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Abstract
The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the
Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult
to analyze, due in part to the global nature of its updates. We present optimal bounds on the
convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend
to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing
conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov
chains by Martinelli et al. (2003), imply Ω(1) spectral gap and O(log n) mixing time, respectively, for
the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically
optimal. As a consequence, we establish Θ(log n) mixing for the Swendsen-Wang dynamics for all
boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the
uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with
respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by
several recent rapid mixing results on high-dimensional expanders and utilize recent work on block
factorization of entropy under spatial mixing conditions.

1 Introduction

Spin systems are idealized models of a physical system in equilibrium which are utilized
in statistical physics to study phase transitions. A phase transition occurs when there
is a dramatic change in the macroscopic properties of the system resulting from a small
(infinitesimal in the limit) change in one of the parameters defining the spin system. The
macroscopic properties of the system manifest with the persistence (or lack thereof) of long-
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range influences. There is a well-established mathematical theory connecting the absence
of these influences to the fast convergence of Markov chains. In this paper, we study this
connection on the regular tree, known as the Bethe lattice in statistical physics [7, 27].

The most well-studied example of a spin system is the ferromagnetic q-state Potts model,
which contains the Ising model (q = 2) as a special case. The Potts model is especially
important as fascinating phase transitions (first-order vs. second-order) are now understood
rigorously in various contexts [5, 21, 20, 17, 18].

Given a graph G = (V, E), configurations of the Potts model are assignments of spins [q] =
{1, 2, . . . , q} to the vertices of G. The parameter β > 0 (corresponding to the inverse of the
temperature of the system) controls the strength of nearest-neighbor interactions, and the
probability of a configuration σ ∈ [q]V in the Gibbs distribution is such that

µ(σ) = µG(σ) = e−β|D(σ)|

Z
, (1)

where D(σ) = {{v, w} ∈ E : σ(v) ̸= σ(w)} denotes the set of bi-chromatic edges in σ, and Z

is the normalizing constant known as the partition function.
The Glauber dynamics is the simplest example of a Markov chain for sampling from

the Gibbs distribution; it updates the spin at a randomly chosen vertex in each step. In
many settings, as we detail below, the Glauber dynamics converges exponentially slow at
low temperatures (large β) due to the local nature of its transitions and the long-range
correlations in the Gibbs distribution. Of particular interest are thus “global” Markov
chains such as the Swendsen-Wang (SW) dynamics [49, 23], which update a large fraction
of the configuration in each step, thus potentially overcoming the obstacles that hinder the
performance of the Glauber dynamics, and with steps that can be efficiently parallelized [4].

The SW dynamics utilizes a close connection between the Potts model and an alternative
representation known as the random-cluster model. The random-cluster model is defined
on subsets of edges and is not a spin system as the weight of a configuration depends on
the global connectivity properties of the corresponding subgraph. The transitions of the
SW dynamics take a spin configuration, transform it to a “joint” spin-edge configuration,
perform a step in the joint space, and then map back to a Potts configuration. Formally,
from a Potts configuration σt ∈ [q]V , a transition σt → σt+1 is defined as follows:

1. Let Mt = M(σt) = E \ D(σt) denote the set of monochromatic edges in σt.
2. Independently for each edge e = {v, w} ∈ Mt, keep e with probability p = 1 − exp(−β)

and remove e with probability 1 − p. Let At ⊆ Mt denote the resulting subset.
3. In the subgraph (V, At), independently for each connected component C (including

isolated vertices), choose a spin sC uniformly at random from [q] and assign to each
vertex in C the spin sC . This spin assignment defines σt+1.

There are two standard measures of the convergence rate of a Markov chain. The mixing
time is the number of steps to get within total variation distance ≤ 1/4 of its stationary
distribution from the worst starting state. The relaxation time is the inverse of the spectral
gap of the transition matrix of the chain and measures the speed of convergence from a
“warm start”. For approximate counting algorithms the relaxation time is quite useful as it
corresponds to the “resample” time [30, 37, 35, 34]; see Section 2 for precise definitions and
how these two notions relate to each other.

There has been great progress in formally connecting phase transitions with the conver-
gence rate of the Glauber dynamics. Notably, for the d-dimensional integer lattice Zd, a series
of works established that a spatial mixing property known as strong spatial mixing (SSM)
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implies O(n log n) mixing time of the Glauber dynamics [39, 15, 22]. Roughly speaking, SSM
says that correlations decay exponentially fast with the distance and is also known to imply
optimal mixing and relaxation times of the SW dynamics on Zd [9, 8]. These techniques
utilizing SSM are particular to the lattice and do not extend to non-amenable graphs (i.e.,
those whose boundary and volume are of the same order). The d-ary complete tree, which is
the focus of this paper, is the prime example of a non-amenable graph.

On the regular d-ary tree, there are two fundamental phase transitions: the uniqueness
threshold βu and the reconstruction threshold βr. The smaller of these thresholds βu

corresponds to the uniqueness/non-uniqueness phase transition of the Gibbs measure on the
infinite d-ary tree, and captures whether the worst-case boundary configuration (i.e., a fixed
configuration on the leaves of a finite tree) has an effect or not on the spin at the root (in the
limit as the height of the tree grows). The second threshold βr is the reconstruction/non-
reconstruction phase transition, marking the divide on whether or not a random boundary
condition (in expectation) affects the spin of the root.

There is a large body of work on the interplay between these phase transitions and the
speed of convergence of the Glauber dynamics on the complete d-ary tree [41, 40, 6], and
more generally on bounded degree graphs [44, 28, 13]. Our main contributions in this paper
concern instead the speed of convergence of the SW dynamics on trees, how it is affected by
these phase transitions, and the effects of the boundary condition.

