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Abstract
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random
regular graphs. While the cases of the grid and the complete graph are by now well-understood,
the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the
properties of the Potts distribution has remained elusive. It is conjectured that the performance
of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters)
in the sample space where Markov chains with local update rules, such as the Glauber dynamics,
are bound to take exponential time to escape, and therefore cause slow mixing. The phases that
are believed to drive these metastability phenomena in the case of the Potts model emerge as local,
rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing
these phases based on optimisation arguments fall short of the task.

Our first contribution is to detail the emergence of the metastable phases for the q-state Potts
model on the d-regular random graph for all integers q, d ≥ 3, and establish that for an interval of
temperatures, delineated by the uniqueness and a broadcasting threshold on the d-regular tree, the
two phases coexist. The proofs are based on a conceptual connection between spatial properties
and the structure of the Potts distribution on the random regular graph, rather than complicated
moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins
who had established phase coexistence for a small interval around the so-called ordered-disordered
threshold (via different arguments) that applied for large q and d ≥ 5.

Based on our new structural understanding of the model, we obtain various algorithmic con-
sequences. We first complement recent fast mixing results for Glauber dynamics by Blanca and
Gheissari below the uniqueness threshold, showing an exponential lower bound on the mixing time
above the uniqueness threshold. Then, we obtain tight results even for the non-local and more
elaborate Swendsen-Wang chain, where we establish slow mixing/metastability for the whole interval
of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key
is to bound the conductance of the chains using a random graph “planting” argument combined
with delicate bounds on random-graph percolation.
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1 Introduction

1.1 Motivation
Spin systems on random graphs have turned out to be a source of extremely challenging
problems at the junction of mathematical physics and combinatorics [36, 37]. Beyond
the initial motivation of modelling disordered systems, applications have sprung up in
areas as diverse as computational complexity, coding theory, machine learning and even
screening for infectious diseases; e.g. [1, 14, 22, 34, 38, 40, 41]. Progress has been inspired
largely by techniques from statistical physics, which to a significant extent still await a
rigorous justification. The physicists’ sophisticated but largely heuristic tool is the Belief
Propagation message passing scheme in combination with a functional called the Bethe free
energy [35]. Roughly speaking, the fixed points of Belief Propagation are conjectured to
correspond to the “pure states” of the underlying distribution, with the Bethe functional
gauging the relative weight of the different pure states. Yet at closer inspection matters are
actually rather complicated. For instance, the system typically possesses spurious Belief
Propagation fixed points without any actual combinatorial meaning, while other fixed points
need not correspond to metastable states that attract dynamics such as the Glauber Markov
chain [11, 15]. Generally, the mathematical understanding of the connection between Belief
Propagation and dynamics leaves much to be desired.

In this paper we investigate the ferromagnetic Potts model on the random regular graph.
Recall, for an integer q ≥ 3 and real β > 0, the Potts model on a graph G = (V, E)
corresponds to a probability distribution µG,β over all possible configurations [q]V , commonly
referred to as the Boltzmann/Gibbs distribution; the weight of a configuration σ in the
distribution is defined as µG,β(σ) = eβHG(σ)/Zβ(G) where HG(σ) is the number of edges
that are monochromatic under σ, and Zβ(G) =

∑
τ∈[q]V eβHG(τ) is the normalising factor of

the distribution. In physics jargon, β corresponds to the so-called inverse-temperature of the
model, HG( · ) is known as the Hamiltonian, and Zβ( · ) is the partition function. Note, since
β > 0, the Boltzmann distribution assigns greater weight to configurations σ where many
edges join vertices of the same colour; thus, the pairwise interactions between vertices are
ferromagnetic.

The Potts model on the d-regular random graph has two distinctive features. First,
the local geometry of the random regular graph is essentially deterministic. For any fixed
radius ℓ, the depth-ℓ neighbourhood of all but a tiny number of vertices is just a d-regular
tree. Second, the ferromagnetic nature of the model precludes replica symmetry breaking,
a complex type of long-range correlations [35]. Given these, it is conjectured that the
model on the random regular graph has a similar behaviour to that on the clique (the
so-called mean field case), and there has already been some preliminary evidence of this
correspondence [4, 20, 19, 22, 29]. On the clique, the phase transitions are driven by a
battle between two subsets of configurations (phases): (i) the paramagnetic/disordered phase,
consisting of configurations where every colour appears roughly equal number of times, and
(ii) the ferromagnetic/ordered phase, where one of the colours appears more frequently than
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the others. It is widely believed that these two phases also mark (qualitatively) the same
type of phase transitions for the Potts model on the random regular graph, yet this has
remained largely elusive.

