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Abstract
We study the computational complexity of estimating local observables for Gibbs distributions. A
simple combinatorial example is the average size of an independent set in a graph. A recent work of
Galanis et al (2021) established NP-hardness of approximating the average size of an independent
set utilizing hardness of the corresponding optimization problem and the related phase transition
behavior. We instead consider settings where the underlying optimization problem is easily solvable.
Our main contribution is to classify the complexity of approximating a wide class of observables via
a generic reduction from approximate counting to the problem of estimating local observables. The
key idea is to use the observables to interpolate the counting problem.

Using this new approach, we are able to study observables on bipartite graphs where the
underlying optimization problem is easy but the counting problem is believed to be hard. The
most-well studied class of graphs that was excluded from previous hardness results were bipartite
graphs. We establish hardness for estimating the average size of the independent set in bipartite
graphs of maximum degree 6; more generally, we show tight hardness results for general vertex-edge
observables for antiferromagnetic 2-spin systems on bipartite graphs. Our techniques go beyond
2-spin systems, and for the ferromagnetic Potts model we establish hardness of approximating the
number of monochromatic edges in the same region as known hardness of approximate counting
results.

1 Introduction

Can we efficiently estimate the average size of an independent set in an input graph G =
(V, E)? Moreover, can we do so without utilizing a sampling algorithm for generating a
random independent set?

In this paper, for a broad class of problems captured by Gibbs distributions, we address
the relationship between the computational complexity of approximating local observables
(such as estimating the average size of an independent set) and the computational complexity
of approximating the partition function (such as estimating the total number of independent
sets). It is a standard technique in the area to reduce estimating observables to approximate
counting, by first implementing an approximate sampler and then using an unbiased estimator
of the desired observable. The focus of this paper is the converse, where there is no previously
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known technique to answer the following question: does an algorithm for local observables
yield an algorithm for the partition function? We prove, in a broad setting, that these two
genres of problems are computationally equivalent.

Previous work of [9] only achieved this indirectly; they showed hardness of approximating
local observables (in fact, only for a certain observable, called magnetization, see below
for definitions) utilizing the hardness of MaxCut. Here, we show a direct reduction from
the observable problem to the partition-function problem, relating therefore more crisply
the two problems. This allows us to obtain hardness results in several new regimes (in
particular,not covered by [9]) where the counting problem is hard but there is no underlying
hard optimization problem.

An interesting setting to highlight the usefulness of our reduction is bipartite independent
sets. In this example there is no corresponding hard optimization problem (as the maximum
independent set problem is poly-time solvable in bipartite graphs), and hence to prove
hardness we need to utilize hardness of approximate counting results. Another pertinent
example for our results are attractive graphical models, these are equivalent to ferromagnetic
spin systems in statistical physics. The simplest case is the ferromagnetic Ising model and
its generalization known as the Potts model. In the Ising/Potts model on a graph (see
Section 1.1 for more precise definitions), the configurations of the model are the collection of
labellings σ of the vertices with q spins (colours), each weighted as βm(σ) where m(σ) is the
number of monochromatic edges and β is a parameter > 1 (so that labellings with many
monochromatic edges are favored). Because of the attractiveness assumption that β > 1,
once again, there is no corresponding hard optimization problem for this problem (contrast
this with the case β < 1 where the largest weight labellings have the smallest number of
monochromatic edges). Nevertheless, using our new reduction, we show that hardness of
the associated approximate counting problem implies hardness of estimating the (weighted)
average of the monochromatic edges in the Potts model.

Our two illustrative examples, the average size of an independent set and the number of
monochromatic edges in the Ising/Potts model, are instances of a local observable in statistical
physics; specifically they correspond to the magnetization and susceptibility, respectively.
The behavior of observables is fundamental to the study of phase transitions, e.g., see [1, 4].

We begin giving more precise definitions for our initial example of bipartite independent
sets, before considering the ferromagnetic Potts model, and finally generalizing to arbitrary
local observables in general 2-spin systems. For a graph G = (V, E) let IG denote the set of
independent sets (of all sizes) of G, and let µ := µG denote the uniform distribution over
IG. Denote the average independent set size by M(G) = Eσ∼µ

[
|σ|

]
; this corresponds to the

magnetization in statistical physics (and hence the choice of notation M). We say that an
algorithm is an FPRAS for the average independent set size if given a graph G = (V, E) and
parameters ϵ, δ > 0, the algorithm outputs an estimate EST which is within a multiplicative
factor (1 ± ϵ) of the desired quantity M(G), with probability ≥ 1 − δ, and runs in time
poly(|V |, 1/ϵ, log(1/δ)). One can also consider an FPRAS for estimating |Ω|, the number of
independent sets of the input graph G; we refer to this as an efficient approximate counting
algorithm.

It is a classical result [14] that an efficient approximate counting algorithm is polynomial-
time interreducible with an efficient algorithm for approximate sampling from µ. In turn,
efficiently estimating the average independent set size of a graph G is easily reduced to
approximate sampling from the uniform distribution µG. The challenging aspect, and the
focus of this paper, is the reverse implication. Can we estimate the typical size of an
independent set without utilizing an approximate sampling algorithm? We will show it is not
possible, i.e., hardness of approximate counting (and hence approximate sampling) implies
hardness of estimating the average independent set size.
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For graphs of maximum degree 5, Weitz [20] presented an FPTAS for approximating the
number of independent sets, which yields an efficient approximate sampling scheme; note an
FPTAS is the deterministic analog of an FPRAS, i.e., it achieves δ = 0. Very recently, Chen
et al. [5] proved that the simple MCMC algorithm known as the Gibbs sampler (or Glauber
dynamics) has O(n log n) mixing time for this same class of graphs of maximum degree 5.
Hence, one immediately obtains an FPRAS for the average independent set size M(G).

On the other side, for graphs of maximum degree 6, Sly [18] proved that approximating
the number of independent sets is NP-hard, by a reduction from max-cut. Schulman et al. [16]
showed #P-hardness for exact computation of the average independent set size. Moreover,
recent work of Galanis et al. [9] shows that approximating the average independent-set size
is also NP-hard for graphs of maximum degree 6. The proof of [9] does not directly relate
approximate counting and estimating the average independent set size; instead [9] also shows
a (more sophisticated) reduction from max-cut and utilizes the associated gadgets used in
Sly’s inapproximability result [18].

This begets the question: are these problems still intractable when restricted to bipartite
graphs? For bipartite graphs there is no longer a hard optimization problem, such as max-cut,
that one can utilize as a starting point for a hardness reduction. However, approximately
counting independent sets is considered to be intractable on bipartite graphs of maximum
degree 6; in particular, it is is #BIS-hard [3] where #BIS refers to the problem of approxim-
ately counting independent sets on general bipartite graphs (with potentially unbounded
degree). There are now a multitude of approximate counting problems which share the same
#BIS-hardness status or are even #BIS-equivalent, e.g., see [6, 3, 11, 7].

We present a general approach for reducing approximate counting to approximating
averages. This yields hardness for approximating the average independent-set size in bipartite
graphs of maximum degree 6.

▶ Theorem 1. Let ∆ ≥ 6 be an integer. There is no FPRAS for the average independent-set
size on bipartite graphs of maximum degree ∆ unless #BIS admits an FPRAS.

