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Abstract
The spectral independence approach of Anari et al. (2020)
utilized recent results on high-dimensional expanders of Alev
and Lau (2020) and established rapid mixing of the Glauber
dynamics for the hard-core model defined on weighted
independent sets. We develop the spectral independence
approach for colorings, and obtain new algorithmic results
for the corresponding counting/sampling problems.

Let α∗ ≈ 1.763 denote the solution to exp(1/x) = x
and let α > α∗. We prove that, for any triangle-free
graph G = (V,E) with maximum degree ∆, for all q ≥
α∆ + 1, the mixing time of the Glauber dynamics for q-
colorings is polynomial in n = |V |, with the exponent of
the polynomial independent of ∆ and q. In comparison,
previous approximate counting results for colorings held
for a similar range of q (asymptotically in ∆) but with
larger girth requirement or with a running time where the
polynomial exponent depended on ∆ and q (exponentially).
One further feature of using the spectral independence
approach to study colorings is that it avoids many of the
technical complications in previous approaches caused by
coupling arguments or by passing to the complex plane; the
key improvement on the running time is based on relatively
simple combinatorial arguments which are then translated
into spectral bounds.

1 Introduction

The colorings model is one of the most-well studied
models in computer science, combinatorics, and statis-
tical physics. Here, we will be interested in designing
efficient algorithms for sampling colorings uniformly at
random. More precisely, given a graph G = (V,E) of
maximum degree ∆ and an integer q ≥ 3, let Ω denote
the set of proper q-colorings of G; the goal is to gener-
ate a coloring uniformly at random (u.a.r.) from Ω in
time polynomial in n = |V |. The colorings model can
be interpreted as a “spin system”, when we view col-
ors as spins with interactions between spins induced by
forbidding neighboring vertices to be assigned the same
spin. Note, the colorings model is a multi-spin system,
in contrast to 2-spin systems such as the hard-core and
the Ising models.

For spin systems, the key algorithmic task for
studying the equilibrium properties of the model is
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sampling from the associated Gibbs distribution. For
integer q ≥ 2, the Gibbs distribution of a q-spin
system on an n-vertex graph G is defined on the qn

possible assignments of the spins to the vertices of
the graph, where the weight of a spin assignment is
determined by nearest-neighbor interactions; our goal is
a sampling algorithm with running time polynomial in
n. An efficient approximate sampler is polynomial-time
equivalent to an efficient approximation scheme for the
corresponding partition function [16, 31, 17, 19], which
is the normalizing factor in the Gibbs distribution.

The classical approach for the approximate sam-
pling/counting problem is the Markov Chain Monte
Carlo (MCMC) approach, where we design a Markov
chain whose stationary distribution is the Gibbs dis-
tribution. A particularly popular Markov chain is the
Glauber dynamics. Due to its simplicity and easy ap-
plicability, it is also studied as an idealized model for
how the physical system approaches equilibrium. The
Glauber dynamics updates the spin at a random vertex
based on its marginal distribution in the Gibbs distri-
bution conditional on the spins of its neighbors. The
Glauber dynamics (Xt) is quite simple to describe for
the colorings problem. Starting from an arbitary col-
oring X0 ∈ Ω, at time t ≥ 0, choose a vertex v u.a.r.
and then set Xt+1(w) = Xt(w) for all w 6= v and choose
Xt+1(v) u.a.r. from the set of colors that do not ap-
pear in the neighborhood of v. The key quantity for
the Glauber dynamics is the mixing time which is the
number of steps from the worst initial state X0 to reach
within total variation distance ≤ 1/4 of its stationary
distribution. Despite its simplicity, analyzing the mix-
ing time of the Glauber dynamics even for the canonical
case of the colorings model is surprisingly challenging.

There are two non-MCMC algorithmic methods
that have been powerful and more amenable to a finer
understanding so far: the correlation decay and Barvi-
nok’s interpolation methods. The basis of the correla-
tion decay method is the so-called strong spatial mixing
(SSM) condition1; for 2-spin systems, one for example

1Roughly speaking, the SSM condition captures whether, if
we fix two partial assignments σ, τ on a subset of vertices T ,
the difference in the conditional marginal distribution at a vertex
v decays exponentially in the distance between S and v, where
S ⊆ T is the subset of vertices that σ, τ differ.
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can utilize SSM together with a clever tree construction
of Weitz [33] to efficiently estimate marginals and hence
obtain an approximation algorithm. The alternative al-
gorithmic method by Barvinok [3], which was further
refined by Patel and Regts [24], examines instead the
roots of the partition function in the complex plane and
approximates the Taylor series of the partition function
in a zero-free region.

Both of these non-MCMC approaches have been
shown to work for antiferromagnetic 2-spin systems2

up to the so-called tree uniqueness threshold, see [33,
27, 21] for the correlation decay approach and [26, 28]
for the interpolation method; see also [29, 30, 8] for
complementary hardness results. However, the running
time of these algorithmic approaches scales as O(nC)
where the exponent C depends on ∆ and on the
multiplicative gap δ from the tree uniqueness threshold;
obtaining faster algorithms even for 2-spin systems is a
major open problem.