The main reason that this behaviour is harder to establish on the random regular graph
is that it has a non-trivial global geometry which makes both the analysis of the distribution
and Markov chains significantly more involved (to say the least). In particular, the emergence
of the metastable states in the distribution, which can be established by way of calculus in
the mean-field case, is out of reach with single-handed analytical approaches in the random
regular graph and it is therefore not surprising that it has resisted a detailed analysis so far.
Likewise, the analysis of Markov chains is a far more complicated task since their evolution
needs to be considered in terms of the graph geometry and therefore much harder to keep
track of.

Our main contribution is to detail the emergence of the metastable states, viewed as fixed
points of Belief Propagation on this model, and their connection with the dynamic evolution
of the two most popular Markov chains, the Glauber dynamics and the Swensen-Wang
chain. We prove that these natural fixed points, whose emergence is directly connected
with the phase transitions of the model, have the combinatorial meaning in terms of both
the pure state decomposition of the distribution and the Glauber dynamics that physics
intuition predicts they should. The proofs avoid the complicated moment calculations and
the associated complex optimistion arguments that have become a hallmark of the study of
spin systems on random graphs [2]. Instead, building upon and extending ideas from [3, 16],
we exploit a connection between spatial mixing properties on the d-regular tree and the
Boltzmann distribution. Our metastability results for the Potts model significantly refine
those appearing in the literature, especially those in [22, 29] which are more relevant to this
work, see Section 1.6 for a more detailed discussion.

We expect that this approach might carry over to other examples, particularly other
ferromagnetic models. Let us begin by recapitulating Belief Propagation.

1.2 Belief Propagation

Suppose that n, d ≥ 3 are integers such that dn is even and let G = G(n, d) be the random
d-regular graph on the vertex set [n] = {1, . . . , n}. For an inverse temperature parameter
β > 0 and an integer q ≥ 3 we set out to investigate the Boltzmann distribution µG,β ; let us
write σG,β for a configuration drawn from µG,β .

A vital step toward understanding the Boltzmann distribution is to get a good handle
on the partition function Zβ(G). Indeed, according to the physicsts’ cavity method, Belief
Propagation actually solves both problems in one fell swoop [35]. To elaborate, with each
edge e = uv of G, Belief Propagation associates two messages µG,β,u→v, µG,β,v→u, which are
probability distributions on the set [q] of colours. The message µG,β,u→v(c) is defined as the
marginal probability of v receiving colour c in a configuration drawn from the Potts model
on the graph G − u obtained by removing u. The semantics of µG,β,v→u is analogous.

Under the assumption that the colours of far apart vertices of G are asymptotically
independent, one can heuristically derive a set of equations that links the various messages
together. For a vertex v, let ∂v be the set of neighbours of v, and for an integer ℓ ≥ 1 let ∂ℓv

be the set of vertices at distance precisely ℓ from v. The Belief Propagation equations read

µG,β,v→u(c) =
∏

w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(c)∑
χ∈[q]

∏
w∈∂v\{u} 1 + (eβ − 1)µG,β,w→v(χ) (uv ∈ E(G), c ∈ [q]). (1)
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The insight behind (1) is that once we remove v from the graph, its neighbours w ̸= u

are typically far apart from one another because G contains only a negligible number of
short cycles. Hence, we expect that in G − v the spins assigned to w ∈ ∂v \ {u} are
asymptotically independent. From this assumption it is straightforward to derive the sum-
product-formula (1).

A few obvious issues spring to mind. First, for large β it is not actually true that far apart
vertices decorrelate. This is because at low temperature there occur q different ferromagnetic
pure states, one for each choice of the dominant colour. To break the symmetry between
them one could introduce a weak external field that slighly boosts a specific colour or, more
bluntly, confine oneself to a conditional distribution on subspace where a specific colour
dominates. In the definition of the messages and in (1) we should thus replace the Boltzmann
distribution by the conditional distribution µG,β( · | S) for a suitable S ⊆ [q]n. Second, even
for the conditional measure we do not actually expect (1) to hold precisely. This is because
for any finite n minute correlations between far apart vertices are bound to remain.

Nonetheless, precise solutions (µv→u)uv∈E(G) to (1) are still meaningful. They correspond
to stationary points of a functional called the Bethe free energy, which connects Belief
Propagation with the problem of approximating the partition function [44]. Given a collection
(µu→v)uv∈E(G) of probability distributions on [q], the Bethe functional reads

BG,β

(
(µu→v)uv∈E(G)

)
= 1

n

∑
v∈V (G)

log
[ ∑

c∈[q]

∏
w∈∂v

1 + (eβ − 1)µw→v(c)
]

− 1
n

∑
vw∈E(G)

log
[
1 + (eβ − 1)

∑
c∈[q]

µv→w(c)µw→v(c)
]
.