Note that the #BIS-hardness result of Theorem 1 gives a weaker guarantee than those
shown in [9] where they obtain in some cases constant-factor inapproximability results (using
the constant-factor NP-hardness of the optimization problem). This difference is inherent
with the #BIS-hardness assumption, i.e., that there is no FPRAS for #BIS. Moreover,
an algorithm which approximates #BIS within any poly(n)-factor implies an FPRAS, and
obtaining constant-factor inapproximability results for magnetization on bipartite graphs
would require (among other things) hardness of #BIS within an exponential-factor.

Our results extend to the hard-core model on weighted independent sets, and to general
2-spin antiferromagnetic models. These more general results are detailed in Section 1.2.

1.1 Ferromagnetic Potts Model
Ferromagnetic spin systems, which are equivalent to attractive undirected graphical models,
are an interesting class of models to illustrate our new proof technique on. In ferromagnetic
models there is no hard optimization problem as the maximum likelihood configurations are
trivial assignments (setting all vertices to the same spin/label). Consequently, to obtain
hardness results for computing averages in ferromagnetic models we need to work directly
from hardness of approximate counting results, which we can do using our new approach.

The most well-studied examples of ferromagnetic models are the Ising and Potts models.
Given a graph G and an integer q ≥ 2, configurations of the Ising/Potts model are the
collection Ω of assignments σ : V (G) → [q] where [q] = {1, . . . , q} are the labels of the q

spins. The case q = 2 corresponds to the Ising model and the case q ≥ 3 is the Potts model.



63:4 Approximating Observables Is as Hard as Counting

The models are parameterised by an edge activity1 β > 0. The weight of an assignment
σ is defined as wG;q,β(σ) = βmG(σ) where mG(σ) = |{(u, v) ∈ E : σ(u) = σ(v)}| is the
number of edges which are monochromatic in σ. Finally, the Gibbs distribution is defined
as µG;q,β(σ) = wG;q,β(σ)/ZG;q,β where the normalising factor ZG;q,β :=

∑
τ :V (G)→[q] w(τ)

is the partition function. In this paper, we restrict attention to the case β > 1 which
is the ferromagnetic (attractive) case, and hence the most likely configurations are the q

monochromatic configurations (all vertices are assigned the same spin).
For the Ising and Potts models, the analog of the average independent set size is the average

number of vertices assigned spin 1. This quantity Mq,β(G), known as the magnetization, is
trivial in these cases since, due to the Ising/Potts models symmetry among spins, it holds
that Mq,β(G) = n/q. The simplest and most natural observable to consider is the average
number of monochromatic edges under the Potts distribution, i.e., the quantity

Sq,β(G) := Eσ∼µG;q,β
[mG(σ)]

which is known as the susceptibility. Sinclair and Srivastava [17] showed that exact computa-
tion of the susceptibility in the ferromagnetic Ising model is #P-hard.

For the Ising model a classical result of Jerrum and Sinclair [13] presents an efficient
sampling scheme for all G, all β. This yields an efficient algorithm for approximating averages
in the Ising model (this holds for any local observables as defined subsequently in Section 1.2).
In contrast for the Potts model (for any q ≥ 3) approximating the partition function becomes
computationally intractable for large β as we detail below.

The Potts model with q ≥ 3 spins undergoes a computational phase transition on bipartite
graphs of maximum degree ∆ at the following critical point βc(q, ∆) = q−2

(q−1)1−2/∆−1 . In [10]
it was established that for all q, ∆ ≥ 3 and β > βc(q, ∆) approximating the partition function
of the ferromagnetic Potts model is #BIS-hard on bipartite graphs of maximum degree ∆.
Using our general counting-to-observables reduction we show that approximating the average
number of monochromatic edges under the Potts distribution is as hard as approximating
the partition function for the ferromagnetic Potts model.

▶ Theorem 2. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). There is no FPRAS for the
susceptibility in the q-state Potts model on bipartite graphs of maximum degree ∆, unless
#BIS admits an FPRAS.

1.2 General 2-spin systems
Theorem 1 for independent sets is a special case of a general result for arbitrary 2-spin
antiferromagnetic systems. Such spin systems are parameterized by three parameters, β, γ

and λ; the first two are edge activities and control the strength of the spin interactions
between neighboring vertices, and the third is a vertex activity (a.k.a. external field) that
favors one spin over the other.

More precisely, for a graph G = (V, E), β, γ ≥ 0 which are not both equal to zero and
λ > 0, let µG;β,γ,λ denote the Gibbs distribution on G with edge activities β, γ and external
field λ, i.e., for σ : V → {0, 1} we have

µG;β,γ,λ(σ) = λ|σ|βm0(σ)γm1(σ)

ZG;β,γ,λ
,

1 We remark that β is usually used to denote the so-called inverse temperature of the Potts model; here
to have consistent notation with general 2-spin systems presented in Section 1.2 we take β to be the
exponent of the inverse temperature.
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where |σ| is the number of vertices with spin 1, and m0(σ), m1(σ) denote the number of edges
in G whose endpoints are assigned under σ the pair of spins (0, 0) and (1, 1), respectively.

The parameter pair (β, γ) is called antiferromagnetic if βγ ∈ [0, 1) and at least one of
β, γ is non-zero, and it is called ferromagnetic, otherwise. Note that the hard-core model
on independent sets weighted by λ > 0 is the case β = 1, γ = 0 (under the convention that
00 ≡ 1). Our earlier example of unweighted independent sets corresponds to the hard-core
model with λ = 1. The antiferromagnetic Ising model is the special case 0 < β = γ < 1.

Our results apply to general “vertex-edge observables” defined as follows.

▶ Definition 3. Let (β, γ) be antiferromagnetic and λ > 0. For real numbers a, b, c, the
(a, b, c) vertex-edge observable of a graph G in the 2-spin system corresponding to (β, γ, λ) is
given by

Oβ,γ,λ(G) = Eσ∼µG;β,γ,λ

[
oG(σ)

]
, where oG(σ) = a|σ| + bm0(σ) + cm1(σ).

The observable is trivial on general graphs if any of the following hold: (i) a = b = c = 0,
(ii) β = 0 and a = c = 0, (iii) γ = 0 and a = b = 0, (iv) β = γ, λ = 1 and b + c = 0. We say
that the observable is trivial on bipartite graphs if either any of the above hold, or β = γ and
λ = 1. Otherwise, we say that the observable is non-trivial.

Notice that by setting (a, b, c) = (1, 0, 0) we obtain the magnetization Mβ,γ,λ(G), which
in the special case of the hard-core model with λ = 1 is the average size of an independent set.
Furthermore, by setting (a, b, c) = (0, 1, 1) we obtain the susceptibility, denoted by Sβ,γ,λ(G),
which is the average number of monochromatic edges.

The terminology “trivial” is applied liberally here and meant to convey that there is an efficient
algorithm for the relevant parameters. In particular, while cases (i)-(iii) are degenerate,
case (iv) corresponds to the Ising model without an external field. A classical (and highly
non-trivial) result of Jerrum and Sinclair [13] presented an FPRAS for the ferromagnetic
Ising model on any graph, any β > 1. Moreover, for bipartite graphs, the subcase β < 1
(antiferromagnetic) can be reduced to an equivalent β > 1 (ferromagnetic) system.

We next define the range of parameters (β, γ, λ) where our inapproximability results
for vertex-edge observables apply; these are precisely the parameters where the hard-core
and the antiferromagnetic Ising models exhibit non-uniqueness on the infinite ∆-regular
tree (for general 2-spin systems this threshold corresponds to what is known as up-to-∆
non-uniqueness, which captures the computational phase transition).