To this vein, MCMC methods typically give much
faster (randomized) algorithms, however corresponding
results were lacking until a recent breakthrough result of
Anari, Liu and Oveis Gharan [2], who proved rapid mix-
ing of the Glauber dynamics for the hard-core model,
matching the parameter range of the aforementioned
non-MCMC approaches and also improving the running
time with a polynomial exponent which is independent
of the degree bound ∆. They introduced a spectral
independence approach which utilizes high-dimensional
expander results of Alev and Lau [1] (cf. [18, 25]). The
work of [2] establishes that, for 2-spin systems, it suffices
to bound the largest eigenvalue of the n × n influence
matrix I where the (v, w) entry captures the influence of
the fixed spin at vertex v on the marginal probability at
vertex w; we explain this in more detail in Section 1.1.
The running time of the result of [2] was further im-
proved in [6], who also generalised the approach to an-
tiferromagnetic 2-spin systems up to the tree-uniqueness
threshold by showing how to utilize potential-function
arguments that were previously used to establish SSM.

Going beyond 2-spin systems, all of these methods
become harder to control even well above the tree-
uniqueness threshold, q = ∆ + 1, which marks the
onset of computational hardness (even for triangle-free
graphs, see [9]). Let α∗ ≈ 1.763 be the solution
to exp(1/x) = x; this threshold has appeared in
several related results for colorings, though obtaining
corresponding algorithms has been challenging. For
example, for α > α∗, Gamarnik, Katz, and Misra [11]

2A 2-spin system is called antiferromagnetic if neighboring
spins prefer to be different, see for example [21] for more details.
Examples include the hard-core model and the antiferromagnetic
Ising model.

proved SSM on triangle-free graphs when q > α∆ + β
for some constant β = β(α); see also [12] for a related
result on amenable graphs. However, the correlation
decay approach has so far yielded an efficient algorithm
only for q ≥ 2.58∆, see [10, 23]. It was not until
recently that the SSM result of [11] was converted to an
algorithm for triangle-free graphs by Liu, Sinclair, and
Srivastava [22] utilizing the complex zeros approach;
however, just as for 2-spin systems, the polynomial
exponent in the running time depends exponentially on
∆ and the distance of α from α∗.

The analysis of Glauber dynamics for colorings has
not been easier. Jerrum [15] proved that the mixing
time is O(n log n) for all graphs when q > 2∆. This
was improved to q > 11

6 ∆ with mixing time O(n2)
by Vigoda [32], which was only recently improved to
q > ( 11

6 − δ)∆ for a small constant δ > 0 [4]. Back
to asymptotic results (that is, results that hold for suf-
ficiently large degree), for α > α∗ and large degrees
∆ > ∆0(α), Dyer et al. [7] showed that on graphs with
girth ≥ 5 and maximum degree ∆ the mixing time of the
Glauber dynamics is O(n log n) using sophisticated cou-
pling arguments building upon local uniformity results
of Hayes [13]. See [7, 14] for improvements by imposing
other degree/girth restrictions.

Our main contribution is to develop the spectral
independence approach of [1, 2] for colorings, and
analyze Glauber dynamics in the regime q ≥ α∆ + 1 for
all α > α∗ on triangle-free graphs. Our result applies
for all ∆ and we show that the exponent of the mixing
time does not depend on ∆ and q, yielding substantially
faster randomized algorithms for sampling/counting
colorings than the previous deterministic ones (at the
expense of using randomness).

Theorem 1.1. Let α∗ ≈ 1.763 denote the solution to
exp(1/x) = x. For all α > α∗, there exists c = c(α) > 0
such that, for any triangle-free graph G = (V,E) with
maximum degree ∆ and any integer q ≥ α∆ + 1, the
mixing time of the Glauber dynamics on G with q colors
is at most nc, where n = |V |.

We remark that the constant c is a function of the
gap α−α∗ and is independent of q and ∆. One feature
of using the spectral independence approach to study
colorings is that it avoids many of the technical compli-
cations caused by coupling arguments or by passing to
the complex plane, and allows us to get a better grip on
the quantities of interest (marginals); indeed, as we shall
explain in the next section, the key improvement on the
running time is inspired by relatively simple combina-
torial arguments and translating them into appropriate
spectral bounds.
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1.1 Proof approach Our work builds upon the spec-
tral independence approach introduced by Anari, Liu,
and Oveis Gharan [2], which in turn utilizes the high-
dimensional expander work of Alev and Lau [1]. Con-
sider a graph G = (V,E) of maximum degree ∆. The
key to this approach is to analyze the spectral radius of
the nq × nq matrix M where, for distinct v, w ∈ V and
i, k ∈ [q],

M
(
(v, i), (w, k)

)
= P(σw =k | σv = i)− P(σw =k).

The spectral independence approach is formally pre-
sented in Section 2, and the connection to rapid mixing
is formally stated in Theorem 2.5.

To be precise, in the spectral independence ap-
proach we need to analyze the corresponding matrixM
for the Gibbs distribution µG conditional on all fixed
assignments σS for all S ⊆ V . A fixed assignment
σS yields a list-coloring problem instance and hence we
need to consider the more general list-coloring problem.
At a high-level this is analogous to SSM (strong spatial
mixing). We do not formally define SSM in this paper
since it is not explicitly used. Roughly speaking, in SSM
we consider the effect of a pair of boundary colorings on
the marginal distribution of a specified vertex given the
worst fixed assignment σS for an arbitrary subset S.

In [6] it was shown for 2-spin systems how the
standard proof approach for establishing SSM also im-
plies spectral independence. However, the restriction
to 2-spin systems is fundamental. For 2-spin systems,
Weitz [33] showed that for any graph G = (V,E), any
v ∈ V , there is an appropriately defined tree T =
Tsaw(G, v) (corresponding to the self-avoiding walks in
G starting from v with a particularly fixed assignment
to the leaves) so that the marginal distribution for the
root of T (in the corresponding Gibbs distribution µT )
is identical to the marginal distribution for v (in µG).
Utilizing this self-avoiding walk tree construction, the
main idea in proofs establishing SSM is to design a po-
tential function on the ratio of the marginal distribution
for the root of a tree and prove that this potential func-
tion is contracting for the corresponding tree recursions.