(2)

According to the cavity method the maximum of BG,β

(
(µu→v)uv∈E(G)

)
over all solutions

(µu→v)uv∈E(G) to (1) should be asymptotically equal to log Zβ(G) with high probability.

In summary, physics lore holds that the solutions (µu→v)uv∈E(G) to (1) are meaningful
because they correspond to a decomposition of the phase space [q]n into pieces where
long-range correlations are absent. Indeed, these “pure states” are expected to exhibit
metastability, i.e., they trap dynamics such as the Glauber Markov chain for an exponential
amount of time. Moreover, the relative probabilities of the pure states are expected to be
governed by their respective Bethe free energy. In the following we undertake to investigate
these claims rigorously.

Before proceeding, let us mention that ferromagnetic spin systems on random graphs
have been among the first models for which predictions based on the cavity method could be
verified rigorously. Following seminal work by Dembo and Montanari on the Ising model [18]
vindicating the “replica symmetric ansatz”, Dembo, Montanari and Sun [20] studied, among
other things, the Gibbs unique phase of the Potts ferromagnet on the random regular graph,
and Dembo, Montanari, Sly and Sun [20] established the free energy of the model for all β

(and d even). More generally, Ruozzi [39] pointed out how graph covers [43] can be used to
investigate the partition function of supermodular models, of which the Ising ferromagnet
is an example. In addition, Barbier, Chan and Macris [4] proved that ferromagnetic spin
systems on random graphs are generally replica symmetric in the sense that the multi-overlaps
of samples from the Boltzmann distribution concentrate on deterministic values.
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1.3 The ferromagnetic and the paramagnetic states

An obvious attempt at constructing solutions to the Belief Propagation equations is to choose
identical messages µu→v for all edges uv ∈ E(G). Clearly, any solution (µ(c))c∈[q] to the
system

µ(c) = (1 + (eβ − 1)µ(c))d−1∑
χ∈[q](1 + (eβ − 1)µ(χ))d−1 (c ∈ [q]) (3)

supplies such a “constant” solution to (1). Let Fd,β be the set of all solutions (µ(c))c∈[q] to
(3). The Bethe functional (2) then simplifies to

Bd,β

(
(µ(c))c∈[q]

)
= log

[ ∑
c∈[q]

(
1 + (eβ − 1)µ(c)

)d
]

− d

2 log
[
1 + (eβ − 1)

∑
c∈[q]

µ(c)2
]
. (4)

One obvious solution to (3) is the uniform distribution on [q]; we refer to that solution
as paramagnetic/disordered and denote it by µp. Apart from µp, other solutions to (3)
emerge as β increases for any d ≥ 3. Specifically, let βu > 0 be the supremum value of
β > 0 where µp is the unique solution to (3).1 Then, for β = βu, one more solution µf
emerges such that µf(1) > µf(i) = 1−µf(1)

q−1 for i = 2, . . . , q, portending the emergence of a
metastable state and, ultimately, a phase transition. In particular, for any β > βu, a bit of
calculus reveals there exist either one or two distinct solutions µ with µ(1) > µ(i) = 1−µ(1)

q−1
for i = 2, . . . , q; we denote by µf the solution of (3) which maximises the value µ(1) and refer
to it as ferromagnetic/ordered. The value βu is the so-called uniqueness threshold for the
Potts model on the d-regular tree, see, e.g., [22] for a more detailed discussion and related
pointers.

At the critical value

βp = max {β ≥ βu : Bd,β(µp) ≥ Bd,β(µf)} = log q − 2
(q − 1)1−2/d − 1

.

the ferromagnetic solution µf takes over from the paramagnetic solution µp as the global
maximiser of the Bethe functional. For that reason, the threshold βp is also known in the
literature as the ordered-disordered threshold. Yet, up to the threshold

βh = log(1 + q/(d − 2))

the paramagnetic solution remains a local maximiser of the Bethe free energy; later, in
Section 2.2 we will see that βh has a natural interpretation as a tree-broadcasting threshold
(and is also a conjectured threshold for uniqueness in the random-cluster representation for
the Potts model, see [28] for details).

The relevance of these critical values has been demonstrated in [22] (see also [19] for d

even, and [29] for q large), where it was shown that 1
n log Zβ(G) is asymptotically equal to

maxµ Bd,β(µ), the maximum ranging over µ satisfying (3). In particular, at the maximum it
holds that µ = µp when β < βp, µ = µf when β > βp and µ ∈ {µp, µf} when β = βp.