▶ Definition 4. Let ∆ ≥ 3 be an integer. We let N∆ be the set of (β, γ, λ) such that (β, γ)
is antiferromagnetic, and the (unique) fixpoint x∗ > 0 of the function f(x) = 1

λ

(
βx+1
x+γ

)∆−1

satisfies |f ′(x∗)| > 1. The region N∆ is known as the non-uniqueness region.

Note there is an efficient sampling/counting algorithm for graphs of maximum degree ∆,
roughly2, for (β, γ, λ) outside the parameter region N∆ [15, 5]. Inside N∆, it is NP-hard to
approximate the partition function on graphs of maximum degree ∆ [19] and it is #BIS-hard
to approximate the partition function on bipartite graphs of maximum degree ∆ [3]. We
prove that it is also hard to compute any non-trivial vertex-edge observable in exactly this
same region where the corresponding counting problem is hard.

2 More precisely, the (strict) uniqueness region is defined as those β, γ, λ) where the fixpoint x∗ in
Definition 4 satisfies the (strict) inequality |f ′(x∗)| < 1. For certain monotonicity reasons, the algorithm
for max-degree ∆ graphs demands that (β, γ, λ) lie in the intersection of these uniqueness regions for
all degrees d ≤ ∆, see [15] for details.
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▶ Theorem 5. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, for any vertex-edge
observable that is non-trivial on bipartite graphs, there is no FPRAS on bipartite graphs of
maximum degree ∆ unless #BIS admits an FPRAS.

We stress that the above result holds for bipartite graphs. The previous work of Galanis
et al. [9] showed hardness for general antiferromagnetic 2-spin systems in the same non-
uniqueness region but on general graphs, only for the magnetization, and only achieved the
stronger constant-factor hardness for a dense set of λ.

We begin by establishing Theorem 2 for hardness of approximating the susceptibility for
the ferromagnetic Potts model, see Section 2. We then present the refinements to establish
Theorems 5 for general 2-spin antiferromagnetic systems in Section 3; Theorem 1 follows as
a corollary of Theorem 5.

2 Hardness of Susceptibility for the Ferromagnetic Potts model

Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). To prove Theorem 5, we will assume the existence
of an FPRAS for the susceptibility of Potts with parameters q, β on maximum degree ∆
graphs and show how to obtain an FPRAS for the partition function of the Potts model with
parameters q, β∗ on bipartite graphs of maximum degree 3 for some β∗ > βc(q, 3); the latter
problem is #BIS-hard by [10].

To aid the presentation, it will be convenient to consider the following computational
problems and use the notion of AP-reduction between counting problems [6]; roughly, for
two problems A, B, the notation A ≤AP B means that the existence of an FPRAS for B

implies the existence of an FPRAS for A. In the first computational problem that will be
relevant, the parameters are q, β, ∆ as detailed below.

Name #Susc(q, β, ∆).
Instance A bipartite graph G with max degree ∆.
Output The susceptibility on G with parameters q, β, i.e., the value Sq,β(G).

In the second, the parameter is going to be just q; note that the problem allows the edge
activity to be part of the input.

Name #SuscCubic(q).
Instance A cubic bipartite graph H, and a rational edge activity β̂ ≥ 1.
Output The susceptibility on H with parameters q, β̂, i.e., the value Sq,β̂(H).

The key ingredient underpinning our proof approach is captured by the following lemma,
whose proof is given in Section 2.3. Roughly, the lemma asserts that, despite the fact that the
parameter β is fixed, with appropriate gadget constructions we can “shift” it in a fine-tuned
way to any desired β̂. In turn, this allows us to do an appropriate integration of the observable
(viewed as a function of the parameter β̂) to recover the partition function of a #BIS-hard
problem; we will refer loosely to this integration technique as interpolation.

▶ Lemma 6. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆) be an arbitrary real. Then,

#SuscCubic(q) ≤AP #Susc(q, β, ∆).

Before proceeding with outlining the proof of the key Lemma 6, we first present the
interpolation-scheme idea that allows us to conclude Theorem 2 from Lemma 6.
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Proof of Theorem 2 (assuming Lemma 6). Let β∗ > βc(q, 3) be an arbitrary rational num-
ber and consider the problem #PottsCubic(q, β∗), i.e., the problem of approximating the
partition function ZG;q,β∗ on cubic bipartite graphs G. From [10, Theorem 3], we have that
#PottsCubic(q, β∗) is #BIS-hard. From Lemma 6, we have that for β > βp(q, ∆) it holds
that #SuscCubic(q) ≤AP #Susc(q, β, ∆), so to prove the theorem it suffices to show that
#PottsCubic(q, β∗) ≤AP #SuscCubic(q).

Let G be an instance of #PottsCubic(q, β∗) with n vertices and m edges, and ϵ > 0 be
the desired relative error that we want to approximate ZG;q,β∗ . Since ∂ log ZG;q,β̂

∂β̂
= 1

β̂
Sq,β̂(G),

we have

log ZG;q,β∗ =
∫ β∗

1

1
β̂

Sq,β̂(G)dβ̂. (1)

Let M = ⌈(10qβ̂m/ϵ)4⌉ and for i = 0, 1, . . . , M , consider the sequence of edge parameters
β̂i = 1 + i β∗−1

M . It is a standard fact that the function log ZG;β̂ is convex with respect to β̂

(the second derivative is equal to the variance of the number of monochromatic edges) and
therefore the function 1

β̂
Sq,β̂(G) is increasing. Therefore, from the standard technique of

approximating integrals with rectangles, we obtain from (1) that

1
M

M−1∑
i=0

SG;q,β̂i

β̂i
≤ log ZG;β∗ ≤ 1

M

M∑
i=1

Sq,β̂i
(G)

β̂i
.

Using the bound m/q ≤ Sq,β̂(G) ≤ m that holds for all β̂ ≥ 1, we obtain that

log ZG;q,β∗ =
(
1 ± ϵ

10
) M∑

i=1

Sq,β̂i
(G)

β̂i
.

Using the presumed oracle for #SuscCubic(q) we can compute Ŝi such that Ŝi = (1 ±
ϵ

10Mm )Sq,β̂i
(G) for i ∈ [M ], and therefore the quantity Ẑ = exp

( ∑
i∈[M ]

Sq,β̂i
(G)

β̂i

)
is a

(1 ± ϵ)-factor approximation to ZG;q,β∗ . This completes the AP-reduction, and therefore the
proof as well. ◀

In the rest of Section 2, we focus on proving Lemma 6.

2.1 Proof overview of Lemma 6
In this section, we give the proof overview of Lemma 6 which as we saw in the previous
section is the key ingredient to carry out the interpolation-scheme idea. We highlight here
some of the key ideas (with a non-technical overview), which are also used to prove the
analogous Lemma for obtaining our inapproximability results for 2-spin systems.

To prove Lemma 6, we will use three different types of gadgets.
The first type of gadgets, that have also been used in previous inapproximability results,

are the so-called “phase gadgets”, which are almost ∆-regular bipartite graphs with a
relatively small number of degree ∆ − 1 vertices (the so-called “ports”). This type of gadget
exploits the phase transitions of the model and has q-ary behaviour, in the sense that a
typical sample from their Gibbs distribution is in one of the q ordered phases, favoring one
spin over the others. Aside from this q-ary behaviour, another feature of these gadgets is
that they are convenient to maintain the degree of the vertices in our constructions small,
using the ports to make connections between gadgets.
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The second type of gadgets are paths; these allow us to interpolate the edge activity
β. The key point is that long paths induce some small edge-interaction β between their
endpoints (bigger than but close to 1) and by using a big number of them (in parallel-style
connections) we can achieve a target edge activity β̂ with arbitrary good precision; here, the
ports of the phase gadgets allow us to do these parallel connections without exceeding the
degree bound ∆. This is a crucial ingredient in implementing the new reduction idea.