Gamarnik, Katz, and Misra [11] established SSM
for the colorings problem when k > α∗∆ + β1 for some
constant β1 > 0 for all triangle-free graphs of maximum
degree ∆. Even though Weitz’s self-avoiding walk tree
connection no longer holds for colorings, [11] utilized
an appropriately constructed computation tree for the
more general list-coloring problem. They then present
a potential function which is contracting with respect
to the corresponding recursions for their computation
tree.

Previous proofs for the spectral independence study
entries of the influence matrix using the derivative of the

potential function. Instead, the SSM proof approach
of [11] uses a non-differentiable potential function so
we cannot use the same analytical approach. We
analyze the entries of the influence matrix by a more
combinatorial argument, paying attention to the entries
that are potentially large and therefore corresponds to
highly correlated vertex-spin pairs.

In particular, to bound the spectral radius of the
matrix M, we consider the following quantity: for a
pair of vertices v, w ∈ V and a color k ∈ [q], define the
maximum influence of v on (w, k) as:

I[v→ (w, k)] =

max
i,j∈[q]

|P(σw =k | σv = i)− P(σw =k | σv = j)| .

This is reminiscent of the potential function given in
[11] and an adaptation of their arguments allows us
to write a recursion for I[v→ (w, k)], expressing it in
terms of the influences of the neighbors of v in a graph
where v is deleted. In turn, this gives a recursion for the
aggregate influences (over w, k); the growth rate of the
aggregate influences in the recursion is controlled by the
product of the degree of v and the marginal probability
at v and the condition q ≥ α∆ + 1 guarantees that this
product is less than 1. The end result of this “vanilla”
approach yields that the spectral radius of M is C∆/ε
when q ≥ (1 + ε)α∗∆ + 1 for arbitrarily small ε > 0
and C is an absolute constant. This in turn gives a
(weaker) polynomial bound for fixed values of ∆ (the
constant in the exponent grows linearly with ∆). While
this argument does not quite give what we want, it
contains many of the relevant ideas that are used in the
more refined argument later, so we present the simpler
argument in Section 3.2.

To get the stronger polynomial bound stated in
Theorem 1.1 for all ∆, we need instead to prove that
the spectral radius of M is independent of ∆ and q;
achieving this stronger result requires further insight.
For the influences M the only large entries are the
“diagonal” entries corresponding to the cases when
i = k. This is illustrated by the simple example
of a star on ∆ + 1 vertices in Section 3.3 where
these diagonal entries are of order Θ(1/q) whereas
the non-diagonal entries are O(1/q2). To handle this
discrepancy we introduce a new notion of maximum
influence ÎL[v→ (w, k)] corresponding to the cases i, j 6=
k. We need a more intricate induction argument to
simultaneously maintain appropriate bounds on both of
these two quantities. The final result upper bounds the
row-sum ofM by O((∆/q)ε−2). This proof which is the
main ingredient of the proof of Theorem 1.1 is presented
in the full version [5] of this paper.
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2 Spectral independence and proof outline

2.1 Preliminaries Let q ≥ 3 be an integer and
denote by [q] := {1, . . . , q}.

A list-coloring instance is a pair (G,L) where G =
(V,E) is a graph and L = {L(v)}v∈V prescribes a list
L(v) ⊆ [q] of available colors for each v ∈ V ; it will
also be convenient to assume that the vertices of G are
ordered by some relation < (the ordering itself does not
matter). A proper list-coloring for the instance (G,L)
is an assignment σ : V → [q] such that σv ∈ L(v)
for each v ∈ V and σv 6= σw for each {v, w} ∈ E.
The instance is satisfiable iff such a proper list-coloring
exists. Note, q-colorings corresponds to the special case
where L(v) = [q] for each v ∈ V . For a satisfiable list-
coloring instance (G,L), we will denote by UG,L the set
{(v, i) | v ∈ V, i ∈ L(v)}, by ΩG,L the set of all proper
list-colorings, and by PG,L the uniform distribution over
ΩG,L; we will omit G from notations when it is clear
from context. We typically use σ to denote a random
list-coloring that is distributed according to PG,L.

We will be interested in analyzing the Glauber
dynamics on ΩG,L. This is a Markov chain (Zt)t≥0 of
list-colorings which starts from an arbitrary Z0 ∈ ΩG,L
and at each time t ≥ 0 updates the current list-coloring
Zt to Zt+1 by selecting a vertex v ∈ V u.a.r. and setting
Zt+1(v) = c, where c is a color chosen u.a.r. from the
set L(v)\Zt(NG(v)); for a vertex w 6= v, the color of w
is unchanged, i.e., Zt+1(w) = Zt(w). The transition
matrix of the Glauber dynamics will be denoted by
P = PG,L.

To ensure satisfiability of (G,L) as well as ergodicity
of the Glauber dynamics, we will henceforth assume
the well-known condition that |L(v)| ≥ ∆G(v) + 2 for
all v ∈ V , where ∆G(v) = |NG(v)| and NG(v) is the
set of neighbors of v in G.3 Then, Glauber dynamics
converges to the uniform distribution over ΩG,L. The
mixing time Tmix of the chain is the number of steps
needed to get within total variation distance ≤ 1/4 from
a worst-case initial state, i.e.,

max
σ∈ΩG,L

min
{
t ≥ 0

∣∣∣X0 = σ,
∥∥Xt − PG,L

∥∥
TV
≤ 1/4

}
.