Martinelli, Sinclair, and Weitz [40, 41] introduced a pair of spatial mixing (decay of
correlation) conditions called Variance Mixing (VM) and Entropy Mixing (EM) which capture
the exponential decay of point-to-set correlations. More formally, the VM and EM conditions
hold when there exist constants ℓ > 0 and ε = ε(ℓ) such that, for every vertex v ∈ T , the
influence of the spin at v on the spins of the vertices at distance ≥ ℓ from v in the subtree
Tv rooted at v decays by a factor of at least ε. For the case of VM, this decay of influence is
captured in terms of the variance of any function g that depends only on the spins of the
vertices in Tv at distance ≥ ℓ from v; specifically, when conditioned on the spin at v, the
conditional variance of g is (on average) a factor ε smaller then the unconditional variance;
see Definition 7 in Section 3 for the formal definition. EM is defined analogously, with
variance replaced by entropy; see Definition 15.

It was established in [40, 41] that VM and EM imply optimal bounds on the convergence
rate of the Glauber dynamics on trees. We obtain optimal bounds for the speed of convergence
of the SW dynamics under the same VM and EM spatial mixing conditions.

▶ Theorem 1. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model
on an n-vertex complete d-ary tree, Variance Mixing implies that the relaxation time of the
Swendsen-Wang dynamics is Θ(1).

▶ Theorem 2. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model
on an n-vertex complete d-ary tree, Entropy Mixing implies that the mixing time of the
Swendsen-Wang dynamics is O(log n).

The VM condition is strictly weaker (i.e., easier to satisfy) than the EM condition, but, at
the moment, EM is known to hold in the same parameter regimes as VM. The relaxation
time bound in Theorem 1 is weaker than the mixing time bound in Theorem 2. We also
show that the mixing time in Theorem 2 is asymptotically the best possible.

▶ Theorem 3. For all q ≥ 2, d ≥ 3 and any β > 0, the mixing time of the SW dynamics on
an n-vertex complete d-ary tree is Ω(log n) for any boundary condition.

We remark that the mixing time lower bound in Theorem 3 applies to all inverse
temperatures β and all boundary conditions.
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The VM and EM conditions are properties of the Gibbs distribution induced by a specific
boundary condition on the leaves of the tree; this contrasts with other standard notions
of decay of correlations such as SSM on Zd. This makes these conditions quite suitable
for understanding the speed of convergence of Markov chains under different boundary
conditions. For instance, [40, 41] established VM and EM for all boundary conditions
provided β < max{βu, 1

2 ln(
√

d+1√
d−1 )} and for the monochromatic (e.g., all-red) boundary

condition for all β. Consequently, we obtain the following results.

▶ Theorem 4. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model on
an n-vertex complete d-ary tree, the relaxation time of the Swendsen-Wang dynamics is Θ(1)
and its mixing time is Θ(log n) in the following cases:
1. the boundary condition is arbitrary and β < max

{
βu, 1

2 ln
( √

d+1√
d−1

)}
;

2. the boundary condition is monochromatic and β is arbitrary.

Part (i) of this theorem provides optimal mixing and relaxation times bounds for the
SW dynamics under arbitrary boundaries throughout the uniqueness region β < βu. In fact,
βu < 1

2 ln(
√

d+1√
d−1 ) when q ≤ 2(

√
d + 1) and thus our bound extends to the non-uniqueness

region for many combinations of d and q. We note that while the value of the uniqueness
threshold βu is known, it does not have a closed form (see [31, 10]). In contrast, the
reconstruction threshold βr is not known for the Potts model [47, 43], but one would expect
that part (i) holds for all β < βr; analogous results are known for the Glauber dynamics for
other spin systems where more precise bounds on the reconstruction threshold have been
established [6, 45, 48].

Previously, only a poly(n) bound was known for the mixing time of the SW dynamics for
arbitrary boundary conditions [50, 6]. This poly(n) bound holds for every β, but the degree
of the polynomial bounding the mixing time is quite large (grows with β); our bound in part
(i) is thus a substantial improvement.

In regards to part (ii) of the theorem, we note that our bound holds for all β, including
the whole low-temperature region. The only other case where tight bounds for the SW
dynamics are known for the full low-temperature regime is on the geometrically simpler
complete graph [25, 12].

Previous (direct) analysis of the speed of convergence of the SW dynamics on trees
focused exclusively on the special case of the free boundary condition [33, 16], where the
dynamics is much simpler as the corresponding random-cluster model is trivial (reduces to
independent bond percolation); this was used by Huber [33] to establish O(log n) mixing
time of the SW dynamics for all β for the special case of the free boundary condition.

We comment briefly on our proof methods next; a more detailed exposition of our approach
is provided later in this introduction. The results in [40, 41] use the VM and EM condition
to deduce optimal bounds for the relaxation and mixing times of the Glauber dynamics;
specifically, they analyze its spectral gap and log-Sobolev constant. Their methods do not
extend to the SW dynamics. It can be checked, for example, that the log-Sobolev constant
for the SW dynamics is Θ(n−1), and thus the best possible mixing time one could hope to
obtain with such an approach would be O(n log n). For Theorem 2, we utilize instead new
tools introduced by Caputo and Parisi [14] to establish a (block) factorization of entropy.
This factorization allows to get a handle on the modified log-Sobolev constant for the SW
dynamics. For Theorem 1, the main novelty in our approach is a new spectral interpretation
of the VM condition that facilitates a factorization of variance, similar to the factorization
of entropy from [14]. Lastly, the lower bound from Theorem 3 is obtained by adapting the
framework of Hayes and Sinclair [32] to the SW setting using recent ideas from [8].
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Finally, we mention that part (ii) of Theorem 4 has interesting implications related to
the speed of convergence of random-cluster model Markov chains on trees under the wired
boundary condition. That is, all the leaves are connected through external or “artificial”
wirings. The case of the wired boundary condition is the most studied version of the random-
cluster model on trees (see, e.g., [31, 36]) since, as mentioned earlier, the model is trivial
under the free boundary. The random-cluster model, which is parameterized by p ∈ (0, 1)
and q > 0 (see [24, 1] for its definition), is intimately connected to the ferromagnetic q-sate
Potts model when q ≥ 2 is an integer and p = 1 − exp(−β). In particular, there is a variant
of SW dynamics for the random-cluster model (by observing the edge configuration after the
second step of the chain).

