min(u′, v′)}, {ve,c,max(u′, v′)}}

where u′ = vu,1 if u ∈ S and otherwise is simply u, and the same holds for
v′. Note the min and max are with respect to the ordering we picked.

Let us now define a function f that maps a connected subset L of V (G′) (that
is, G[L] is connected) to R ⊆ E(G) such that G[R] is connected (note G[R] is a
subgraph induced by edges rather than vertices). Informally, if a path of vertices
corresponding to an edge in G is fully included in L, then we will include that
edge, and otherwise we will not. Formally, let L be a subset of V (G′) such that
G[L] is connected. Then f(L) = R where R ⊆ E(G) such that e ∈ R if and only
if ve,1, ve,2, ..., ve,c ∈ L.

A subset of vertices L falls into one of two cases:

(1)
∑

e∈G[f(L)] φ(e) ≤ � and G[f(L)] includes all points in S

(2) G[f(L)] excludes some point in S.

Note that for
∑

e∈G[f(L)] φ(e) > � we must use c(� + 1) vertices on edges in
G′. This is impossible, as we sample K = |S| · k/2 + � · c < � · c + c vertices.

Note a subset L from case (1) yields a solution to ST, whereas a subset L from
case (2) does not. For convenience, let C1 be the set of all L such that G[f(L)]
falls into case (1), and C2 be likewise for case (2). Note that if (G,S, φ, �) /∈ ST,
then C1 = ∅. With that in mind, let (G,S, φ, �) ∈ ST and let us bound the size
of C1. Since (G,S, φ, �) ∈ ST, there is a subset of edges with weight less than or
equal to � such that all nodes in S are included and the graph is connected. Thus
in G′ we can include the paths that correspond to those edges, which requires
� · c vertices, and then use the remaining |S| · k/2 nodes in the clusters for each
s ∈ S. We can use k/2 in each of the complete graphs created for vertices in S,

and so |C1| ≥ (
k

k/2

)|S|
.

Now let us show |C2| ≤ 2k(|S|−1)|S| · c2m. This follows since there are |S|
ways to pick an s ∈ S to omit, and then 2k(|S|−1) ways to include or exclude
the k(|S| − 1) points in the remaining |S| − 1 gadgets. Note that the number of
ways to allocate any amount of vertices to edges is at most c2m as for each of
the m edges we can choose the length of the partial paths on either side, which
can both be at most length c. Now let us show |C1| ≥ 2|C2|.

Since for n ≥ 75 we have n3 ≥ 1 + log2(n) + n log2(n3 + 1) + 4n2 log2(n3).
Thus, we can substitute in k = n3, |S| ≤ n, and m ≤ n2 to get
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k ≥ 1 + log2(|S|)|S| log2(k + 1) + 4m log2(k).
Then, by exponentiating both sides and multiplying by 2k(|S|−1)

(k+1)|S| we obtain
(

2k

k+1

)|S|
≥ 2 · 2k(|S|−1)|S| · c2m. Since

(
k

k/2

) ≥ 2k

k+1 , this gives |C1| ≥ 2|C2|.

Thus a random sample of a connected subgraph of size K from G′ falls into
case (1) with probability ≥ 2/3 (recall we assume (G,S, φ, �) ∈ ST). However, we
are using an FPAS, and so our distribution is within δ of the uniform distribution.
Thus, we obtain a sample from case (1) with probability ≥ 2/3 − δ, and so any
δ < 1/6 is sufficient. Our reduction at this point is quite simple; we sample L
from G′, and then accept if and only if G[f(L)] has weight ≤ � and includes
all terminals. Thus, if a solution with weight ≤ � does not exist, we will never
accept, and if one does we accept with probability > 1/2. Finally, to show that
the size of G′ is polynomial with respect to (G,S, φ, �), note G′ has O(mn6)
vertices. Thus, if an FPAS exists for CISGS, we have an RP algorithm that
solves ST, and so RP=NP. 
�

Since ST is hard for planar graphs [18] (with maximum degree 4), so the
above proof shows hardness for planar graphs as well by simply modifying the
complete graphs on k vertices to be a single vertex with k adjacent vertices.
Now let us extend this further to show if an FPAS exists for CISGS on graphs
of maximum degree three, then RP=NP.