It is well-known that, for any integer k ≥ 1, after kTmix

steps the total variation distance from the stationary
distribution is no more than (1/2)k+1; see, e.g., [20,

3To ensure satisfiability, it suffices to have the assumption
|L(v)| ≥ ∆G(v) + 1 for all v ∈ V ; in fact, for every v ∈ V and
i ∈ L(v) there exists a list-coloring σ of (G,L) with σv = i.
The slightly stronger condition |L(v)| ≥ ∆G(v) + 2 for every
v ∈ V ensures that any two list-colorings σ, τ are “connected” by
a sequence of list-colorings where consecutive list-colorings differ
at the color of a single vertex. (A clique with q + 1 vertices gives
a counterexample to this latter property for q-colorings).

Chapter 4]. Let λ2(P) be the second largest eigen-
value4 of P, and since the Glauber dynamics on (G,L)
is reversible, irreducible, and aperiodic, we have the fol-
lowing bound by applying well-known results from the
theory of Markov chains.

Lemma 2.1 (see, e.g., [20, Theorem 12.3 & 12.4]). Let
(G,L) be a list-coloring instance with G = (V,E) and
L = {L(v)}v∈V . Let n = |V | and Q = maxv∈V |L(v)|.

Then, denoting by λ2 = λ2(PG,L) the second largest
eigenvalue of PG,L, we have that the mixing time of the

Glauber dynamics satisfies Tmix ≤ n ln(4Q)
1−λ2

.

2.2 Local expansion for list-colorings and con-
nection to Glauber dynamics In order to analyze
the Glauber dynamics on a list-coloring instance (G,L),
we will use the spectral independence approach of [1, 2].
The key ingredient in this approach is to give a bound
on the spectral gap of a random walk on an appropriate
weighted graph; here we explain how these pieces can be
adapted in the list-coloring setting and state the main
result that allows us to conclude fast mixing of Glauber
dynamics.

Definition 2.2. Let HG,L be the weighted graph
with vertex set UG,L and edges {(v, i), (w, k)} for all
(v, i), (w, k) ∈ UG,L with v 6= w, with corresponding
edge weight PG,L(σv = i, σw =k).

Let P̂G,L be the transition matrix of the simple non-
lazy random walk on HG,L.

Definition 2.3. For α ∈ [0, 1], we say that (G,L)
has local expansion bounded by α if the second largest
eigenvalue of the simple non-lazy random walk on the
weighted graphHG,L is at most α, i.e., λ2

(
P̂
)
≤ α where

P̂ = P̂G,L is the transition matrix of the random walk.

For the spectral independence approach of [1, 2], we
will need to consider conditional distributions of PG,L
given a partial list-coloring5 on a subset of vertices;
this setting is reminiscent of SSM, though the goal
is different. For a partial list-coloring τ on a subset
S ⊆ V , let (Gτ , Lτ ) be the list-coloring instance on the
induced subgraph G[V \S] with lists obtained from L by
removing the unavailable colors that have been assigned
by τ for each vertex in V \S, i.e., Lτ = {Lτ (v)}v∈V \S
where for v ∈ V \S we have Lτ (v) = L(v)\τ(NG(v)∩S).

To capture those instances of list-colorings obtained
from an instance of q-colorings by assigning fixed colors

4More generally, for a square matrix M ∈ Rn×n all of whose
eigenvalues are real, we let λ1(M), λ2(M), . . . , λn(M) denote the
eigenvalues of M in non-increasing order.

5For a subset S ⊆ V , we say that τ is a partial list-coloring of
(G,L) on S if τ = σS for some σ ∈ ΩG,L.
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to a subset of vertices, the following notion of (∆, q)-
list-colorings will be useful.

Definition 2.4. Let ∆, q be positive integers with
∆ ≥ 3 and q ≥ ∆ + 2. We say that (G,L) is a (∆, q)-
list-coloring instance if G = (V,E) has maximum degree
∆ and for each v ∈ V it holds that L(v) ⊆ [q] and
|L(v)| ≥ q −∆ + ∆G(v).

We are now ready to state the spectral indepen-
dence approach for list-colorings.

Theorem 2.5. Let (G,L) be a (∆, q)-list-coloring in-
stance where G is an n-vertex graph. Suppose that for
each integer s = 0, 1, . . . , n − 2 there is `s ∈ [0, 1) such
that for every partial list-coloring τ on a subset S ⊆ V
with |S| = s, the conditioned instance (Gτ , Lτ ) has local
expansion bounded by `s.

Then, for L :=
∏n−2
s=0 (1− `s)−1, the spectral gap of

the Glauber dynamics on (G,L) is at least 1/(nL) and
its mixing time is at most Ln2 ln(4q).

2.3 Key lemmas: establishing local expansion
for list-colorings The hard part for us is to verify
the conditions of Theorem 2.5, i.e., bound the local
expansion of a (conditioned) list-coloring instance. To
do this the following matrix will help us to concentrate
on the non-trivial eigenvalues of the corresponding
random walk.

Definition 2.6. Let (G,L) be a list-coloring instance.
LetM =MG,L be the square matrix with indices from
the set UG,L, where the entry indexed by (v, i), (w, k) ∈
UG,L is 0 if v = w, and

M
(
(v, i), (w, k)

)
= PG,L(σw =k | σv = i)− PG,L(σw =k),

if v 6= w.