1 The value does not have a closed-form expression, but there is an equivalent formulation of it given by
the equality eβu = 1 + infy>1

(y−1)(yd−1+q−1)
yd−1−y

.
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1.4 Slow mixing and metastability
To investigate the two BP solutions further and obtain connections to the dynamical evolution
of the model, we need to look more closely how these two solutions µp, µf manifest themselves
in the random regular graph. To this end, we define for a given distribution µ on [q] another
distribution

νµ(c) = (1 + (eβ − 1)µ(c))d∑
χ∈[q](1 + (eβ − 1)µ(χ))d

(c ∈ [q]). (5)

Let νf = νµf and νp = νµp for brevity; of course νp = µp is just the uniform distribution.
The distributions νf and νp represent the expected Boltzmann marginals within the pure
states corresponding to µf and µp. Indeed, the r.h.s. of (5) resembles that of (3) except that
the exponents read d rather than d − 1. This means that we pass from messages, where
we omit one specific endpoint of an edge from the graph, to actual marginals, where all d

neighbours of a vertex are present. For small ε > 0, it will therefore be relevant to consider
the sets of configurations

Sf(ε) =
{

σ ∈ [q]n :
∑
c∈[q]

∣∣∣∣∣σ−1(c)
∣∣ − nνf(c)

∣∣∣ < εn

}
,

Sp(ε) =
{

σ ∈ [q]n :
∑
c∈[q]

∣∣∣∣∣σ−1(c)
∣∣ − nνp(c)

∣∣∣ < εn

}
,

whose colour statistics are about nνf and nνp, respectively; i.e., in Sp, all colours appear
with roughly equal frequency, whereas in Sf colour 1 is favoured over the other q − 1 colours
(which appear with roughly equal frequency).

We are now in position to state our main result for Glauber dynamics. Recall that, for a
graph G = (V, E), Glauber is initialised at a configuration σ0 ∈ [q]V ; at each time step t ≥ 1,
Glauber draws a vertex uniformly at random and obtains a new configuration σt by updating
the colour of the chosen vertex according to the conditional Boltzmann distribution given
the colours of its neighbours. It is a well-known fact that Glauber converges in distribution
to µG,β ; the mixing time of the chain is defined as the maximum number of steps t needed to
get within total variation distance ≤ 1/4 from µG,β , where the maximum is over the choice
of the initial configuration σ0, i.e., the quantity maxσ0 min{t : dTV(σt, µG,β) ≤ 1/4}.

For metastability, we will consider Glauber launched from a random configuration from a
subset S ⊆ [q]V of the state space. More precisely, let us denote by µG,β,S = µG,β(· | S) the
conditional Boltzmann distribution on S. We call S a metastable state for Glauber dynamics
on G if there exists δ > 0 such that

P
[
min{t : σt ̸∈ S} ≤ eδ|V | | σ0 ∼ µG,β,S

]
≤ e−δ|V |.

Hence, it will most likely take Glauber an exponential amount of time to escape from a
metastable state.

▶ Theorem 1.1. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for Glauber dynamics on G.
(ii) If β > βu, then Sf(ε) is a metastable state for Glauber dynamics on G.

Further, for β > βu, the mixing time of Glauber is eΩ(n).

Thus, we can summarise the evolution of the Potts model as follows. For β < βu there
is no ferromagnetic state. As β passes βu, the ferromagnetic state Sf emerges first as a
metastable state. Hence, if we launch Glauber from Sf , the dynamics will most likely remain
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trapped in the ferromagnetic state for an exponential amount of time, even though the
Boltzmann weight of the paramagnetic state is exponentially larger (as we shall see in the
next section). At the point βp the ferromagnetic state then takes over as the one dominating
the Boltzmann distribution, but the paramagnetic state remains as a metastable state up
to βh. Note in particular that the two states coexist as metastable states throughout the
interval (βu, βh).

The metastability for the Potts model manifests also in the evolution of the Swendsen-
Wang (SW) chain, which is another popular and substantially more elaborate chain that
makes non-local moves, based on the random-cluster representation of the model. For a
graph G = (V, E) and a configuration σ ∈ [q]V , a single iteration of SW starting from σ

consists of two steps.
Percolation step: Let M = M(σ) be the random edge-set obtained by adding (inde-
pentently) each monochromatic edge under σ with probability p = 1 − e−β .
Recolouring step: Obtain the new σ′ ∈ [q]V by assigning each component2 of the graph
(V, M) a uniformly random colour from [q]; for v ∈ V , we set σ′

v to be the colour assigned
to v’s component.