The final type of gadgets consists of the so-called edge-interaction gadgets. Each such
gadget has two vertices, say ρ, ρ′, which we also refer to as ports. We are interested in two
quantities of these gadgets (cf. Definition 9):

the effective edge activity, i.e., the relative ratio of the aggregate weight of configurations
where σ(u) = σ(v) versus σ(u) ̸= σ(v). Note that this ratio is always bigger than 1, due
to the ferromagnetic interaction.
the susceptibility gap, i.e., the difference between the expected susceptibility conditioned
on σ(u) = σ(v) and the susceptibility conditioned on σ(u) ̸= σ(v).

We prove the existence of pairs of susceptibility gadgets which have roughly equal induced
edge parameters but different susceptibility gaps. The equality between the induced edge
parameters allows us to use them as probes (without changing the underlying distribution)
for “susceptibility” between two vertices s, t, i.e., the probability that s, t have the same
colour, in a graph G. That is, we can invoke a presumed oracle for susceptibility when we use
the first gadget (by identifying s, t with the terminals) and get a “reading” for susceptibility,
and do the same for the second and get a second “reading”; the difference between the two
readings gives us information about the probability that s, t have the same colour in the
original graph G.

The reason that these susceptibility gadgets are useful is that analysing the susceptibility
of the other two types of gadgets is deeply unpleasant and, in fact, it is not even known
how to obtain susceptibility estimates for the phase gadgets (since their analysis in earlier
works builds upon second moment methods that give rather crude bounds in our setting).
Hence, by the subtraction trick above, we have the required modularity to avoid such refined
considerations.

That said, establishing the existence of pairs of susceptibility gadgets with the required
properties has various challenges and the proof is based on an elaborate construction which
finishes by a contradiction argument via Cauchy’s functional equation. Fortunately, this
ground work has been largely done in [9], though in our setting we need to consider edge
gadgets instead of vertex gadgets, which complicates the underlying functions involved in the
proofs. We believe that these constructions can be used to strengthen the results of [9] and
obtain inapproximability for multi-spin systems such as colourings or the antiferromagnetic
Potts model.

These ideas suitably adapted apply to obtain our inapproximability results for antifer-
romagnetic 2-spin systems. The difference for 2-spin systems is that the interpolation is
quite trickier, since in the setting there it is harder to make vertex or edge activities that are
close to 1 and do the interpolation (in contrast to the paths used above which is the fairly
natural choice). Instead, to do the interpolation, we use a pair of trees whose induced vertex
activities (at the root) are sufficiently close and which are attached (in appropriate numbers)
to the ports of the phase gadgets to imitate the effect of an external field close to 1. We are
then able to interpolate in terms of λ by a suitable implementation of the subtraction trick
idea; we again need to depart from [9] (where 2-spin models were also considered) since the
construction there does not yield a suitable interpolation parameter. The final new ingredient
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is to account for the general vertex-edge observables, since a key fact used in [9] is that the
magnetization is an appropriate derivative of the log-partition function, which is no longer
the case for general vertex-edge observables.

We now state more formally the above ingredients and show how to combine these and
conclude the proof of Lemma 6.

2.2 The gadgets
2.2.1 Bipartite phase gadgets for the Potts model
For integers t, n, ∆, we let Gt

n,∆ be the distribution on bipartite graphs where there are n

vertices with degree ∆ on each side, and t vertices of degree ∆ − 1 on each side. For a
graph G ∈ Gt

n,∆, we denote the set of vertices with degree ∆ by U and by W those with
degree ∆ − 1, so that |U | = 2n and |W | = 2t. We will refer to set W as the ports of G.
For σ : U → [q], we define the phase Y(σ) of the configuration σ as the most frequent color
(breaking ties arbitrarily), i.e., which has the most occupied vertices under σ, i.e.,

Y(σ) = arg max
i∈[q]

|σ−1(i)|.

Let p > 1/q be given from p = x
x+q−1 where x > 1 is the largest solution of x =

(
βx+q−1

x+β+q−2
)∆−1,

cf. [10, Footnote 5]. For a colour i ∈ [q], we define the product measure Qi
W (·) on

configurations τ : W → [q], given by

Qi
W (τ) = p|τ−1(i)|( 1−p

q−1
)|W |−|τ−1(i)|

.

We will need the following two properties from the phase gadget G for some sufficiently small
ϵ > 0. Let µ := µG;q,β .
1. The q phases appear with roughly equal probability, i.e., |µ(Y(σ) = i) − 1

q

∣∣ ≤ ϵ for i ∈ [q].

2. For i ∈ [q] and any τ : W → [q],
∣∣ µ

(
σW =τ | Y(σ)=i

)
Qi

W
(τ) − 1

∣∣ ≤ ϵ.
Let Gt,ϵ

n,∆ denote the set of graphs G ∈ Gt
n,∆ satisfying Items 1 and 2. The following lemma

is shown in [10].

▶ Lemma 7 ([10, Lemma 28]). Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). Then, there is a
randomized algorithm that, on input integer t ≥ 1 and ϵ > 0, outputs in time poly(t, 1

ϵ ) an
integer n and a graph G that belongs to Gt,ϵ

n,∆, with probability ≥ 3/4.

2.2.2 Edge-interaction/susceptibility gadgets
▶ Definition 8. An edge-interaction gadget is a connected series-parallel graph E with two
distinct vertices ρ, ρ′ that have degree one. We will refer to ρ, ρ′ as the ports of E.

▶ Definition 9. Let E be an edge-interaction gadget with ports ρ, ρ′, and µ = µE;β. We
denote by BE = BE(β) the effective interaction of the gadget, i.e., BE = µ(σρ=σρ′ =1)

µ(σρ=1,σρ′ =2)
and by SE = SE(β) the susceptibility gap of the gadget, i.e., SE = Eσ∼µ[ mE(σ) | σρ =
σρ′ ] − Eσ∼µ[ mE(σ) | σρ ̸= σρ′ ].

The following “interaction” gadget will allow us to change the edge interaction parameter
to any desired value.

▶ Lemma 10. Let q ≥ 2 be an integer and β > 1 be a real. There is an algorithm, which,
on input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a path P of length O(| log r|),
such that 0 < BP − 1 < r.
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The proof of Lemma 10 is given in Section C.1.2 of the full version. The following lemma
gives pairs of edge-interaction gadgets which have almost the same edge interaction but
different susceptibility gaps; this difference in the susceptibility gaps while maintaining the
edge interaction will be the key to read off the susceptibility by subtraction.

▶ Lemma 11. Let q ≥ 3 be an integer and β > 1 be a real. For any arbitrarily small constant
δ > 0, there exist constants S, Ξ > 0 and B ∈ (1, 1 + δ) such that the following holds. There
is an algorithm, which, on input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a pair
of edge-interaction gadgets E1, E2, each of maximum degree 3 and size O(| log r|), such that

|BE1 − B|, |BE2 − B| ≤ r, but |SE1 − SE2 | ≥ S.

Moreover, the susceptibility gaps |SE1 |, |SE2 | are upper-bounded in absolute value by the
constant Ξ, i.e., |SE1 |, |SE2 | ≤ Ξ.