First, note Steiner Tree is hard for graphs of maximum degree three by a
simple reduction of splitting vertices and connecting them with a 0 weight edge.
In the proof of Theorem 2 we require all terminals to have maximum degree two
(as we will attach a tree to each), so note any vertex with degree three can be
split into two, one of which has degree two (and we consider that one to be a
terminal and the other not to be).

The basic idea of the proof is the same as Theorem 1 but instead of complete
graph gadgets, we will have binary trees of size k. Let us give some definitions
for use in analyzing the number of connected subgraphs of a tree.

Definition 5. For a graph G and v ∈ V (G), the connected rooted subgraphs
of G at v are the subgraphs of G that include v, together with the empty subgraph.

Definition 6. Let GTd be an infinite d-ary tree with root vertex vGTd
.

Definition 7. Let G be a tree with arbitrary root v. Then for all w ∈ V (G) let
the height of w be the length of the path between w and v.

Definition 8. Let Th,k denote the number of connected subtrees of GT2 rooted
at vGT2 of size k with maximum height h.

Suppose that h = �log2(n), then we can compute Th,k for any k in polyno-
mial time, as we can recursively compute Th,k =

∑k
i=0 Th−1,iTh−1,k−i−1 (note

that the numbers have polynomially many (in n) bits). Thus for a given h, we
can compute the k such that Th,k is maximal.
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Definition 9. Let kh denote the index such that Th,kh
≥ Th,k for all 0 ≤ k ≤

2h+1 − 1.

Definition 10. Let Th denote the number of connected subtrees of GT2 rooted
at vGT2 with maximum height h. That is, Th =

∑2h+1−1
k=0 Th,k.

Fig. 1. The 5 configurations of T2,3, with vGT2 being the black vertex.

Figure 1 shows the 5 configurations of T2,3. Also note we can iteratively
calculate Th = 1 + T 2

h−1 as we can either include no vertices (by omitting the
root), or include the root and have any height h − 1 subtree on either side. Now
let us move on to the proof.

Theorem 2. If an FPAS to CISGS exists on graphs of maximum degree three,
then RP = NP.

Proof. The proof follows similarly to that of Theorem 1 except let h =
�log2(n3), k = 2h, and K = Th,kh

· |S| + � · c + n2 + |S|.
We assume that φ(e) is 0 or 1 for each edge e and G has maximum degree

3. As mentioned above, we assume every terminal has degree ≤ 2. Now, we
construct G′ with the same idea as that of Theorem 1, but using trees instead
of complete graph gadgets. If φ(e) = 1, then as before we replace it with a path
of length c, but if φ(e) = 0, e is a single node in G′ rather than a path of length
c (note there are at most n2 edges with weight 0). The sets B,C,B′, and C ′ are
essentially the same as in the proof of Theorem 1 (except for the additional zero
weight edges). However, we use trees for gadgets rather than complete graphs
so let

A = S ∪ ⋃
s∈S,i∈[1,k−1]{vs,i} and

A′ =
⋃

s∈S

({{vs,1, s}} ∪ {{vs,i, vs,�i/2�} | i ∈ [2, k − 1]})
.

Let f be as in Theorem 1 and note that a sample L falls into one of 2 cases
as before (where again, G[f(L)] is a subgraph induced by edges):

1. φ(G[f(L)]) ≤ � and G[f(L)] includes all points in S
2. G[f(L)] excludes some point in S.

Let C1 be the set of such L that fall into case (1) and C2 be likewise for case
(2). Let us first bound |C1| ≥ (

Th

2h+1

)|S|
. This is since

∑2h+1−1
k=0 Th,k = Th and

since Th,kh
has maximum value, it must be at least the average value. Thus we
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can allocate c · � vertices to the edges of G′ and kh + 1 to each of the “S-trees”
(kh for the tree, 1 for s) and so there are at least

(
Th

2h+1

)|S|
distinct connected

subgraphs created in this manner. Note that we might need to use weight 0
edges in this construction which equates to using a single vertex for each weight
0 edge. However, we have n2 “extra” vertices in K to be used specifically for
this (as there are no more than n2 weight 0 edges).