We define metastable states for SW dynamics analogously to above. The following theorem
establishes the analogue of Theorem 1.1 for the non-local SW dynamics. Note here that SW
might change the most-frequent colour due to recolouring step, so the metastability statement
for the ferromagnetic phase needs to consider the set Sf(ε) with its q − 1 permutations.

▶ Theorem 1.2. Let d, q ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
ε > 0, the following hold w.h.p. over the choice of G = G(n, d).

(i) If β < βh, then Sp(ε) is a metastable state for SW dynamics on G.
(ii) If β > βu, then Sf(ε) together with its q − 1 permutations is a metastable state for SW

dynamics on G.
Further, for β ∈ (βu, βh), the mixing time of SW is eΩ(n).

1.5 The relative weight of the metastable states

At the heart of obtaining the metastability results of the previous section is a refined
understanding of the relative weight of the ferromagnetic and paramagnetic states. The
following notion of non-reconstruction will be the key in our arguments; it captures the
absence of long-range correlations within a set S ⊆ [q]n, saying that, for any vertex v, a
typical boundary configuration on σ∂ℓv chosen according to the conditional distribution on
S does not impose a discernible bias on the colour of v (for large ℓ, n; recall, ∂ℓv is the set
of all vertices at distance precisely ℓ from v). More precisely, let µ = µG,β and σ ∼ µ; the
Boltzmann distribution exhibits non-reconstruction given a subset S ⊆ [q]n if for any vertex
v it holds that

lim
ℓ→∞

lim sup
n→∞

∑
c∈[q]

∑
τ∈S

E [µ(τ | S) × |µ(σv = c | σ∂ℓv = τ∂ℓv) − µ(σv = c | S)|] = 0,

where the expectation is over the choice of the graph G.

2 Note, isolated vertices count as connected components.
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▶ Theorem 1.3. Let d, q ≥ 3 be integers and β > 0 be real. The following hold for all
sufficiently small ε > 0 as n → ∞.

(i) For all β < βp, E [µG,β(Sp)] → 1 and, if β > βu, then E
[ 1

n log µG,β(Sf)
]

→ Bd,β(µf) −
Bd,β(µp).

(ii) For all β > βp, E [µG,β(Sf)] → 1/q and, if β < βh, then E
[ 1

n log µG,β(Sp)
]

→
Bd,β(µp) − Bd,β(µf).

Furthermore, the Boltzmann distribution given Sp exhibits non-reconstruction if β < βh and
the Boltzmann distribution given Sf exhibits non-reconstruction if β > βu.

Theorem 1.3 shows that for β < βp the Boltzmann distribution is dominated by the
paramagnetic state Sp for β < βp. Nonetheless, at βu the ferromagnetic state Sf and
its q − 1 mirror images start to emerge. Their probability mass is determined by the Bethe
free energy evaluated at µf . Further, as β passes βp the ferromagnetic state takes over as the
dominant state, with the paramagnetic state lingering on as a sub-dominant state up to βh.
Finally, both states Sp and Sf are free from long-range correlations both for the regime of β

where they dominate and for those β where they are sub-dominant.

1.6 Discussion
Our slow mixing result for Glauber dynamics when β > βu (Theorem 1.1) significantly
improves upon previous results of Bordewich, Greenhill and Patel [9] that applied to β >

βu +Θq(1). Similarly, our slow mixing result for Swendsen-Wang dynamics when β ∈ (βu, βh)
(Theorem 1.2) strengthens earlier results of Galanis, Štefankovič, Vigoda, Yang [22] which
applied to β = βp, and by Helmuth, Jenseen and Perkins [29] which applied for a small
interval around βp; both results applied only for q sufficiently large. To obtain our result for
all integers q, d ≥ 3, we need to carefully track how SW evolves on the random regular graph
for configurations starting from the ferromagnetic and paramagnetic phases, by accounting for
the percolation step via delicate arguments, whereas the approaches of [22, 29] side-stepped
this analysis by considering the change in the number of monochromatic edges instead.