The proof of Lemma 11 generalises the techniques from [9], and is given in Section C.3 of
the full version.

2.3 The reduction – proof of Lemma 6
Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). Let H be a cubic bipartite graph which is input to
the problem #Susc(q) of Section 2. For integers n, t ≥ 1 and rational ϵ > 0, let G ∈ Gt,ϵ

n,∆ be a
bipartite phase gadget satisfying Items 1 and 2 of Section 2.2.1. Let E be an edge-interaction
gadget with effective interaction BE and susceptibility gap S = SE . Let P be a path with
effective edge interaction BP .

For an integer ℓ satisfying ℓ < t/3, we define the graph Hℓ
G,E,P as follows. For each vertex

v of H replace it with a distinct copy of G, denoted by Gv; we also use Uv, Wv to denote
the sets corresponding to U, W in Gv. Moreover for each {u, v} of H, add a matching of
size ℓ + 1 between Wu and Wv, and replace ℓ edges of the matching by (distinct) copies of
the path P and the last edge of the matching by the gadget E . Since H is bipartite, this
constuction can clearly be done so that the final graph Hℓ

G,E,P obtained this way is bipartite.
Let Hℓ

G,P be the graph with the copies of the susceptibility gadget removed.
The lemma below relates the susceptibility Sq,β(Hℓ

G,E,P) with the susceptibility of Sq,β̂(H),
for some appropriate β̂ that is a function of the parameters q, ∆, β and ℓ, BE , BP ; we expain
how the lemma corresponds to the overview of Section 2.1 right after its statement. The follow-
ing piece of notation will be useful: for a graph J and a subgraph J ′ of J , given a configuration
σ : V (J) → [q], it will be convenient to denote by mJ′(σ) =

∑
e={u,v}∈E(J′) 1{σ(u) = σ(v)}

the number of monochromatic edges of J ′ under σ.

▶ Lemma 12. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆). There are constants 1 > R0 > R1 >

0 so that the following holds for any path P with edge interaction BP , any edge-interaction
gadget E with effective interaction BE and susceptibility gap SE , and any integers ℓ, t with
t ≥ 3(ℓ + 1).

For a cubic bipartite graph H, for any ϵ ≤ 1
(5q|V (H)|)2 , any integer n and phase gadget

G ∈ Gt,ϵ
n,∆, for µ := µHℓ

G,E,P
and ϵ′ = 10q|V (H)|ϵ, it holds that

Sq,β(Hℓ
G,E,P) = AE |E(H)|+Eσ∼µ[mHℓ

G,P
(σ)]+(1± ϵ′)SE

[
(A0 −A1)Sq,β̂(H)+A1|E(H)|

]
,

where AE = Eσ∼µE [mE(σ) | σρ = σρ′ ] and

β̂ :=
( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(BE −1)R0
1+(BE −1)R1

)
, Aj := BE

BE +
1−Rj

Rj

for j ∈ {0, 1}.
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To give a bit of intuition behind the expression of Sq,β(Hℓ
G,E,P), recall that the vertices of H

are replaced with copies of the bipartite phase gadgets G and that for each pair of neighboring
vertices in H we connect the corresponding copies of G using the appropriate number of
the gadgets E , P. The point here is that the bipartite gadgets are so large that each one
of them is with very high probability in one of the q phases (cf. Item 1 in Section 2.2.1)
and therefore in the Gibbs distribution of Hℓ

G,E,P (with parameters q, β) they behave like
meta-vertices which are in one of q states, analogously to a Potts model on H with q spins
and a new edge activity β̂, which is ultimately determined by the E , P-connections and the
(induced) probability distributions on the ports of the bipartite phase gadgets (conditioned
on the phase, cf. Item 2 in Section 2.2.1). This explains (at an intuitive level) the presence
of the quantity Sq,β̂(H); the remaining terms are offsets to account for the addition of the
various gadgets. Of those, the most complicated is the term Eσ∼µ[mHℓ

G,P
(σ)] which involves

the contribution to the susceptibility from edges in the graph Eσ∼µ[mHℓ
G,P

(σ)] which is hard
to get a neat expression since the average is taken over the complicated distribution µ. This
is where the idea of having a pair of susceptibility gadgets (E1, E2) with the same effective
interaction but different susceptibility gaps will come into play (in the proof of Lemma 6
below): by subtracting the susceptibilities for the graphs Hℓ

G,E1,P and Hℓ
G,E2,P between

these, the terms corresponding to Eσ∼µ[mHℓ
G,P

(σ)] will cancel (since E1, E2 have roughly the
same effective interaction BE1 , BE2) allowing us to approximate the target quantity Sq,β̂(H)
(since E1, E2 have substantially different susceptibility gaps SE1 , SE2). That said, the proof of
Lemma 12 is on the technical side and is deferred to Section B of the full version.

To finish the proof of Lemma 6, we need the following crude bound on the change of
susceptibility when we slightly change the values of the edge activities on a subset of the
edges. To state the lemma, for a graph G with edge-activity vector β = {βe}e∈E(H), define
the weight of an assignment σ : V (G) → [q] as w(σ) =

∏
e={u,v}∈E(G)(βe)1{σ(u)=σ(v)}, and

let µG;q,β(σ) = w(σ)/ZG;q,β denote the corresponding Gibbs distribution, where ZG;q,β is
the normalizing constant.

▶ Lemma 13. Let H be a graph and F be a subgraph of H on the same set of vertices. Suppose
that β = {βe}e∈E(H), β′ = {β′

e}e∈E(H) are edge activity vectors such that βe = β′
e = β for

e ∈ E(F ), and βe = β0, β′
e = β1 for e /∈ E(F ). Then, for µ := µH;q,β and µ′ := µ′

H;q,β, it
holds that∣∣∣Eσ∼µ[mF (σ)] − Eσ∼µ′ [mF (σ)]

∣∣∣ ≤ |E(H)|2|β0 − β1|.

Proof. Suppose without loss of generality that β0 ≥ β1; by the monotonicity of the ferro-
magnetic Potts model we have that Eσ∼µ[mF (σ)] ≥ Eσ∼µ′ [mF (σ)] (see, e.g., [12, Theorems
1.16 & 3.21]). For a configuration σ : V (H) → [q], let w(σ), w′(σ) denote its weight under
the edge activity vectors β and β′, respectively. Consider an edge e ∈ E(F ). Then, using
that for reals a > b > 0 it holds that |ak − bk| ≤ k|a − b|ak, we obtain that for every σ it
holds that

0 < w(σ) − w′(σ) = βmF (σ)(β
|E(H)|−mF (σ)
0 − (β1)|E(H)|−mF (σ)) ≤ |E(H)|(β0 − β1)w(σ)

By summing over σ, it follows also that ZG;q,β′ ≤ ZG;q,β, and combining these we obtain
that

Eσ∼µ[mF (σ)] − Eσ∼µ′ [mF (σ)] ≤
∑

σ mF (σ)
(
w(σ) − w′(σ)

)
ZG;q,β

≤ |E(H)|2(β0 − β1). ◀

We now give the proof of Lemma 6 which we restate here.
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▶ Lemma 6. Let q, ∆ ≥ 3 be integers and β > βc(q, ∆) be an arbitrary real. Then,

#SuscCubic(q) ≤AP #Susc(q, β, ∆).