Another standard Markov chain for the random-cluster model is the heat-bath (edge)
dynamics, which is the analog of the Glauber dynamics on spins for random-cluster configur-
ations. Our results for the random-cluster dynamics are the following.

▶ Theorem 5. For all integer q ≥ 2, p ∈ (0, 1), and d ≥ 3, for the random-cluster model
on an n-vertex complete d-ary tree with wired boundary condition, the mixing time of the
Swendsen-Wang dynamics is O(log n). In addition, the mixing time of the heat-bath edge
dynamics for the random-cluster model is O(n log n).

To prove these results, we use a factorization of entropy in the joint spin-edge space, as
introduced in [8]; they cannot be deduced from the mixing time bounds for the Glauber
dynamics for the Potts model in [40, 41].

Our final result shows that while random-cluster dynamics mix quickly under the wired
boundary condition, there are random-cluster boundary conditions that cause an exponential
slowdown for both the SW dynamics and the heat-bath edge dynamics for the random-cluster
model.

▶ Theorem 6. For all q ≥ 2, all d ≥ 3, consider the random-cluster model on an n-vertex
complete d-ary tree. Then, there exists p ∈ (0, 1) and a random-cluster boundary condition
such that the mixing times of the Swendsen-Wang dynamics and of the heat-bath edge dynamics
is exp(Ω(

√
n)).

We prove this result extending ideas from [11]. In particular, we prove a general theorem
that allows us to transfer slow mixing results for the edge dynamics on other graphs to the
tree, for a carefully constructed tree boundary condition and a suitable p. To proof this
results we use the random-cluster boundary condition to embed an arbitrary graph G on the
tree; a set with bad conductance for the chain on G is then lifted to the tree. Theorem 6
then follows from any of the known slow mixing results for the edge dynamics [29, 26, 50].

Our techniques. Our first technical contribution is a reinterpretation and generalization of
the VM condition as a bound on the second eigenvalue of a certain stochastic matrix which
we denote by P ↑P ↓. The matrices P ↑ and P ↓ are distributional matrices corresponding to
the distribution at a vertex v given the spin configuration of the set Sv of all its descendants
at distance at least ℓ and vice versa. These matrices are inspired by the recent results in [2, 3]
utilizing high-dimensional expanders; see Section 3 for their precise definitions.

Our new spectral interpretation of the VM condition allows us to factorize it and obtain an
equivalent global variant we call Parallel Variance Mixing (PVM). While the VM condition
signifies the exponential decay with distance of the correlations between a vertex v and
the set Sv (and is well-suited for the analysis of local Markov chains), the PVM condition
captures instead the decay rate of set-to-set correlations between the set of all the vertices
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at a fixed level of the tree and the set of all their descendants at distance at least ℓ. The
PVM condition facilitates the analysis of a block dynamics with a constant number of blocks
each of linear volume. We call this variant of block dynamics the tiled block dynamics as
each block consists of a maximal number of non-intersecting subtrees of constant size (i.e., a
tiling); see Figure 1. We use the PVM condition to show that the spectral gap of the tiled
block dynamics is Ω(1), and a generic comparison between the block dynamics and the SW
dynamics yields Theorem 1.

Our proof of Theorem 2 follows a similar strategy. We first obtain a global variant of the
EM condition, analogous to the PVM condition but for entropy. For this, we use a recent
result of Caputo and Parisi [14]. From this global variant of the EM condition we deduce a
factorization of entropy into the even and odd subsets of vertices. (The parity of a vertex
is that of its distance to the leaves of the tree.) The even-odd factorization of entropy was
recently shown in [8] to imply O(log n) mixing of the SW on general biparte graphs.

Paper organization. The rest of the paper is organized as follows. Section 2 contains some
standard definitions and facts we use in our proofs. In Sections 3 and 4 we prove Theorems 1
and 2, respectively. Our general comparison result between the SW dynamics and the block
dynamics, our results for the random-cluster model dynamics, and our lower bound for the
SW dynammics (Theorem 3) are proved in the full version of this paper [1].

2 Preliminaries

We introduce some notations and facts that are used in the remainder of the paper.

The Potts model on the d-ary tree. For d ≥ 2, let Td = (V,E) denote the rooted infinite
d-ary tree in which every vertex (including the root) has exactly d children. We consider the
complete finite subtree of Td of height h, which we denote by T = T d

h = (V (T ), E(T )). We
use ∂T to denote the external boundary of T ; i.e., the set of vertices in V \ V (T ) incident
to the leaves of T . We identify subgraphs of T with their vertex sets. In particular, for
A ⊆ V (T ) we use E(A) for the edges with both endpoints in A, ∂A for the external boundary
of A (i.e., the vertices in (T ∪ ∂T ) \ A adjacent to A), and, with a slight abuse of notation,
we write A also for the induced subgraph (A, E(A)). When clear from context, we simply
use T for the vertex set V (T ).