Our slow mixing results complement the recent fast mixing result of Blanca and Gheissari
[6] for edge dynamics on the random d-regular graph that applies to all β < βu. Roughly,
edge dynamics is the analogue of Glauber dynamics for the random cluster representation of
the Potts model (the random-cluster representation has nicer monotonicity properties). The
result of [6] already implies a polynomial bound on the mixing time of SW when β < βu

(due to comparison results by Ullrich that apply to general graphs [42]), and conversely our
exponential lower bound on the mixing time of SW for β /∈ (βu, βh) implies an exponential
lower bound on the mixing time of edge dynamics for β /∈ (βu, βh). The main open questions
remaining are therefore showing whether Glauber dynamics for the Potts model mixes fast
when β ≤ βu and whether SW/edge-dynamics mixes fast when β > βh. Extrapolating
from the mean-field case (see discussion below), it is natural to conjecture that our slow
mixing results are best-possible, i.e., for β ≤ βu, Glauber mixes rapidly and similarly, for
β /∈ (βu, βh), SW mixes rapidly on the random regular graph.

Theorem 1.3, aside from being critical in establishing the aforementioned slow mixing
and metastability results, is the first to establish for all q, d ≥ 3 the coexistence of the
ferromagnetic and paramagnetic phases for all β in the interval (βu, βh) and detail the
logarithmic order of their relative weight in the same interval. Previous work in [22] showed
coexistence for β = βp (for all q, d ≥ 3) and [29] for β in a sub-interval of (βu, βh) around
βp (for large q and d ≥ 5), see also footnote 3. We remark here that the approaches in
[22, 29] establish more refined estimates on the deviations from the limiting value of the
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log-partition function of the phases (in the corresponding regimes they apply), with [29]
characterising in addition the limiting distribution using cluster-expansion methods. One
can obtain analogous distributional characterisations for all q, d ≥ 3 from our methods, once
combined with the small subgraph conditioning method of [22]. It should be noted though
the approach of [29] which goes through cluster expansion is more direct in that respect.
We don’t pursue such distributional results here since Theorem 1.3 is sufficient for our slow
mixing results.

Together with Theorems 1.1 and 1.2, Theorem 1.3 delineates more firmly3 the corres-
pondence with the (simpler) mean-field case, the Potts model on the clique. In the mean-field
case, there are qualitatively similar thresholds βu, βp, βh and the mixing time for Glauber and
SW have been detailed for all β, even at criticality, see [7, 8, 25, 23, 17, 27, 31]. As mentioned
earlier, the most tantalising question remaining open is to establish whether the fast mixing
of SW for β = βu and β ≥ βh in the mean-field case translates to the random regular graph
as well. Another interesting direction is to extend our arguments to the random-cluster
representation of the Potts model for all non-integer q ≥ 1; note that the arguments of [5]
and [29] do apply to non-integer q (q ≥ 1 and q large, respectively). The proof of Theorem 1.3
relies on a truncated second moment computation, an argument that was applied to different
models in [16, 13].

We further remark here that, from a worst-case perspective, it is known that sampling
from the Potts model on d-regular graphs is #BIS-hard for β > βp [22], and we conjecture
that the problem admits a poly-time approximation algorithm when β < βp. However, even
showing that Glauber mixes fast on any d-regular graph in the uniqueness regime β < βu

is a major open problem, and Theorems 1.1 and 1.2 further demonstrate that getting an
algorithm all the way to βp will require using different techniques. On that front, progress
has been made on the random regular graph: [29] obtained an algorithm for d ≥ 5 and q large
that applies to all β by sampling from each phase separately (using different tools), see also
[10]. Moreover, for β < βp, Efthymiou [21] gives an algorithm with weaker approximation
guarantees but which applies to all q, d ≥ 3 (see also [5]). In principle, and extrapolating
again from the mean-field case, one could use Glauber/SW to sample from each phase on
the random regular graph for all q, d ≥ 3 and all β. Analysing such chains appears to be
relatively far from the reach of current techniques even in the case of the random regular
graph, let alone worst-case graphs. In the case of the Ising model however, the case q = 2,
the analogue of this fast mixing question has recently been established for sufficiently large β

in [26] on the random regular graph and the grid, exploiting certain monotonicity properties.

Finally, let us note that the case of the grid has qualitatively different behaviour than
the mean-field and the random-regular case. There, the three critical points coincide and the
behaviour at criticality depends on the value of q; the mixing time of Glauber and SW has
largely been detailed, see [7, 33, 24].

3 Note that the interval-behaviour on the random regular graph (and hence the correspondence with
the mean-field case) is already implied to some extent by the interval-result of [29] (for q large and
d ≥ 5). Note however that the interval therein is contained strictly inside (βu, βh) and, in particular,
its endpoints do not have the probabilistic interpretation of βu, βh. Nevertheless, [29] obtains various
probabilistic properties of the metastable phases, including a stronger form of correlation decay than
that of reconstruction that we consider here.
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2 Overview

In this section we give an overview of the proofs of Theorems 1.1–1.3; for now, we will mostly
work towards the proof of Theorem 1.3 which gives the main insights/tools that are needed
to prove Theorems 1.1 and 1.2.