Proof. Let H be a cubic bipartite graph and β̂ > 1 be the inputs to #SuscCubic(q), and let
η ∈ (0, 1) be the desired relative error that we want to approximate Sq,β̂(H). We may assume
that β̂ ≥ β0 =

(
q−1

3
)1/∆; for β̂ < β0, a fairly standard coupling argument shows that Glauber

dynamics converges rapidly to the Gibbs distribution µH;q,β̂ , see for example [2, Theorem 1.1],
and therefore it can be used to approximate Sq,β̂(H) in time poly

(
V (H), 1

η , bits(β̂)
)

using
rejection sampling. For some of the bounds below, it will also be convenient to assume
that |V (H)|, |E(H)| are bigger than a sufficiently large constant (otherwise, we can just
brute-force).

Let 1 > R0 > R1 > 0 be the constants in Lemma 12, and let δ ∈ (0, 1) be a rational
constant such that for all B ∈ (1, 1 + δ), it holds that 1+(B−1)R0

1+(B−1)R1
≤ β0 < β̂. Note that the

choice of δ is a constant depending on q, ∆ but independent of H and β̂. By Lemma 11, there
are constants B ∈ (1, 1 + δ), S > 0 and an algorithm, which, on input a rational r ∈ (0, 1/2),
outputs in time poly(bits(r)) a pair of susceptibility gadgets E1, E2, each of maximum degree
3 and size O(| log r|), such that

|BE1 − B|, |BE2 − B| ≤ r, but |SE1 − SE2 | ≥ S. (2)

Let ϵ = η
|E(H)|5 and t =

⌈( |E(H)| log β̂
ϵδ(B−1)

)4⌉
. By Lemma 7, there is an algorithm that

outputs in time poly(t, 1
ϵ ) an integer n and a graph G ∈ Gt,ϵ

n,∆ (satisfying Items 1 and 2).
Use the algorithm of Lemma 11 to obtain gadgets E1, E2 satisfying (2) for r = ϵ4

10δ(R0−R1)β0
.

Moreover, use Lemma 10, to obtain in time poly(bits(r)) an edge interaction gadget with
1 < BP < 1 + ϵ. Let ℓ be the smallest positive integer such that( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(B−1)R0
1+(B−1)R1

)
> β̂

and note that such an integer exists by the choice of δ since the l.h.s. for ℓ = 0 is smaller
than β̂, and each of the fractions is bigger than 1 from R0 > R1 and B > 1. In fact, we
have that ℓ = O( 1

ϵ log β̂), where the implicit constants depend only on q, ∆. It follows in
particular that ℓ < t/3.

For i ∈ {1, 2}, consider now the graphs Ĥi = Hℓ
G,P,Ei

and let µi = µ
Ĥi;q,β

. From
Lemma 12, we have that

Sq,β(Ĥi) = AEi |E(H)|+Eσ∼µi [mHℓ
G,P

(σ)]+(1±η2)SEi

[(
A

(i)
0 −A

(i)
1

)
Sq,β̂i

(H)+A
(i)
1 |E(H)|

]
,

where AEi = Eσ∼µEi
[mEi(σ) | σρ = σρ′ ] and

β̂i :=
( 1+(BP −1)R0

1+(BP −1)R1

)ℓ( 1+(BEi
−1)R0

1+(BEi
−1)R1

)
, A

(i)
j := BEi

BEi
+

1−Rj

Rj

for j ∈ {0, 1}.

From (2), we have that β̂i = (1 ± ϵ3)β̂, and therefore from Lemma 13, we have that∣∣Eσ∼µ1 [mHℓ
G,P

(σ)] − Eσ∼µ2 [mHℓ
G,P

(σ)]
∣∣ ≤ |E(Hℓ

G,E,P)|ϵ3 ≤ ϵ2,

|Sq,β̂i
(H) − Sq,β̂(H)| ≤ |E(H)|2ϵ3 ≤ ϵ2

Using (2), we also have that

A
(i)
0 = (1 ± ϵ)A0, A

(i)
1 = (1 ± ϵ2)Ai, where Aj := B

B+
1−Rj

Rj

for j ∈ {0, 1}.
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We can invoke the oracle for Sq,β(Ĥi) to compute Ŝi such that Ŝi = (1 ± ϵ2)Sq,β(Ĥi). Note
also that Ei has size poly(bits(r)) and therefore we can invoke the oracle for #Susc(q, ∆, β)
to compute ÂEi

, ŜE1 such that ÂEi
= (1 ± ϵ2)AEi

and ŜEi
= (1 ± ϵ2)SEi

.3 It follows that

Ŝ = 1
A0 − A1

( (Ŝ1 − Ŝ2) − |E(H)|(ÂE1 − ÂE2)
ŜE1 − ŜE2

− A1|E(H)|
)

is within a factor of (1 ± η) of the susceptibility Sq,β̂(H), as needed. This finishes the
reduction and therefore the proof of Lemma 6. ◀

3 Hardness of vertex-edge observables for 2-spin systems

Throughout this section, we will fix integer ∆ ≥ 3, and antiferromagnetic (β, γ, λ) ∈ N∆
in the non-uniqueness region. We will also fix an (a, b, c) vertex-edge observable that is
non-trivial on bipartite graphs.

3.1 The interpolation scheme
Analogously to Section 2, it will be convenient to consider the following computational
problems.

Name #Observable2Spin(β, γ, λ, a, b, c).
Instance A bipartite graph G with max degree ∆.
Output The (a, b, c) vertex-edge observable on G with parameters β,γ,λ, i.e., the value

Oβ,γ,λ(G).

In the second, the parameter is going to be the edge activity α < 1 of an antiferromagnetic
Ising model; note that the problem allows the vertex activity to be part of the input.

Name #MagnetIsingCubic(α).
Instance A cubic bipartite graph H, and a rational vertex activity λ̂ > 0.
Output The magnetization on H for the Ising model with parameters α, λ̂, i.e., the value

Mα,α,λ̂(H).

We now show the following analogue of the interpolation scheme in Lemma 6.

▶ Lemma 14. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, there is α ∈ (0, 1) such
that for any (a, b, c) vertex-edge observable that is not trivial on bipartite graphs,

#MagnetIsingCubic(α) ≤AP #Observable2Spin(β, γ, λ, a, b, c).

Assuming the key Lemma 14, the proof of Theorem 5 can be done analogously to Theorem 2,
interpolating now in terms of the vertex activity λ̂. We defer the proof to Section A of the
full version.

3 For ÂEi
, just invoke the oracle on the graph obtained from Ei by identifying ρi and ρ′

i; this graph has
maximum degree at most 3 since ρi, ρ′

i both have degree 1. Observe that SEi
= 2AEi

− Sq,β(Ei) and
therefore we can obtain the desired ŜEi

by using a further oracle call on Ei to approximate Sq,β(Ei).
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3.2 The gadgets
In this section, we outline the gadgets that will be used to prove Lemma 14. These are
analogous to those presented in the case of the Potts model, especially the phase gadgets.
To account for general vertex-edge observables, we refine appropriately the field-gadget idea
of [9], by now paying attention to the so-called observable gap (cf. Definition 17).

3.2.1 Bipartite phase gadgets for antiferromagnetic 2-spin systems
We follow the same notation as in Section 2.2.1 to denote for integers t, n, ∆ the class Gt

n,∆
of bipartite graphs where there are n vertices with degree ∆ on each side, and t vertices
of degree ∆ − 1 on each side. For a graph G ∈ Gt

n,∆, we denote its bipartition by (U+, U-)
where U+, U- are vertex sets with |U+| = |U-| = n, and we denote by W +, W - the sets of
vertices with degree ∆ − 1 on each side of the bipartition, so that |W +| = |W -| = t. We will
refer to set W = W + ∪ W − as the ports of G. For σ : U → {0, 1}, we define the phase Y(σ)
of the configuration σ as the side of the bipartite graph which has the most occupied vertices
under σ, i.e.,

Y(σ) = arg max
i∈{+,-}

|σ−1(1) ∩ U i|.