In the full version [5] of this paper, we show that

the second largest eigenvalue of P̂ can be studied by
focusing on the largest eigenvalue of M.

Theorem 2.7. Let (G,L) be a list-coloring instance
with G = (V,E) and L = {L(v)}v∈V such that |L(v)| ≥
∆G(v) + 2 for all v ∈ V , and n = |V | ≥ 2. Let P̂ be the
transition matrix of the simple non-lazy random walk on
the weighted graph HG,L. Then, the eigenvalues of M
are all real and λ2(P̂) = 1

n−1λ1(M) where M =MG,L

is the matrix from Definition 2.6.

Theorem 2.7 follows from spectral arguments and is
inspired from ideas about d-partite simplicial complexes
in [2, 25]. Then, the core of our argument behind the
proof of Theorem 1.1 is to establish the following bound
on λ1(M) by studying the list-coloring distribution.

Theorem 2.8. Let ε > 0 be arbitrary, and suppose
that (G,L) is a (∆, q)-list-coloring instance with q ≥
(1 + ε)α∗∆ + 1 and G a triangle-free graph. Then,

λ1(M) ≤ 64
(

1
ε + 1

)2 ∆
q where M =MG,L is the matrix

from Definition 2.6.

2.4 Combining pieces: proof of Theorem 1.1
Assuming Theorems 2.5, 2.7 and 2.8, we can complete
here the proof of Theorem 1.1.

Theorem 1.1. Let α∗ ≈ 1.763 denote the solution to
exp(1/x) = x. For all α > α∗, there exists c = c(α) > 0
such that, for any triangle-free graph G = (V,E) with
maximum degree ∆ and any integer q ≥ α∆ + 1, the
mixing time of the Glauber dynamics on G with q colors
is at most nc, where n = |V |.

Proof. We may assume that α < 2, otherwise the result
follows from [15]. Let ε > 0 be such that α = (1 + ε)α∗.
We will show the result with c = 80C2

α where Cα =
64
α

(
1
ε + 1

)2
. Suppose that G is an n-vertex triangle-free

graph with maximum degree ∆, and q ≥ α∆+1. Again,
from the result of [15] we may assume that q ≤ 2∆. If
n = 1 the result is immediate, so assume n ≥ 2 in

what follows. Let C = 64
(

1
ε + 1

)2 ∆
q be the bound from

Theorem 2.8, and note that 1 < C ≤ Cα.
Consider the list-coloring instance (G,L) where

L(v) = [q] for each v ∈ V . Then, Glauber dynamics
with q colors on G is the same as Glauber dynamics
on (G,L), so it suffices to bound the mixing time of the
latter. We will show that Theorem 2.5 applies with `s =
min{ C

n−1−s , 1 − 2(1/q4)n−s} for each s ∈ {0, 1, . . . , n −
2}. Indeed, let τ be an arbitrary partial list-coloring on
S ⊆ V with |S| = s for some s ∈ {0, 1, . . . , n − 2}
and consider the conditioned instance (Gτ , Lτ ) with
Gτ = (Vτ , Eτ ). Then, for every vertex v ∈ Vτ we have
that |Lτ (v)| ≥ q−∆+∆Gτ (v) since the conditioning on
τ disallows at most ∆−∆Gτ (v) colors from v, and hence
(Gτ , Lτ ) is a (∆, q)-list-coloring instance. Therefore,
by Theorem 2.7 and Theorem 2.8 applied to (Gτ , Lτ ),
we obtain that (Gτ , Lτ ) has local expansion bounded
by C

n−1−s . The local expansion is also bounded by

1 − 2(1/q4)n−s using conductance arguments.6 This
verifies the assumptions of Theorem 2.5, so it follows
that the mixing time of the Glauber dynamics on G is

6For any reversible Markov chain with transition matrix P, it
holds that 1 − λ2 ≥ Φ2/2, where Φ is the conductance of the
chain, see, e.g., [20, Theorem 13.14]. In the proof of Theorem 2.8,
it is shown that the stationary distribution of the random walk
on Hτ is given by { 1

n−s−1
PGτ ,Lτ (σv = k)}(v,k)∈UGτ ,Lτ , whose

entries are crudely lower-bounded by 1/q2(n−s), see Footnote 3.
This in turn yields the desired bound on the local expansion of
(Gτ , Lτ ).
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at most Ln2 ln(4q), where L =
∏n−2
s=0 (1 − `s)

−1. Let
k0 = d2Ce ≤ 3Cα, then we have that

L ≤
(
q4k0

2

)k0−1

·
n−1−k0∏
s=0

(
1− C

n− s− 1

)−1

≤ q4k20 · n2C ≤ n74C2
α ,

since −
∑n−1
i=k0

ln(1 − C
i ) ≤ 2C

∑n−1
i=k0

1
i ≤ 2C lnn and

q ≤ 2∆ ≤ n2.
Using the bound on L, Theorem 2.5 yields that

Tmix ≤ nc with c = 80C2
α, finishing the proof.

Organisation of the rest of the paper. Section 3 is
devoted to the proof of the key Theorem 2.8, and more
accurate analysis is given in the full version [5]. We also
give the details of the spectral independence approach
for colorings and prove Theorems 2.5 and 2.7 in the full
version [5].

In our proofs henceforth, it will be convenient to
define the following slightly more accurate form of the
region of (∆, q) where our results apply to.

Definition 2.9 (Parameter Region Λε). Let α∗ ≈ 1.763
denote the solution to exp(1/x) = x. For ε > 0,
define Λε =

{
(∆, q) ∈ N2 | ∆ ≥ 3, q ≥ α∆ + β

}
where

α = (1 + ε)α∗ and β = 2− α+ α
2(α2−1) < 0.655.