Now let us show |C2| ≤ T
|S|−1
h |S| · c2m. The logic for this is the same as

in Theorem 1 except we use Th instead of 2k as there are Th ways to allocate
the vertices to a tree. Note that the zero weight edges (that are represented by
a single vertex) are accounted as they are edges in G and so contribute to the
value of m. Finally let us conclude by showing |C1| ≥ 2|C2|. Since for n ≥ 73

n3 ≥ 1 + n + n�log2(n
3) + log2(n) + 4n2�log2(n

3),
by substituting in terms and exponentiating both sides we get

22
h ≥ 2 · 2|S|(h+1) · |S| · c2m.

Now note Th ≥ 22
h

as T0 = 2 and Th = 1 + T 2
h−1 ≥ T 2

h−1. Thus by making

another substitution and multiplying by T
|S|−1
h

2|S|(h+1) we have

(
Th

2h+1

)|S|
≥ 2 · T

|S|−1
h |S| · c2m

Therefore |C1| ≥ 2|C2| and so if (G,S, φ, �) ∈ ST then the probability that
the sampler gives a solution with weight ≤ � is at least 2/3− δ as in Theorem 1.
Additionally if no such solution exists, this algorithm will never give one. Since
the whole process runs in polynomial time, we have an RP algorithm that solves
ST, and so RP=NP if an FPAS exists for CISGS on graphs with maximum
degree three. 
�

3 Trees and Efficient Sampling with Bias

We showed earlier that it is hard to sample connected subgraphs of general
graphs, planar graphs, and even for bounded degree graphs. In this section we
will show that for bounded degree graphs as long as the bias parameter λ is small
enough, we can sample connected subgraphs with bias λ allowing arbitrarily
small error ε in time polynomial in n and 1/ε (for a fixed λ).

We analyzed earlier Th,k, but let us now extend this definition to letting h
be unbounded for a fixed k.

Definition 11. Let T̃k,d be the number of connected subtrees of GTd of size k
rooted at vGTd

.

We will need the following result of Stanley [22] reformulated in our setting.

Lemma 1. T̃k,d =
(
dk
k

)
1

(d−1)k+1 .
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Proof. Letting a full d-ary tree mean every node either has d children or is a leaf,
in his Proposition 6.2.2 [22, p. 172] Stanley shows the number of full d-ary trees
with n vertices and m leaves is equal to 1

n

(
n
j

)
if n = dj + 1 and m = (d − 1)j + 1

for some j and 0 otherwise. Note that if a full d-ary tree has a nodes each
with d children, then there are (d − 1)a + 1 leaves. Thus, we wish n = dk + 1
and m = (d − 1)k + 1, so it is clear to see that if we remove all leaves from
such trees we can obtain every d-ary tree on k vertices, and likewise every d-ary
tree can have every node without d children add leaves until it has d children
to obtain all such full trees. Thus the number of d-ary trees on k vertices is(
dk+1

k

)
/(dk + 1) =

(
dk
k

)
1

(d−1)k+1 . 
�

Now we move on to show that a d-ary tree has more rooted connected sub-
graphs of a fixed size than any maximum degree d graph.

Definition 12. Let Ck,d,G,v be the number of connected subgraphs on k vertices
with maximum degree d of a graph G rooted at vertex v ∈ V (G). Let Ck,d,G be
as above, but for unrooted subgraphs.

Lemma 2. For all k, d,G, v, Ck,d,G,v ≤ T̃k,d.

Proof. Let G be a graph with n nodes, and fix k, d, v. Let T be the SAW (self-
avoiding walk) tree of G rooted at v (see [8,24]). That is, each node in T cor-
responds to a path in G starting at v. Thus T has maximum height n, has
maximum degree ≤ d, and since it has no cycles it must be a subtree of GTd.

Now let S ⊆ V (G) such that G[S] is connected and v ∈ S, and let T ′ be
a spanning tree of G[S]. Note T ′ is a subtree of T as every node in T ′ is a
node in T , and T ′ is unique as any other S′ cannot generate T ′ because it must
necessarily omit some vertex in S. Thus Ck,d,G,v ≤ Ck,d,T,v ≤ T̃k,d. 
�

Now we will shall show that for small enough λ, the total weight,
∑∞

k=0 T̃k,dλ
k

converges.

Lemma 3. Fix d, and let λ = c (d−1)d−1

dd where c < 1. Then for any s ≥ 0
∑∞

k=s T̃k,dλ
k ≤ cs

1−c .