Fortunately, to prove Theorem 1.3, we do not need to start from first principles. Instead,
we build upon the formula for the partition function Zβ(G) and its proof via the second
moment method from [22]. Additionally, we are going to seize upon facts about the non-
reconstruction properties of the Potts model on the random d-regular tree, also from [22]. We
will combine these tools with an auxiliary random graph model known as the planted model,
which also plays a key role in the context of inference problems on random graphs [15].

Throughout most of the paper, instead of the simple random regular graph G, we will
work with the random d-regular multi-graph G = G(n, d) drawn from the pairing model.
Recall that G is obtained by creating d clones of each of the vertices from [n], choosing a
random perfect matching of the complete graph on [n] × [d] and subsequently contracting the
vertices {i} × [d] into a single vertex i, for all i ∈ [n]. It is well-known that G is contiguous
with respect to G [30], i.e., any property that holds w.h.p. for G also holds w.h.p. for G.

The following notation will be handy. For a graph G and a configuration σ ∈ [q]V (G),
define a probability distribution νσ on [q] by letting

νσ(s) = |σ−1(s)|/n (s ∈ [q]).

In words, νσ is the empirical distribution of the colours under σ. Similarly, let ρG,σ ∈
P([q] × [q]) be the edge statistics of a given graph/colouring pair, i.e.,

ρG,σ(s, t) = 1
2|E(G)|

∑
u,v∈V (G)

1{uv ∈ E(G), σu = s, σv = t}.

2.1 Moments and messages

The routine method for investigating the partition function and the Boltzmann distribution
of random graphs is the method of moments [2]. The basic strategy is to calculate, one way
or another, the first two moments E[Zβ(G)], E[Zβ(G)2] of the partition function. Then we
cross our fingers that the second moment is not much larger than the square of the first.
It sometimes works. But potential pitfalls include a pronounced tendency of running into
extremely challenging optimisation problems in the course of the second moment calculation
and, worse, lottery effects that may foil the strategy altogether. While regular graphs
in general and the Potts ferromagnet in particular are relatively tame specimens, these
difficulties actually do arise once we set out to investigate metastable states. Drawing
upon [3, 16] to sidestep these challenges, we develop a less computation-heavy proof strategy.

The starting point is the observation that the fixed points of (3) are intimately related
to the moment calculation. This will not come as a surprise to experts, and indeed it was
already noticed in [22]. To elaborate, let ν = (ν(σ))σ∈[q] be a probability distribution on
the q colours. Moreover, let R(ν) be the set of all symmetric matrices (ρ(σ, τ))σ,τ∈[q] with
non-negative entries such that∑

τ∈[q]

ρ(σ, τ) = ν(σ) for all σ ∈ [q]. (6)
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Relatively standard arguments (e.g., [12, Lemma 2.7]) show that the first moment satisfies

lim
n→∞

1
n

logE[Zβ(G)] = max
ν∈P([q]),ρ∈R(ν)

Fd,β(ν, ρ), where

Fd,β(ν, ρ) = (d − 1)
∑

σ∈[q]

ν(σ) log ν(σ) − d
∑

1≤σ≤τ≤q

ρ(σ, τ) log ρ(σ, τ) + dβ

2
∑

σ∈[q]

ρ(σ, σ).
(7)

Thus, the first moment is governed by the maximum or maxima, as the case may be, of
Fd,β . The function Fd,β accounts for the contribution to E[Zβ(G)] coming from the set
Q which consists of pairs (G, σ) with νσ = ν + o(1) and ρG,σ = ρ + o(1), i.e., the sum∑

(G,σ)∈Q P[G = G]eβHG(σ) equals enFd,β(ν,ρ)+o(n).
We need to know that the maxima of Fd,b are in one-to-one correspondence with the

stable fixed points of (3). To be precise, a fixed point µ of (3) is stable if the Jacobian of (3)
at µ has spectral radius strictly less than one. Let F+

d,β be the set of all stable fixed points
µ ∈ Fd,β . Moreover, let F1

d,β be the set of all µ ∈ F+
d,β such that µ(1) = maxσ∈[q] µ(σ). In

addition, let us call a local maximum (ν, ρ) of Fd,β stable if there exist δ, c > 0 such that

Fd,β(ν′, ρ′) ≤ Fd,β(ν, ρ) − c
(
∥ν − ν′∥2 + ∥ρ − ρ′∥2)

(8)

for all ν′ ∈ P([q]) and ρ′ ∈ R(ν′) such that ∥ν − ν′∥ + ∥ρ − ρ′∥ < δ. Roughly, (8) provides
that the Hessian of Fd,β is negative definite on the subspace of all possible ν, ρ.