It is known that for (β, γ, λ) ∈ N∆ the system of equations x = 1
λ

(
βy+1
y+γ

)∆−1
, y =

1
λ

(
βx+1
x+γ

)∆−1
has a unique solution with y > x > 0, see, e.g., [8, Lemma 7]. Let q+ = 1

1+x ,
q- = 1

1+y and note that q+, q- are distinct numbers in the interval (0, 1). Define the product
distributions Q+

W (·), Q-
W (·) by

Q±
W (τ) = (q±)|τ−1(1)∩W +|(1 − q±)|τ−1(0)∩W +|(q±)|τ−1(1)∩W -|(1 − q±)|τ−1(0)∩W -|. (3)

We will need the following two properties from the phase gadget G for some sufficiently
small ϵ > 0. Let µ := µG;β,γ,λ.
1. The phases appear with roughly equal probability, i.e., |µ(Y(σ) = ±) − 1

2
∣∣ ≤ ϵ.

2. For any τ : W → {0, 1},
∣∣∣µ

(
σW = τ | Y(σ) = ±

)
Q±

W (τ) − 1
∣∣∣ ≤ ϵ.

Let Gt,ϵ
n,∆ denote the set of graphs G ∈ Gt

n,∆ satisfying Items 1 and 2. The following lemma
is is shown in [3].

▶ Lemma 15 ([3, Lemma 9]). Let ∆ ≥ 3 and (β, γ, λ) ∈ N∆. Then, there is a randomized
algorithm that, on input integer t ≥ 1 and ϵ > 0, outputs in time poly(t, 1

ϵ ) an integer n and
a graph G that belongs to Gt,ϵ

n,∆, with probability ≥ 3/4.

3.2.2 Field gadgets with observable gaps
We adopt the following definition of “field” gadgets from [9].

▶ Definition 16. For λ ̸= 1−β
1−γ , a field gadget is a rooted tree T whose root ρ has degree one.

When λ = 1−β
1−γ , a field gadget consists of a rooted bipartite graph obtained from a rooted tree

where some of the leaves have been replaced by a distinct cycle of length four (by identifying
the leaf with a vertex of the cycle).

▶ Definition 17. Let T be a field gadget rooted at ρ, and µ = µT ;β,γ,λ. We denote by RT =
RT (β, γ, λ) the effective field of the gadget, i.e., RT = 1

λ
µ(σρ=1)
µ(σρ=0) and by OT = OT (β, γ, λ) the

observable gap of the gadget, i.e., OT = Eσ∼µ[ oT (σ) | σρ = 1] − a − Eσ∼µ[ oT (σ) | σρ = 0].
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The division by λ in the definition of the effective field of a gadget is to avoid double-counting
the contribution of the root later on.

▶ Lemma 18. Let (β, γ, λ) be antiferromagnetic such that at least one of β ̸= γ or λ ̸= 1
holds. There are constants C, R̃ > 0 with R̃ ≠ 1 and an algorithm which, on input a rational
r ∈ (0, 1/2), outputs in time poly(bits(r)) field gadgets T+, T-, each of maximum degree 3 and
size O(| log r|), such that

RT+ > RT- + r/2 and |RT+ − R̃|, |RT- − R̃| ≤ r.

▶ Theorem 19. Let (β, γ, λ) be antiferromagnetic, and consider any non-trivial vertex-edge
observable on general graphs. There exist constants R̂, Ô, Ξ > 0 and an algorithm, which, on
input a rational r ∈ (0, 1/2), outputs in time poly(bits(r)) a pair of field gadgets T1, T2, each
of maximum degree 3 and size O(| log r|), such that

|RT1 − R̂|, |RT2 − R̂| ≤ r, but |OT1 − OT2 | ≥ Ô.

Moreover, the observable gaps OT1 , OT2 are upper-bounded in absolute value by the constant Ξ.

The proofs of Lemma 18 and Theorem 19 follow closely the approach in [9], and are therefore
deferred to Section C.3 of the full version.

3.3 The reduction

Let H be a cubic bipartite graph which is input to the problem #MagnetIsingCubic(α) of
Section 3.1, for some constant α ∈ (0, 1) to be specified. For integers n, t ≥ 1 and rational
ϵ > 0, let G ∈ Gt,ϵ

n,∆ be a bipartite phase gadget satisfying Items 1 and 2 of Section 3.2.1. Let
T+, T-, T be field gadgets. Note that the gadgets T+, T- serve a different role to that of T ,
and in particular they will be used to interpolate over the vertex activity λ̂.

To achieve this, for integers ℓ+, ℓ- satisfying t ≥ 5 + max{ℓ+, ℓ-}, we define the graph
Hℓ+,ℓ-

G,T+,T-,T as follows. For each vertex v of H replace it with a distinct copy of G, denoted
by Gv; we denote by U±

v , W ±
v the sets corresponding to U±, W ± in Gv. Moreover, for each

v ∈ V (H), attach one copy of the gadget T and ℓ+ copies of the gadget T+ on mutually
distinct vertices of W + by identifying them with the corresponding roots. Similarly, attach
ℓ- copies of the gadget T- on mutually distinct vertices of W -. Let Tv be the copy of Tv

corresponding to v, and wv be its root. Let WT = {wv | v ∈ V (H)} be the set of all these
roots. Further, for each edge {u, v} of H, add an edge between W +

u and W +
v , and an edge

between W -
u and W -

v .
Let Hℓ+,ℓ-

G,T+,T-
be the graph without the internal vertices and edges of the copies of gadget

T , i.e., we keep only the roots WT of the gadgets in Hℓ+,ℓ-
G,T+,T-

. The following piece of notation
will be useful: for a graph J and a subgraph J ′ of J , given a configuration σ : V (J) → [q],
it will be convenient to denote by mJ′(σ) =

∑
e={u,v}∈E(J′) 1{σ(u) = σ(v)} the number of

monochromatic edges of J ′ under σ.
The following lemma relates the value of the observable Oβ,γ,λ(Hℓ+,ℓ-

G,T+,T-,T ) with the
magnetization Sα,λ̂(H), for some appropriate λ̂ that is a function of the parameters β, γ, λ

and ℓ+, ℓ-, RT+ , RT+ , RT . Analogously to Section 2.3, for a graph J and a subgraph J ′ of
J , given a configuration σ : V (J) → [q], it will be convenient to denote by oJ′(σ) =
a|σV (J′)| + bm0(σV (J′)) + cm1(σV (J′)) the contribution of J ′ to the value of the observable
on J .
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▶ Lemma 20. Let ∆ ≥ 3 be an integer, (β, γ, λ) ∈ N∆, and (a, b, c) be a vertex-edge
observable. Then, there are constants q+, q- ∈ (0, 1) with q+ > q- and α ∈ (0, 1) so that the
following holds for any field gadgets T+, T-, T with effective fields R+, R-, R and observable
gaps O1, O2, O, and any positive integers ℓ+, ℓ-, t with t ≥ 5 + max{ℓ+, ℓ-}.