3 Simpler proof of a slower mixing result

Let (G,L) be a (∆, q)-list-coloring instance as in Theo-
rem 2.8, our goal is to bound the spectral radius of the
matrix MG,L from Definition 2.6. In this section, we
will prove a weaker result than the one in Theorem 2.8
which already contains some of the key ideas and will
motivate our refinement in the full version [5].

In particular, we will show that for α > α∗ there
exists a constant C = C(α) such that whenever q ≥
α∆ + 1 it holds that λ1(MG,L) ≤ C∆. Note the
dependence on ∆ of this bound, in contrast to that of
Theorem 2.8; mimicking the proof of Theorem 1.1 given
earlier would give a mixing time bound of O(nC

′∆) for
the Glauber dynamics for some constant C ′ = C ′(α) >
0, which is much weaker than what Theorem 1.1 asserts.
Nevertheless, we will introduce several of the relevant
quantities/lemmas that will also be relevant in the more
involved argument of [5].

It is well-known that, for any square matrix the
spectral radius is bounded by the maximum of the L1-
norms of the rows. In our setting, the (weaker) bound on
λ1(MG,L) will therefore be obtained by showing that,
for an arbitrary vertex v of G and a color i ∈ L(v), it

holds that 7

(3.1)∑
w∈V \{v}

∑
k∈[q]

∣∣MG,L

(
(v, i), (w, k)

)∣∣ ≤ 4

(
1

ε
+ 1

)
∆.

To bound the sum in (3.1), we introduce the maximum
influence, which describes the maximum difference of
the marginal probability of σw = k under all color
choices of v.

Definition 3.1 (Maximum Influences). Let (G,L) be a
(∆, q)-list-coloring instance. Let v, w be two vertices of
G, and k ∈ [q]. The maximum influence of v on (w, k)
is defined to be

IG,L[v→ (w, k)]

= max
i,j∈L(v)

∣∣PG,L(σw =k | σv = i)− PG,L(σw =k | σv = j)
∣∣.

Observation 3.2. For all distinct v, w ∈ V , i ∈
L(v), and k ∈ [q], we have |MG,L((v, i), (w, k))| ≤
IG,L[v→ (w, k)].

Proof. If k /∈ L(w), then we haveMG,L((v, i), (w, k)) =
IG,L[v→ (w, k)] = 0. For k ∈ L(w), since v 6= w, we
haveMG,L((v, i), (w, k)) = P(σw =k | σv = i)−P(σw =k)
and so the law of total probability gives

MG,L((v, i), (w, k)) =∑
j∈L(v)

(
P(σw =k | σv = i)−P(σw =k | σv = j)

)
P(σv = j),

from where the desired inequality follows.

Hence, to bound the sum in (3.1), it suffices to
bound the sum

∑
w∈V \{v}

∑
k∈[q] IG,L[v→ (w, k)] in-

stead. Our ultimate goal is to write a recursion for
this latter sum, bounding by an analogous sum for the
neighbors of v (in the graph where v is deleted). To get
on the right track, we start by writing a recursion for
influences.

3.1 A recursive approach to bound influences
In this section, we derive a recursion on influences.
Recall that a list-coloring instance is a pair (G,L) where
G = (V,E) is a graph, L = {L(v)}v∈V prescribes a list
L(v) of available colors for each v ∈ V , and the vertices
of G are ordered by some relation <.

Definition 3.3. Let (G,L) be a list-coloring instance
with G = (V,E) and L = {L(v)}v∈V .

7 Henceforth, it will be convenient to extendMG,L by setting
MG,L((v, i), (w, k)) = 0 when k /∈ L(w) or i /∈ L(v).
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Let v ∈ V . For u ∈ NG(v) and colors i, j ∈
L(v) with i 6= j, we denote by (Gv, L

ij
u ) the list-

coloring instance with Gv = G\v and lists Liju =
{Liju (w)}w∈V \{v} obtained from L by:

• removing the color i from the lists L(u′) for u′ ∈
NG(v) with u′ < u,

• removing the color j from the lists L(u′) for u′ ∈
NG(v) with u′ > u, and

• keeping the remaining lists unchanged.

The following lemma will be crucial in our recursive
approach to bound influences, and follows by adapting
suitably ideas from [11].

Lemma 3.4. Let (G,L) be a (∆, q)-list-coloring in-
stance with G = (V,E) and L = {L(v)}v∈V . Then,
for v ∈ V and arbitrary colors i, j ∈ L(v) with i 6= j,
for all w ∈ V \{v} and k ∈ [q], we have

P(σw =k | σv = i)− P(σw =k | σv = j)

=
∑

u∈NG(v)

Piju (σu = j)

Piju (σu 6= j)
· Mij

u

(
(u, j), (w, k)

)
− Piju (σu = i)

Piju (σu 6= i)
· Mij

u

(
(u, i), (w, k)

)
,

where P := PG,L and, for u ∈ NG(v), Piju := PGv,Liju
and Mij

u :=MGv,L
ij
u

.

Recall that we set Mij
u

(
(u, c), (w, k)

)
= 0 for c /∈

Liju (u) (see Footnote 7). To apply Lemma 3.4 recur-
sively, it will be helpful to consider multiple list-coloring
instances on the same graph G. For a collection of lists
L = {L1, . . . , Lt}, where each L ∈ L is a set of lists of all
vertices for G, we use (G,L) to denote the collection of
|L| list-coloring instances {(G,L1), . . . , (G,Lt)}. When
considering the pair (G,L) or (G,L), we usually omit
the graph G when it is clear from the context.