Proof. By Lemma 1 we have that
∑∞

k=0 T̃k,dλ
k =

∑∞
k=0

(
dk
k

)
λk

(d−1)k+1 . Then
(
dk
k

) · λk = ck
(
dk
k

)
(d − 1)(d−1)k/((d − 1) + 1)dk which by the binomial theorem is

ck

(
dk
k

)
(d − 1)(d−1)k

∑dk
i=0

(
dk
i

)
(d − 1)i

.

Since the numerator occurs in the sum in the denominator, the fraction is less
than 1. Thus,

∑∞
k=0 T̃k,dλ

k ≤ ∑∞
k=0

ck

(d−1)k+1 ≤ ∑∞
k=0 ck = 1

1−c .

Additionally, for s ≥ 0,
∑∞

k=s T̃k,dλ
k ≤ ∑∞

k=s
ck

(d−1)k+1 ≤ cs

1−c , by the same
logic as above, giving us our result. 
�
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We now show there is a sampler for any λ < (d−1)d−1

dd and ε > 0 that runs in
time polynomial with respect to n and 1/ε. Note that this is not a FPAS.

Theorem 3. For any c < 1 and any constant d the following is true. There
exists an algorithm that for any λ < c (d−1)d−1

dd and graph G with maximum
degree d samples connected subgraphs with size bias λ in polynomial (in n and
1/ε) time with error at most ε > 0.

Proof. We will pick some s such that the probability that we would obtain a
graph with size ≥ s is less than ε, and so we can only consider graphs of size
< s. Thus, we want ∑∞

k=s Ck,d,G,vλk

∑∞
k=0 Ck,d,G,vλk

< ε.

This term is less than
∑∞

k=s Ck,d,G,vλk as the denominator is at least 1 (because
of the empty set). By Lemma 2 we have that this term is again less than∑∞

k=s T̃k,dλ
k. By Lemma 3 we have that this sum is no more than cs

1−c . Now
we simply need to pick s such that cs

1−c is less than ε. Therefore, as long as
s > logc(ε(1 − c)) we have that the chance of randomly sampling a subgraph
of size greater than s is less than ε. So, we can have a sampling algorithm that
only samples up to size s and since Ck,d,G,v ≤ T̃k,d ≤ (

dk
k

) ≤ ( e·d·k
k )k = (e · d)k,

there are O((e · d)logc(ε(1−c))) = O((ε(1 − c))logc(ed)) graphs we need to sample
allowing error ε. Since this is a polynomial number of graphs, we can inductively
enumerate them (up to size s) to calculate their weights and approximate Ω.

Additionally, if we wish to remove the rooted aspect of the subgraphs,
note that Ck,d,G ≤ ∑

v∈V (G) Ck,d,G,v ≤ n maxv∈V (G) Ck,d,G,v, and since T̃k,d ≥
Ck,d,G,v for any v, we have Ck,d,G ≤ nT̃k,d ≤ n(e ·d)k. Then we only need to con-
sider sampling from O(n(ε(1 − c))logc(ed)) subgraphs. Thus, sampling unrooted
connected subgraphs still only requires examining a polynomial (in n and 1/ε)
number of subgraphs. 
�

4 Hardness of Sampling with Bias

We will now show that even when we sample connected subgraphs with bias λ

rather than having fixed size, the problem is hard for 1 > λ > (d−1)d−1

dd . However
we need to give the analogous definition for CISGS.

Definition 13. Let Connected Induced Subgraphs With Bias or CISWB
be the problem that on input (G,λ) (for a graph G and λ ∈ R≥0) outputs L such
that L ⊆ V (G), G[L] is connected, and L occurs with probability λ|L|/Z where
Z =

∑
L′⊆V (G),G[L′]is connected λ|L′|.

Now let us show that an efficient algorithm for CISWB would give an effective
solution to ST.

Theorem 4. If there is an FPAS to CISWB for (G,λ) where G has maximum
degree d and 1 > λ > (d − 1)d−1/dd, then RP = NP.
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The proof is extremely similar to those of Theorems 1 and 2, so for brevity
we have removed the proof of Theorem 4.