A configuration of the Potts model is an assignment of spins [q] = {1, . . . , q} to the vertices
of the graph. For a fixed spin configuration τ on the infinite tree Td, we use Ωτ = [q]T ∪∂T to
denote the set of configurations of T that agree with τ on ∂T . Hence, τ specifies a boundary
condition for T . More generally, for any A ⊆ T and any η ∈ Ωτ , let Ωη

A ⊆ Ωτ denote the set
of configurations of T that agree with η on (T ∪ ∂T ) \ A. We use µη

A to denote the Gibbs
distribution over Ωη

A, so for σ ∈ Ωη
A we have

µη
A(σ) := 1

Z
exp

(
− β

∑
{u,v}∈E(A∪∂A)

1(σu ̸= σv)
)

,

where Z is a normalizing constant (or partition function). For σ /∈ Ωη
A, we set µη

A(σ) = 0.

The tiled block dynamics. Let U = {U1, ..., Ur} be a collection of subsets (or blocks) such
that T =

⋃
i Ui. The (heat-bath) block dynamics with blocks U is a standard Markov chain

for the Gibbs distribution µτ
T . If the configuration at time t is σt, the next configuration

σt+1 is generated as follows:
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ℓ

v

(a) B(v, ℓ).

ℓ · · ·
i

(b) Bℓ
i .

ℓ

(c) T ℓ
j .

Figure 1 An illustration of the sets B(v, ℓ), Bℓ
i , and T ℓ

j , where ℓ represents the number of levels.

1. Pick an integer j ∈ {1, 2, . . . , r} uniformly at random;
2. Draw a sample σt+1 from the conditional Gibbs distribution µσt

Uj
; that is, update the

configuration in Uj with a new configuration distributed according to the conditional
measure in Uj given the configuration of σt on (T ∪∂T )\Uj and the boundary condition τ .

We consider a special choice of blocks, where each block is a disjoint union of small subtrees
of constant height forming a tiling structure. For 0 ≤ i ≤ h + 1, let Li denote the set of
vertices of T that are of distance exactly i from the boundary ∂T ; in particular, L0 = ∅ and
Lh+1 contains only the root of T . (It will be helpful to define Li = ∅ for i < 0 or i > h + 1.)
Let Fi = ∪j≤iLj be the set of vertices at distance at most i from ∂T ; then F0 = ∅ and
Fh+1 = T . We further define Fi = ∅ for i < 0 and Fi = T for i > h + 1. For each i ∈ N+ let

Bℓ
i = Fi\Fi−ℓ =

⋃
i−ℓ<j≤i

Lj . (2)

In words, Bℓ
i is the collection of all the subtrees of T of height ℓ − 1 with roots at distance

exactly i from ∂T ; see Figure 1(b). Finally, for each 1 ≤ j ≤ ℓ + 1, we define

T ℓ
j =

⋃
0≤k≤ h+ℓ−j

ℓ+1

Bℓ
j+k(ℓ+1). (3)

The set T ℓ
j contains all the subtrees of T whose roots are at distance j + k(ℓ + 1) from ∂T

for some non-negative integer k; the height of each subtree (except the top and bottom ones)
is ℓ − 1. Also notice that all the subtrees in T ℓ

j are at (graph) distance at least 2 from each
other, and thus they create a tiling pattern over T . Therefore, we call the block dynamics
with blocks U = {T ℓ

1 , . . . , T ℓ
ℓ+1} the tiled block dynamics; see Figure 1(c). The transition

matrix of the tiled block dynamics is denoted by Ptb.

Mixing and relaxation times. Let P be the transition matrix of an ergodic Markov chain
over a finite set Φ with stationary distribution ν. We use P t(X0, ·) to denote the distribution
of the chain after t steps starting from X0 ∈ Φ. The mixing time of P is defined as
τmix(P ) = max

X0∈Φ
min {t ≥ 0 : ∥P t(X0, ·) − ν∥tv ≤ 1/4} , where ∥ · ∥tv denotes total variation

distance.
When P is reversible, its spectrum is real and we let 1 = λ1 > λ2 ≥ ... ≥ λ|Φ| ≥ −1

denote its eigenvalues (1 > λ2 when P is irreducible). The absolute spectral gap of P is
defined by gap(P ) = 1 − λ∗, where λ∗ = max{|λ2|, |λ|Φ||}. If P is ergodic (i.e., irreducible
and aperiodic), then gap(P ) > 0, and it is a standard fact that if νmin = minx∈Φ ν(x), then(

gap(P )−1 − 1
)

log 2 ≤ τmix(P ) ≤ gap(P )−1 log
(
4ν−1

min
)

; (4)

see [38]. The relaxation time of the chain is defined as gap(P )−1.
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Analytic tools. We review next some useful tools from functional analysis; we refer the
reader to [42, 46] for more extensive background. We can endow RΦ with the inner product
⟨f, g⟩ν =

∑
x∈Φ f(x)g(x)ν(x) for two functions f, g : Φ → R. The resulting Hilbert space is

denoted by L2(ν) = (RΦ, ⟨·, ·⟩ν) and P defines an operator from L2(ν) to L2(ν).
Let 1 : Φ → R be the constant “all 1” function (i.e., 1(x) = 1 ∀x ∈ Φ) and let I denote

the identity mapping over all functions (i.e., If = f for all f : Φ → R). We then define:

Eν(f) =
∑
x∈Φ

f(x)ν(x) = ⟨f, 1⟩ν , and

Varν(f) = Eν(f2) − Eν(f)2 = ⟨f, (I − 1ν)f⟩ν

as the expectation and variance of the function f with respect to (w.r.t.) the measure
ν. Likewise, for a function f : Ω → R≥0 we define the entropy of f with respect to ν as
Entν(f) = Eν

[
f log

(
f

Eν (f)
)]

.