Definition 3.5. Let (G,L) be a collection of list-
colorings instances with G = (V,E) and a collection
of lists L on G. For v ∈ V , we define Lv to be the
collection of lists for Gv = G\v obtained from L by
setting

Lv =
{
Liju | L ∈ L, u ∈ NG(v), i, j ∈ L(v) with i 6= j

}
.

Note that (Gv,Lv) consists of |Lv| =
∑
L∈L∆G(v) ·

|L(v)| · (|L(v)| − 1) list-coloring instances.

Lemma 3.6. If (G,L) is a collection of (∆, q)-list-
coloring instances, then for each vertex v of G, (Gv,Lv)
is also a collection of (∆, q)-list-coloring instances.

Proof. Let Lv ∈ Lv be arbitrary, so that Lv is obtained
from some L ∈ L. Then, by definition, for u /∈ NG(v)

we have |Lv(u)| = |L(u)| and ∆Gv (u) = ∆G(u), while
for u ∈ NG(v) we have |Lv(u)| ≥ |L(u)| − 1 and
∆Gv (u) = ∆G(u) − 1. This implies that Lv is (∆, q)-
induced.

3.2 Aggregating influences

Definition 3.7. Let (G,L) be a collection of (∆, q)-list-
coloring instances with G = (V,E). Fix a vertex v ∈ V
and let w ∈ V \{v}, k ∈ [q]. The maximum influence of
v on (w, k) with respect to (G,L) is defined to be

IG,L[v→ (w, k)] = max
L∈L

IG,L[v→ (w, k)].

The total maximum influence of v with respect to (G,L)
is defined to be 0 if ∆G(v) = 0, and

I∗G,L(v) =
1

∆G(v)

∑
w∈V \{v}

∑
k∈[q]

IG,L[v→ (w, k)]

if ∆G(v) ≥ 1.

The following lemma gives a recursive bound on the
total maximum influence.

Lemma 3.8. Let (G,L) be a collection of list-coloring
instances and v be a vertex of G with ∆G(v) ≥ 1. Then,
with Gv,Lv as in Definition 3.5,

I∗G,L(v) ≤ max
u∈NG(v)

{
RGv,Lv (u)

(
∆Gv (u)·I∗Gv,Lv (u)+q

)}
,

where RGv,Lv (u) = maxL∈Lv maxc∈L(u)
PGv,L(σu = c)
PGv,L(σu 6= c) for

u ∈ NG(v).

Proof. Suppose that G = (V,E). For convenience, we
will drop the subscripts G,L from influences and use the
subscript v as a shorthand for the subscripts Gv,Lv of
influences and the quantity R. We will soon show that
for every w ∈ V \{v} and color k ∈ [q], we have

(3.2) I[v→ (w, k)] ≤
∑

u∈NG(v)

Rv(u) · Iv[u→ (w, k)].

Assuming (3.2) for the moment, we have that

I∗(v) =
1

∆G(v)

∑
w∈V \{v}

∑
k∈[q]

I[v→ (w, k)]

≤ 1

∆G(v)

∑
w∈V \{v}

∑
k∈[q]

∑
u∈NG(v)

Rv(u) · Iv[u→ (w, k)]

=
1

∆G(v)

∑
u∈NG(v)

Rv(u)

·
( ∑
w∈V \{v,u}

∑
k∈[q]

Iv[u→ (w, k)] +
∑
k∈[q]

Iv[u→ (u, k)]

)
≤ max
u∈NG(v)

{
Rv(u)

(
∆Gv (u) · I∗v (u) + q

)}
,
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which is precisely the desired inequality. To prove
(3.2), consider L ∈ L and i, j ∈ L(v) with i 6= j.
For simplicity, let P := PG,L and, for u ∈ NG(v),
Piju := PGv,Liju , Mij

u := MGv,L
ij
u

, and Iiju = IGv,Liju .

Let also P ijw,k := P(σw =k | σv = i) − P(σw =k | σv = j),
so that from Lemma 3.4 we have

(3.3) P ijw,k =∑
u∈NG(v)

Piju (σu= j)

Piju (σu 6= j)
· Mij

u

(
(u, j), (w, k)

)
− Piju (σu= i)

Piju (σu 6= i)
· Mij

u

(
(u, i), (w, k)

)
.

By the law of total probability, we have∑
c∈Liju (u)

Piju (σu= c) · Mij
u

(
(u, c), (w, k)

)
=

∑
c∈Liju (u)

Piju (σu= c)
(
Piju (σw =k | σu= c)− Piju (σw =k)

)
= 0;

so we conclude that

(3.4) mij
u := min

i′∈Liju (u)
Mij

u

(
(u, i′), (w, k)

)
≤ 0

and

(3.5) M ij
u := max

j′∈Liju (u)
Mij

u

(
(u, j′), (w, k)

)
≥ 0.

Observe further that
(3.6)
Iiju [u→ (w, k)]

= max
i′,j′∈Liju (u)

∣∣Piju (σw =k | σu= i′)− Piju (σw =k | σv = j′)
∣∣

= M ij
u −mij

u .

Combining (3.3), (3.4), (3.5), (3.6) we obtain that

P ijw,k ≤
∑

u∈NG(v)

Rv(u)
(
M ij
u −mij

u

)
=

∑
u∈NG(v)

Rv(u) · Iiju [u→ (w, k)]

≤
∑

u∈NG(v)

Rv(u) · Iv[u→ (w, k)].