5 Markov Chains and Sampling

Now we will show that Markov chains are not likely to be useful in sampling
connected subgraphs of either fixed size or with bias λ. To do this we will show
that local Markov chains cannot be rapidly mixing while also sampling connected
subgraphs from the desired distribution. Here we use local to mean neighboring
states share k−1 vertices, that is for two neighboring states X and Y , X−{x} =
Y − {y} for some x ∈ X and y ∈ Y (see, e.g., [15]). The notion of local can be
extended to mean neighboring states must share at least one vertex and our
proofs would follow accordingly, but we use sharing k − 1 vertices for simplicity.
Our proof uses conductance (see, e.g., [20]) to show slow mixing, the standard
definition is given below. We use the standard notions of P (i, j) to mean the
probability we move from state i to state j and π(i) to be the probability of
being in state i according to the stationary distribution.

Definition 14. The conductance of a Markov chain M on state space
Ω is ΦM = minU⊆Ω,CU≤1/2 Φ(U) where Φ(U) = FU/CU and FU =∑

i∈U,j∈U P (i, j)π(i), CU =
∑

i∈U π(i).

We use conductance to bound τ , the mixing time of M . Formally, τ = min{t :∑
j∈Ω |P t′

(i, j) − π(j)| ≤ 1/e for all t′ ≥ t and i ∈ Ω}. It is a well known result
that 1/τ ≤ 8Φ(M) for an ergodic chain M (see, e.g., [1], we use this result so
that M can be non-reversible, see [14] for a similar argument). Therefore, in the
following proofs we give a tree G such that for any local ergodic chain M , Φ(M)
is tiny.

Theorem 5. There is a tree G with maximum degree 3 such that the following
is true. Let M be a local ergodic Markov chain whose states are S ⊆ V (G) such
that |S| = k and G[S] is connected and the stationary distribution is uniform.
Then the mixing time of M is exponential in k.

Proof. Let G be a graph on 4n vertices consisting of 2 binary trees on n nodes
with a path of length 2n in between them. Nodes 1 through n are in one tree,
nodes n + 1 to 3n are a path from the first tree to the second tree, and nodes
3n + 1 through 4n are the second tree. We will use a conductance argument to
show slow mixing, and so we will give some U such that Φ(U) ≤ 2

2k/2 .
Let U = {U ′ | U ′ ∈ Ω,∀v ∈ U ′, v ≤ 2n, |U ′| = k}. Clearly |U | is no more than

1/2 of the total number of connected subsets of size k as we can see |Ū | ≥ |U |,
thus CU ≤ 1/2. Note that the only set in U that can move out of U in 1 move is
{2n, 2n − 1, ..., 2n − (k − 1)} as we require the vertex 2n to be included to add
the vertex 2n + 1. Thus, FU ≤ 1

|Ω| .
Now let us give a lower bound on |Ω| by counting the number of configura-

tions in the trees alone. Consider taking a connected subset of size k/2 rooted
at the root of the tree such that no leaves are in the subset. Thus there are
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k vertices left to choose from (as each vertex has degree 3 and k/2 − 1 edges
are used internally), and so there are at least

(
k

k/2

)
connected subsets with this

specific configuration. Thus |Ω| ≥ (
k

k/2

) ≥ 2k/2 and so Φ(U) ≤ 2
2k/2 . Therefore

the mixing time is exponential in k. 
�
Note that Theorem 5 implies that the chain is not rapidly mixing for k =

ω(log n). Now let us give an analogous proof for sampling with bias λ.

Theorem 6. Fix d and 1 > λ > (d−1)(d−1)

dd , then there is a graph G with maxi-
mum degree d+1 such that the following is true. Let M be a local ergodic Markov
chain whose states are S ⊆ V (G) and G[S] is connected and the stationary dis-
tribution is such that S occurs with probability λ|S|/Z. Then the mixing time of
M is exponential in n.

The proof is very similar to that of Theorem 5 and so in consideration of
space we have removed it.

Further Questions

– We showed hardness for CISWB on a general graph for 1 > λ > (d−1)d−1

dd .
Is there a polynomial solution for CISWB on an infinite grid (rooted at an
arbitrary vertex) for some 1 > λ > (d−1)d−1

dd ?
– We have hardness results for CISWB with λ < 1. Is there a similar threshold

for λ > 1?
– Similarly, we can sample connected subgraphs of a bounded degree graph

with bias λ < (d−1)d−1

dd for any error ε. Is there some threshold for λ > 1
where this is also true?

– In Sect. 5 we showed Markov chains are likely not useful in randomly sampling
trees. What sets of graphs can they randomly sample and rapidly mix?
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