Often, we will consider ν to be the conditional Gibbs distribution µη
A for some A ⊆ T and

η ∈ Ω. In those cases, to simplify the notation, we shall write Eη
A(f) for Eµη

A
(f), Varη

A(f)
for Varµη

A
(f), and Entη

A(f) for Entµη
A

(f).
The Dirichlet form of a reversible Markov chain with transition matrix P is defined as

EP (f, f) = ⟨f, (I − P )f⟩ν = 1
2

∑
x,y∈Φ

ν(x)P (x, y)(f(x) − f(y))2, (5)

for any f : Φ → R. We say P is positive semidefinite if ⟨f, Pf⟩ν ≥ 0 for all functions
f : Φ → R. In this case P has only nonnegative eigenvalues. If P is positive semidefinite,
then the absolute spectral gap of P satisfies

gap(P ) = 1 − λ2 = inf
f :Φ→R

Varν (f )̸=0

EP (f, f)
Varν(f) . (6)

3 Variance Mixing implies fast mixing: Proof of Theorem 1

We start with the formal definition of the Variance Mixing (VM) condition introduced by
Martinelli, Sinclair and Weitz [40]. Throughout this section, we consider the Potts model on
the n-vertex d-ary complete tree T = T d

h with a fixed boundary condition τ ; hence, for ease
of notation we set µ := µτ

T and Ω := Ωτ .
For v ∈ T , let Tv denote the subtree of T rooted at v. For boundary condition η ∈ Ω and

a function g : Ωη
Tv

→ R, we define the function gv : [q] → R as the conditional expectation

gv(a) = Eη
Tv

[g | σv = a] =
∑

σ∈Ωη
Tv

:σv=a

µη
Tv

(σ | σv = a)g(σ). (7)

In words, gv(a) is the conditional expectation of the function g under the distribution µη
Tv

given that the root of Tv (i.e, the vertex v) is set to spin a ∈ [q]. We also consider the
expectation and variance of gv w.r.t. the projection of µη

Tv
on v. In particular,

Eη
Tv

[gv] =
∑

a∈[q]
µη

Tv
(σv = a)gv(a) = Eη

Tv
[g], and

Varη
Tv

[gv] = Eη
Tv

[g2
v ] − Eη

Tv
[gv]2.

For an integer ℓ ≥ 1, we define B(v, ℓ) as the set of vertices of Tv that are at distance less
than ℓ from v; see Figure 1(a). We say that the function g : Ωη

Tv
→ R is independent of

the configuration on B(v, ℓ) if for all σ, σ′ ∈ Ωη
Tv

such that σ(B(v, ℓ)) ̸= σ′(B(v, ℓ)) and
σ(Tv \ B(v, ℓ)) = σ′(Tv \ B(v, ℓ)), we have g(σ) = g(σ′). We can now define VM.
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▶ Definition 7 (Variance Mixing (VM)). The Gibbs distribution µ = µτ
T satisfies VM(ℓ, ε)

if for every v ∈ T , every η ∈ Ω, and every function g : Ωη
Tv

→ R that is independent of the
configuration on B(v, ℓ), we have Varη

Tv
(gv) ≤ ε · Varη

Tv
(g). We say that the VM condition

holds if there exist constants ℓ and ε = ε(ℓ) such that VM(ℓ, ε) holds.

The VM condition is a spatial mixing property that captures the rate of decay of
correlations, given by ε = ε(ℓ), with the distance ℓ between v ∈ T and the set Tv \ B(v, ℓ).
To see this, note that, roughly speaking, Varη

Tv
(gv) is small when gv(a) = Eη

Tv
[g | σv = a] is

close to gv(b) = Eη
Tv

[g | σv = b] for every a ≠ b. Since g is independent of the configuration
on B(v, ℓ), this can only happen if the spin at v, which is at distance ℓ from Tv \ B(v, ℓ),
has only a small influence on the projections of the conditional measures µη

Tv
(· | σv = a),

µη
Tv

(· | σv = b) to Tv \ B(v, ℓ).
It was established in [40, 41] that VM implies optimal mixing of the Glauber dynamics;

this was done by analyzing a block dynamics that updates one random block B(v, ℓ) in each
step. This block dynamics behaves similarly to the Glauber dynamics since all blocks are
of constant size, and there are a linear number of them; see [40, 41] for further details.
Our goal here is to establish optimal mixing of global Markov chains, and thus we require
a different spatial mixing condition that captures decay of correlations in a more global
manner. For this, we introduce the notion of Parallel Variance Mixing (PVM). Recall that
for 0 ≤ i ≤ h + 1, Li is the set all vertices at distance exactly i from the boundary ∂T ,
Fi = ∪j≤iLj , and Bℓ

i = Fi\Fi−ℓ; see Figures 1(b) and 1(c).
For 1 ≤ i ≤ h + 1, η ∈ Ω and g : Ωη

Fi
→ R, consider the function gLi : [q]Li → R given by

gLi(ξ) = Eη
Fi

[g | σLi
= ξ] =

∑
σ∈Ωη

Fi
:σLi

=ξ

µη
Fi

(σ | σLi
= ξ)g(σ),

for ξ ∈ [q]Li . That is, gLi
(ξ) is the conditional expectation of function g under the distribution

µη
Tv

conditioned on the configuration of the level Li being ξ. Thus, we may consider the
expectation and variance of gLi

w.r.t. the projection of µη
Tv

to Li; namely, Eη
Fi

[gLi
] = Eη

Fi
[g]

and Varη
Fi

[gLi ] = Eη
Fi

[g2
Li

] − Eη
Fi

[gLi ]2. The PVM condition is defined as follows.