Since IG,L[v→ (w, k)] = maxi,j∈L(v) P
ij
w,k, by taking

maximum over i, j ∈ L(v) of the left-hand side, we
obtain the same upper for IG,L[v→ (w, k)]. We then
obtain (3.2) by taking maximum over L ∈ L, and thus
finish the proof.

For the bound in Lemma 3.8 to be useful, we need
to show that the ratio R(u) defined there is strictly
less than 1/∆G(u). The following lemma does this for
(∆, q) ∈ Λε, building on ideas from [12, 11]. 8

Lemma 3.9. Let ε > 0 and (∆, q) ∈ Λε. Let (G,L)
be a (∆, q)-list-coloring instance with G a triangle-free
graph. Then for every vertex u of G with degree at most
∆− 1 and every color c ∈ L(u), we have

PG,L(σu = c)

PG,L(σu 6= c)
≤ min

{
1

(1 + ε)∆G(u)
,

4

q

}
.

We remark that when ∆G(u) is small, the bound
1/∆G(u) is poor and we shall apply the simpler crude
bound 4/q. The proof of Lemma 3.9 can be found in
our full version [5]. Combining Lemmas 3.8 and 3.9, we
can now bound the total influence.

Theorem 3.10. Let ε > 0 and (∆, q) ∈ Λε. Sup-
pose that (G,L) is a collection of (∆, q)-list-coloring in-
stances where G is a triangle-free graph. Then for every
vertex v of G we have I∗G,L(v) ≤ 4

(
1
ε + 1

)
.

Proof. Let v0 = v, G0 = G and L0 = L. For ` ≥ 0, we
will define inductively a sequence of (∆, q)-list-coloring
instances (G`,L`) and a vertex v` in G` as follows. Let
G`+1 be the graph obtained from G` by deleting v`;
namely, G`+1 = G`\v` and L`+1 = L`v` . Note that all

neighbors of v` in G` have degree at most ∆−1 in G`+1.
Moreover, since by induction (G`,L`) is a set of (∆, q)-
list-coloring instances, by Lemma 3.6 so is (G`+1,L`+1).
Since q ≥ (1+ε)α∆+1, combining Lemmas 3.8 and 3.9,
we obtain that
(3.7)

I∗G`,L`(v`) ≤
1

1 + ε
· max
u∈N

G`
(v`)

{
I∗G`+1,L`+1(u)

}
+ 4.

We let v`+1 be the vertex u ∈ NG`(v`) that attains the
maximum of the right-hand side of (3.7), so

(3.8) I∗G`,L`(v`) ≤
1

1 + ε
· I∗G`+1,L`+1(v`+1) + 4.

Hence, we obtain a sequence of vertices v0, v1, . . . , vm
and also collections of lists L0,L1, . . . ,Lm, till when
∆Gm(vm) = 0 and thus I∗Gm,Lm(vm) = 0. From this,
and since (3.8) holds for all 0 ≤ ` ≤ m − 1, we obtain
by solving the recursion that I∗G,L(v) ≤ 4

1−(1+ε)−1 =

4
(

1
ε + 1

)
, as wanted.

8We remark that our region Λε is slightly smaller than that
of [12], where similar bounds are shown for q ≥ α∆ − γ for γ ≈
0.4703. The difference is that the arguments in [12] upper-bound
PL(σu = c) instead of the ratio PL(σu = c)/PL(σu 6= c) which is
relevant here, and which is clearly larger than PL(σu = c). See
also the discussion in our full version [5].
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Combining Theorem 3.10 with Observation 3.2
and Definition 3.7 of total maximum influence gives
(3.1), which therefore yields the bound λ1(MG,L) ≤
4
(

1
ε + 1

)
∆ for any (∆, q)-list-coloring instance (G,L)

with (∆, q) ∈ Λε, as claimed at the beginning of this
section.

3.3 An example where this spectral bound is
not tight From the arguments of the previous section
we get that, for a (∆, q)-list-coloring instance (G,L)
with (∆, q) ∈ Λε it holds that λ1(MG,L) ≤ 4

(
1
ε + 1

)
∆.

As discussed earlier, this only yields an nC∆ upper
bound on the mixing time for some C = C(α) > 0,
which is exponential in the maximum degree ∆. The
following example shows that (3.1) and threfore the
bound on λ1(MG,L) are not tight.

Example 3.11. Consider q-colorings of a star graph
G = (V,E) on ∆ + 1 vertices centered at v. Then for
every w ∈ NG(v) = V \{v} and every k ∈ [q], we have
IG,L[v→ (w, k)] = 1

q−1 , and hence,

(3.9)
∑

w∈V \{v}

∑
k∈[q]

IG,L[v→ (w, k)] =
q

q − 1
·∆ ≥ ∆.

Meanwhile, given i ∈ [q], for every w ∈ NG(v) = V \{v}
and every k ∈ [q] we have

MG,L((v, i), (w, k)) =

{
1

q(q−1) if k 6= i;

− 1
q if k = i.

Therefore, for every i ∈ [q] we have∑
w∈V \{v}

∑
k∈[q]

∣∣∣MG,L((v, i), (w, k))
∣∣∣ =

2∆

q
,

which is a factor of at least q/2 smaller than the bound
in (3.9).

Example 3.11 indicates that the maximum influence
IL[v→ (w, k)] does not always provide a good bound on
ML((v, i), (w, k)); in fact, as we can see from our full
version [5], it loses a factor of roughly q when it comes
to the off-diagonal entries, i.e., when k 6= i.
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