For a cubic bipartite graph H, for any ϵ ≤ 1
(5|V (H)|)2 , any integer n and phase gadget

G ∈ Gt,ϵ
n,∆, for µ := µHℓ+,ℓ-

G,T+,T-,T
and ϵ′ = 10|V (H)|ϵ, it holds that

Oβ,γ,λ(Hℓ+,ℓ-
G,T+,T-,T ) = A|V (H)| + Eσ∼µ

[
oHℓ+,ℓ-

G,T+,T-
(σ)

]
+ (1 ± ϵ′)O

[
(q+ − q-)Mα,λ̂(H) + q-|V (H)|

]
,

where A = Eσ∼µT [oT (σ) | σρ = 0] and λ̂ :=
(

q+R+1−q+
q-R+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ+
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ- .

The proof of Lemma 20 builds upon similar ideas to that of Lemma 12 (see in particular the
discussion around there for how this blends with the overview of Section 2.1) and is deferred
to Section B of the full version.

We will need the following bound on the change of the observable value when we change
the vertex activities of a subset of the vertices. Namely, let G = (V, E) be a graph and
(β, γ) be antiferromagnetic. For a vertex-activity vector λ = {λv}v∈V , define the Gibbs
distribution µG;β,γ,λ(σ) ∝ βm0(σ)γm1(σ) ∏

v∈V ; σ(v)=1 λv for σ : V → {0, 1}.

▶ Lemma 21 (Minor adaptation of [9, Lemma 35]). Let (β, γ) be antiferromagnetic, λ, λ1, λ2 >

0, and (a, b, c) be a vertex-edge observable. Let G = (V, E) be a graph and S ⊆ V . For
i ∈ {1, 2}, let λi be the field vector on V , where every v ∈ S has activity λi, whereas every
v ∈ V \S has activity λ. Let µi be the Gibbs distribution on G with parameters β, γ, λi. Then,
for every subgraph F of G, it holds that∣∣Eσ∼µ2 [oF (σ)] − Eσ∼µ1 [oF (σ)]

∣∣ ≤ 2
(
|a| + |b| + |c|

)(
|V (G)|2 + |E(G)|2

) ∣∣∣λ2

λ1
− 1

∣∣∣.
We now have all the ingredients to prove Lemma 14.

▶ Lemma 14. Let ∆ ≥ 3 be an integer and (β, γ, λ) ∈ N∆. Then, there is α ∈ (0, 1) such
that for any (a, b, c) vertex-edge observable that is not trivial on bipartite graphs,

#MagnetIsingCubic(α) ≤AP #Observable2Spin(β, γ, λ, a, b, c).

Proof. Let K = |a| + |b| + |c| and q+, q-, α be the constants from Lemma 20; recall that
α ∈ (0, 1) and 1 > q+ > q- > 0. Let H be a cubic bipartite graph and λ̂ > 1 be the inputs
to #MagnetIsingCubic(α), and let η ∈ (0, 1) be the desired relative error that we want to
approximate Mα,λ̂(H).

By Lemma 18 and Theorem 19, there exist constants R̃, R̂, Ô, C > 0 with R̃ ̸= 1
and polynomial time algorithms, which on input rationals r, r′ ∈ (0, 1/2), output in time
poly(bits(r), bits(r′)) pairs of field gadgets (T+, T-) and (T1, T2) satisfying

R+ > R- + Cr and |R+ − R̃|, |R- − R̃| ≤ r,

|R1 − R̂|, |R2 − R̂| ≤ r, but |O1 − O2| ≥ Ô,
(4)

where R+, R-, R1, R2 are the effective fields of T+, T-, T1, T2 and O1, O2 are the observable
gaps of T1, T2, respectively.

Let ϵ = η
|V (H)|8 and t =

⌈( 1
ϵ |V (H)|2 log λ̂

)6⌉
. By Lemma 7, there is an algorithm that

outputs in time poly(t, 1
ϵ ) an integer n and a graph G ∈ Gt,ϵ

n,∆ (satisfying Items 1 and 2). Let
also T+, T- be field gadgets satisfying (4) for r = |R̃−1|

10 ϵ4. Consider also the integers ℓ+, ℓ- = ℓ,
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where ℓ is an integer specified according to whether Λ̂ = λ̂/
(

q+R̂+1−q+
q-R̂+1−q-

)
is bigger than 1.

Suppose first that Λ̂ ≥ 1. Since R+ > R- and q+ > q-, we have that q+R++1−q+
q-R++1−q-

> q+R-+1−q+
q-R-+1−q-

,
and we pick ℓ to be the smallest positive integer such that(

q+R+1−q+
q-R+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ ≥ λ̂. (5)

If Λ̂ < 1, then we pick ℓ to be the small positive integer so that(
q+R+1−q+
q-R+1−q-

)(
q+R-+1−q+
q-R-+1−q-

)ℓ
/
(

q+R++1−q+
q-R++1−q-

)ℓ ≤ λ̂,

In either case, using the lower bound R+ − R- > Cr from (4), we have that ℓ = O( 1
r log λ̂)

where the implicit constant depends only on β, γ, λ, ∆. In particular, we have that t ≥
5 + max{ℓ+, ℓ-}. In the argument below, we assume w.l.o.g. that Λ̂ ≥ 1; otherwise, just apply
the same argument by swapping the roles of the gadgets T+, T- in the construction below.

For i ∈ {1, 2}, consider now the graphs Ĥi = Hℓ+,ℓ-
G,T+,T-,Ti

and let µi = µ
Ĥi;β,γ,λ

. For
convenience, let also F denote the graph Hℓ+,ℓ-

G,T+,T-
, and note that F is a subgraph of both

Ĥ1, Ĥ2. From Lemma 20, we have that for i ∈ {1, 2}, for ϵ′ = 10|V (H)|ϵ, it holds that

Oβ,γ,λ(Ĥi) = Ai|V (H)| + Eσ∼µi

[
oF (σ)

]
+ (1 ± ϵ′)Oi

[
(q+ − q-)Mα,λ̂i

(H) + q-|V (H)|
]
, (6)

where Ai = Eσ∼µTi
[oTi

(σ) | σρi
= 0] and λ̂i :=

(
q+Ri+1−q+
q-Ri+1−q-

)(
q+R++1−q+
q-R++1−q-

)ℓ+
/
(

q+R-+1−q+
q-R-+1−q-

)ℓ- .
From (2), we have that λ̂i = (1 ± ϵ3)λ̂, and therefore from Lemma 21, we have that∣∣Eσ∼µ1 [oF (σ)] − Eσ∼µ2 [oF (σ)]

∣∣ ≤ |E(Hℓ
G,E,P)|ϵ3 ≤ ϵ2,

|Mα,λ̂1
(H) − Mα,λ̂2

(H)| ≤ 2K
(
|V (H)|2 + |E(H)|2

)
ϵ3 ≤ ϵ2.

We now invoke the oracle for Mβ,γ,λ(Ĥi) to compute M̂i such that M̂i = (1±ϵ2)Mβ,γ,λ(Ĥi).
By exploiting the tree structure of the field gadgets T1, T2 (cf. Definition 16), and since they
both have size poly(bits(r)), we can compute the values A1, A2 exactly in time poly(|V (H)|, 1

η )
by fairly routine dynamic programming techniques. Combining these with (6), it follows that

M̂ = 1
q+ − q-

( (M̂1 − M̂2) − |V (H)|(A1 − A2)
O1 − O2

− q-|E(H)|
)

is within a factor of (1 ± η) of the susceptibility Mα,λ̂(H), as needed. This finishes the
reduction and therefore the proof of Lemma 6. ◀
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