▶ Definition 8 (Parallel Variance Mixing (PVM)). The Gibbs distribution µ = µτ
T satisfies

PVM(ℓ, ε) if for every 1 ≤ i ≤ h + 1, every η ∈ Ω, and every function g : Ωη
Fi

→ R that
is independent of the configuration on Bℓ

i , we have Varη
Fi

(gLi
) ≤ ε · Varη

Fi
(g). The PVM

condition holds if there exist constants ℓ and ε = ε(ℓ) such that PVM(ℓ, ε) holds.

PVM is a natural global variant of VM since Fi =
⋃

v∈Li
Tv and Bℓ

i =
⋃

v∈Li
B(v, ℓ). We

can show that the two properties are actually equivalent.

▶ Theorem 9. For every ℓ ∈ N+ and ε ∈ (0, 1), the Gibbs distribution µ satisfies VM(ℓ, ε)
if and only if µ satisfies PVM(ℓ, ε).

In order to show the equivalence between VM and PVM, we introduce a more general spatial
mixing condition which we call General Variance Mixing (GVM). We define GVM for general
product distributions (see Definition 12) and reinterpret VM and PVM as special cases of
this condition. This alternative view of VM and PVM in terms of GVM is quite useful since
we can recast the GVM condition as a bound on the spectral gap of a certain Markov chain;
this is one key insight in the proof of Theorem 5 and is discussed in detail in Section 3.1.

Now, while VM implies optimal mixing of the Glauber dynamics, we can show that PVM
implies a constant bound on the spectral gap of the tiled block dynamics. Recall that this is
the heat-bath block dynamics with block collection U = {T ℓ

1 , . . . , T ℓ
ℓ+1} defined in Section 2.
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▶ Theorem 10. If there exist ℓ ∈ N+ and δ ∈ (0, 1) such that µ = µτ
T satisfies PVM(ℓ, ε)

for ε = 1−δ
2(ℓ+1) , then the relaxation time of the tiled block dynamics is at most 2(ℓ + 1)/δ.

To prove Theorem 10, we adapt the methods from [40, 41] to our global setting. Our result
for the spectral gap of the SW dynamics (Theorem 1) is then obtained through comparison
with the tiled block dynamics. We prove the following comparison result between the SW
dynamics and a large class of block dynamics, which could be of independent interest.

▶ Theorem 11. Let D = {D1, . . . , Dm} be such that Di ⊆ T and ∪m
i=1Di = T . Suppose

that each block Dk is such that Dk = ∪ℓk
j=1Dkj where dist(Dkj , Dkj′) ≥ 2 for every j ̸= j′

and let vol(D) = maxk,j |Dkj |. Let BD be the transition matrix of the (heat-bath) block
dynamics with blocks D and let SW denote the transition matrix for the SW dynamics.
Then, gap(SW ) ≥ exp(−O(vol(D))) · gap(BD).

The blocks of the tiled block dynamics satisfy all the conditions in this theorem, and, in
addition, vol(D) = O(1). Hence, combining all the results stated in this section, we see that
Theorem 1 from introduction follows.

Proof of Theorem 1. Follows from Theorems 9–11. ◀

3.1 Equivalence between VM and PVM: Proof of Theorem 9
In this section we establish the equivalence between VM and PVM. We start with the
definition of General Variance Mixing (GVM). Let Φ and Ψ be two finite sets and let ρ(·, ·)
be an arbitrary joint distribution supported on Φ × Ψ. Denote by ν and π the marginal
distributions of ρ over Φ and Ψ, respectively. That is, for x ∈ Φ we have ν(x) =

∑
y∈Ψ ρ(x, y),

and for y ∈ Ψ we have π(y) =
∑

x∈Φ ρ(x, y). We consider two natural matrices associated to
ρ. For x ∈ Φ and y ∈ Ψ, define

P ↑(x, y) = ρ(y | x) = ρ(x, y)
ν(x) , and P ↓(y, x) = ρ(x | y) = ρ(x, y)

π(y) ; (8)

P ↑ is a |Φ| × |Ψ| matrix while P ↓ is a |Ψ| × |Φ| matrix. In addition, observe that P ↑P ↓ and
P ↓P ↑ are transition matrices of Markov chains reversible w.r.t. ν and π, respectively.

▶ Definition 12 (GVM for ρ). We say that the joint distribution ρ satisfies GVM(ε) if for
every function f : Φ → R we have Varπ(P ↓f) ≤ ε · Varν(f).

One key observation in our proof is that the GVM condition can be expressed in term of
the spectral gaps of the matrices P ↑P ↓ and P ↓P ↑.

▶ Lemma 13. The joint distribution ρ satisfies GVM(ε) if and only if gap(P ↑P ↓) =
gap(P ↓P ↑) ≥ 1 − ε.

Before providing the proof of Lemma 13, we recall the definition of the adjoint operator.
Let S1 and S2 be two Hilbert spaces with inner products ⟨·, ·⟩S1 and ⟨·, ·⟩S2 respectively, and
let K : S2 → S1 be a bounded linear operator. The adjoint of K is the unique operator
K∗ : S1 → S2 satisfying ⟨f, Kg⟩S1 = ⟨K∗f, g⟩S2 for all f ∈ S1 and g ∈ S2. When S1 = S2,
K is called self-adjoint if K = K∗. We can now provide the proof of Lemma 13.

Proof of Lemma 13. It is straightforward to check that P ↑1 = 1, P ↓1 = 1, νP ↑ = π,
πP ↓ = ν, and that the operator P ↑ : L2(π) → L2(ν) is the adjoint of the operator P ↓ :
L2(ν) → L2(π). Hence, both P ↑P ↓ and P ↓P ↑ are positive semidefinite and have the same
multiset of non-zero eigenvalues. Now, for f : Φ → R, we have

Varπ(P ↓f) =
〈
P ↓f, (I − 1π)P ↓f

〉
π

=
〈
f, P ↑(I − 1π)P ↓f

〉
ν

=
〈
f, P ↑P ↓f

〉
ν

− ⟨f, 1νf⟩ν .
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Therefore, Varπ(P ↓f) ≤ ε · Varν(f) holds if and only if〈
f, P ↑P ↓f

〉
ν

− ⟨f, 1νf⟩ν ≤ ε · (⟨f, f⟩ν − ⟨f, 1νf⟩ν)
⇔

〈
f, (I − P ↑P ↓)f

〉
ν

≥ (1 − ε) · ⟨f, (I − 1ν)f⟩ν

⇔ EP ↑P ↓(f, f) ≥ (1 − ε) · Varν(f).

The lemma then follows from (6). ◀

We provide next the proof of Theorem 9, which follows from Lemma 13 and interpretations
of VM and PVM by GVM. Given F = A ∪ B ⊆ T and η ∈ Ω, let P ↑ = (P η

F )A↑B denote the
q|A\B| × q|B\A| stochastic matrix indexed by the configurations on the sets A \ B and B \ A,
such that for ξ ∈ [q]A\B and ξ′ ∈ [q]B\A we have P ↑(ξ, ξ′) = µη

F (σB\A = ξ′ | σA\B = ξ).
In words, P ↑ corresponds to the transition matrix that given the configuration ξ in A \ B

updates the configuration in B \ A from the conditional distribution µη
F (· | ξ). We define in

a similar manner the q|B\A| × q|A\B| stochastic matrix P ↓ = (P η
F )B↓A where for ξ′ ∈ [q]B\A

and ξ ∈ [q]A\B we have P ↓(ξ′, ξ) = µη
F (σA\B = ξ | σB\A = ξ′).

If we set ρ to be the marginal of µη
F on (A \ B) ∪ (B \ A), then Φ = [q]A\B , Ψ = [q]B\A,

and ν and π are the marginals of µη
F on A \ B and B \ A, respectively. Therefore, according

to Definition 12, GVM(ε) holds for the marginal of µη
F on (A \ B) ∪ (B \ A) if Varπ(P ↓f) ≤

ε · Varν(f) for every function f : Φ → R.
Now, note that a function g : Ωη

F → R independent of B only depends on the configuration
on A\B. Thus, for fixed η, g induces a function f : Φ → R; in particular, Varη

F (g) = Varν(f).
Moreover, letting gB\A(ξ) := Eη

F [g | σB\A = ξ], we have gB\A(ξ) = P ↓f(ξ) for every
ξ ∈ Ψ = [q]B\A, and so Varη

F (gB\A) = Varπ(P ↓f). Consequently, we arrive at the following
equivalences between VM, PVM and GVM.

▶ Proposition 14.
1. The Gibbs distribution µ satisfies VM(ℓ, ϵ) if and only if for every v ∈ T and η ∈ Ω,

GVM(ε) holds for the marginal of µη
Tv

on (Tv \ B(v, ℓ)) ∪ {v}.
2. The Gibbs distribution µ satisfies PVM(ℓ, ϵ) if and only if for every i such that 1 ≤ i ≤ h+1

and η ∈ Ω, GVM(ε) holds for the marginal of µη
Fi

on (Fi \ ∪v∈Li
B(v, ℓ)) ∪ Li.

To see part 1 simply note that in the notation above, we can set F = Tv, A = Tv \ v and
B = B(v, ℓ). For part 2, we set F = Fi, A = Fi−1 and B = Bℓ

i .

Proof of Theorem 9. From Proposition 14 and Lemma 13, VM(ℓ, ϵ) holds if and only if
gap(Qv) ≥ 1 − ε for every v ∈ T and η ∈ Ω, where Qv = (P η

Tv
)B(v,ℓ)↓(Tv\v)(P η

Tv
)(Tv\v)↑B(v,ℓ).

Similarly, µ satisfies PVM(ℓ, ϵ) if and only if gap(QLi
) ≥ 1−ε for every i such that 1 ≤ i ≤ h+1

and η ∈ Ω, where QLi = (P η
Fi

)Bℓ
i
↓Fi−1(P η

Fi
)Fi−1↑Bℓ

i
.

Since Fi =
⋃

v∈Li
Tv and the Tv’s are at distance at least two from each other, µη

Fi
(σLi = ·)

is a product distribution; in particular µη
Fi

(σLi
= ·) =

∏
v∈Li

µη
Tv

(σv = ·) and the chain with
transition matrix QLi

is a product Markov chain where each component corresponds to Qv

for some v ∈ Li. A standard fact about product Markov chains, see, e.g., [9, Lemma 4.7],
then implies that gap(QLi

) = minv∈Li
gap(Qv) and the result follows. ◀

4 Entropy Mixing: Proof of Theorem 2

Let E ⊆ T denote the set of all even vertices of the tree T , where a vertex is called even if
its distance to the leaves is even; let O = T \ E be the set of all odd vertices. We show that
EM (i.e., entropy mixing) as defined in [40] implies a factorization of entropy into even and
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odd subsets of vertices. This even-odd factorization was recently shown to imply O(log n)
mixing of the SW dynamics on bipartite graphs [8].

We start with the definition of EM, which is the analog of the VM condition for entropy.
Let τ be a fixed boundary condition and again set µ := µτ

T and Ω := Ωτ for ease of notation.
Recall that for v ∈ T , we use Tv for the subtree of T rooted at v. Recall that for η ∈ Ω and
g : Ωη

Tv
→ R, we defined the function gv(a) = Eη

Tv
[g | σv = a] for a ∈ [q]; see (7).

▶ Definition 15 (Entropy Mixing (EM)). The Gibbs distribution µ = µτ
T satisfies EM(ℓ, ε)

if for every v ∈ T , every η ∈ Ω, and every function g : Ωη
Tv

→ R that is independent of the
configuration on B(v, ℓ), we have Entη

Tv
(gv) ≤ ε · Entη

Tv
(g). The EM condition holds if there

exist constants ℓ and ε = ε(ℓ) such that EM(ℓ, ε) holds.

Extending our notation from the previous section for the variance functional, for A ⊆ T

and a function f : Ω → R≥0, we use EntA(f) for the conditional entropy of f w.r.t. µ given
a spin configuration in T \ A; i.e., for ξ ∈ Ω we have

(EntA(f))(ξ) = Entξ
A(f) = Entµ[f | σT \A = ξT \A].

In particular, we shall write Ent(f) = EntT (f) = Entµ(f). Notice that EntA(f) can be
viewed as a function from [q]T \A to R≥0 and E[EntA(f)] denotes its mean, averaging over
the configuration on T \ A. We state next our even-odd factorization of entropy.

▶ Theorem 16. If there exist ℓ ∈ N+ and ε ∈ (0, 1) such that µ = µτ
T satisfies EM(ℓ, ε),

then there exists a constant Ceo = Ceo(ℓ, ε) independent of n such that for every function
f : Ω → R≥0 we have Ent(f) ≤ Ceo (E[EntE(f)] + E[EntO(f)]) .

Theorem 2 follows immediately.

Proof of Theorem 2. By Theorem 16, EM implies the even-odd factorization of entropy,
and the results in [8] imply that the mixing time of the SW dynamics is O(log n). ◀

Our main technical contribution in the proof Theorem 2 is thus Theorem 16; namely, that
EM implies the even-odd factorization of entropy. To prove Theorem 16, we will first
establish entropy factorization for the tiled blocks defined in (3) and (2); see also Figures 1(b)
and 1(c). From the tiled block factorization of entropy we then deduce the desired even-odd
factorization. This approach is captured by the following two lemmas.

▶ Lemma 17. If there exist ℓ ∈ N+ and ε ∈ (0, 1) such that µ = µτ
T satisfies EM(ℓ, ε),

then there exists a constant Ctb = Ctb(ℓ, ε) independent of n such that, for every function
f : Ω → R≥0, Ent(f) ≤ Ctb ·

∑ℓ+1
j=1 E[EntT ℓ

j
(f)].

▶ Lemma 18. If for every function f : Ω → R≥0 we have Ent(f) ≤ Ctb ·
∑ℓ+1

j=1 E[EntT ℓ
j
(f)],

then there exists Ceo = Ceo(Ctb, ℓ) such that for every function f : Ω → R≥0 we have

Ent(f) ≤ Ceo (E[EntE(f)] + E[EntO(f)]) .

Proof of Theorem 16. Follows directly from Lemmas 17 and 18. ◀

We proved a version of Lemma 17 for the variance functional as part of the proof of Theorem 10,
and the same argument can then be easily adapted to entropy. We provide next the proof of
Lemma 18, which contains the main novelty in our proof of Theorem 16.
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Proof of Lemma 18. First, we claim that there exists a constant C ′ = C ′(ℓ) such that for
every function f : Ωη

B(v,ℓ) → R≥0 one has the following inequality:

Entη
B(v,ℓ)(f) ≤ C ′

(
Eη

B(v,ℓ)[EntB(v,ℓ)∩E(f)] + Eη
B(v,ℓ)[EntB(v,ℓ)∩O(f)]

)
. (9)

To deduce (9), consider the even-odd block dynamics M in B(v, ℓ) with boundary condition
η and blocks U = {E ∩ B(v, ℓ), O ∩ B(v, ℓ)}. A simple coupling argument implies that
the spectral gap of M is Ω(1). Then, Corollary A.4 from [19] implies that the log-Sobolev
constant α(M) of M is Ω(1), which establishes (9) with constant C ′ = O(1/α(M)). We note
that all bounds and comparisons in this argument are fairly crude, and, in fact, the constant
C ′ depends exponentially on |B(v, ℓ)|, but it is still independent of n.

Next, notice that, for any η ∈ Ω, µη

T ℓ
j

is the product of a collection of distributions
on (disjoint) subsets B(v, ℓ). Lemma 3.2 from [14] allows us to lift the “local” even-odd
factorization in each B(v, ℓ) from (9) to a “global” even-odd factorization in T ℓ

j . Specifically,
for every function f : Ωη

T ℓ
j

→ R≥0 we obtain

Entη

T ℓ
j

(f) ≤ C ′
(
Eη

T ℓ
j

[EntT ℓ
j

∩E(f)] + Eη

T ℓ
j

[EntT ℓ
j

∩O(f)]
)

.

Taking expectation over η, we get

E[EntT ℓ
j
(f)] ≤ C ′

(
E[EntT ℓ

j
∩E(f)] + E[EntT ℓ

j
∩O(f)]

)
≤ C ′ (E[EntE(f)] + E[EntO(f)]) ;

the last inequality follows from the fact that Entη
E(f) = Eη

E [EntT ℓ
j

∩E(f)] + Entη
E [ET ℓ

j
∩E(f)].

Summing up over j,
ℓ+1∑
j=1

E[EntT ℓ
j
(f)] ≤ C ′(ℓ + 1) (E[EntE(f)] + E[EntO(f)]) ,

and the result follows by taking Ceo = C ′(ℓ + 1). ◀
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