▶ Lemma 2.2 ([22, Theorem 8]). Suppose that d, q ≥ 3 are integers and β > 0 is a real. The
map µ ∈ P([q]) 7→ (νµ, ρµ) defined by

νµ(σ) = (1 + (eβ − 1)µ(σ))d∑
τ∈[q](1 + (eβ − 1)µ(τ))d

, ρµ(σ, τ) = eβ1{σ=τ}µ(σ)µ(τ)
1 + (eβ − 1)

∑
s∈[q] µ(s)2 (9)

is a bijection from F+
d,β to the set of stable local maxima of Fd,β. Moreover, for any fixed

point µ we have Bd,β(µ) = Fd,β(νµ, ρµ).

For brevity, let (νp, ρp) = (νµp , ρµp) and (νf , ρf) = (νµf , ρµf ). The following result character-
ises the stable fixed points F1

d,β .

▶ Proposition 2.3 ([22, Theorem 4]). Suppose that d ≥ 3, β > 0.
(i) If β < βu, then (3) has a unique fixed point, namely the paramagnetic distribution νp

on [q]. This fixed point is stable and thus Fd,β attains its global maximum at (νp, ρp).
(ii) If βu < β < βh, then F1

d,β contains two elements, namely the paramagnetic distribution
νp and the ferromagnetic distribution νf ; (νp, ρp) is a global maximum of Fd,β iff β ≤ βp,
and (νf , ρf) iff β ≥ βp.

(iii) If β > βh, then F1
d,β contains precisely one element, namely the ferromagnetic distribu-

tion νf , and (νf , ρf) is a global maximum of Fd,β.

Like the first moment, the second moment boils down to an optimisation problem as well,
albeit one of much higher dimension (q2 − 1 rather than q − 1). Indeed, it is not difficult to
derive the following approximation (once again, e.g., via [12, Lemma 2.7]). For a probability
distribution ν ∈ P([q]) and a symmetric matrix ρ ∈ R(ν) let R⊗(ρ) be the set of all tensors
r = (r(σ, σ′, τ, τ ′))σ,σ′,τ,τ ′∈[q] such that r(σ, σ′, τ, τ ′) = r(τ, τ ′, σ, σ′) for τ, τ ′, σ, σ′ ∈ [q] and∑

σ′,τ ′

r(σ, σ′, τ, τ ′) =
∑
σ′,τ ′

r(σ′, σ, τ ′, τ) = ρ(σ, τ) for all σ, τ ∈ [q]. (10)

Then, with H(·) denoting the entropy function, we have
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lim
n→∞

1
n

logE[(Zβ(G))2] = max
ν,ρ∈R(ν),r∈R⊗(ρ)

F ⊗
d,β(ρ, r), where (11)

F ⊗
d,β(ρ, r) = (d − 1)H(ρ) + d

2 H(r) + dβ

2
∑

σ,σ′,τ,τ ′∈[q]

(
1{σ = τ} + 1{σ′ = τ ′}

)
r(σ, σ′, τ, τ ′).

A frontal assault on this optimisation problem is in general a daunting task due to the
doubly-stochastic constraints in (10), i.e., the constraint r ∈ R⊗(ρ). But rather fortunately,
to analyse the global maximum (over ν and ρ), these constraints can be relaxed, permitting
an elegant translation of the problem to operator theory. In effect, the second moment
computation can be reduced to a study of matrix norms. The result is summarised as follows.

▶ Proposition 2.4 ([22, Theorem 7]). For all d, q ≥ 3 and β > 0 we have

max
ν,ρ∈R(ν),r∈R⊗(ρ)

F ⊗
d,β(ρ, r) = 2 max

ν,ρ
Fd,β(ν, ρ)

and thus E[Zβ(G)2] = O(E[Zβ(G)]2).

Combining Lemma 2.2, Proposition 2.3 and Proposition 2.4, we obtain the following reformu-
lation of [22, Theorem 7], which verifies that we obtain good approximations to the partition
function by maximising the Bethe free energy on Fd,β .

▶ Theorem 2.5. For all integers d, q ≥ 3 and real β > 0, we have lim
n→∞

n−1 log Zβ(G) =
max

µ∈Fd,β

Bd,β(µ) in probability.

While the global maximisation of the function F ⊗
d,β and thus the proof of Theorem 2.5 boils

down to matrix norm analysis, in order to prove Theorems 1.3 and 1.1 via the method
of moments we would in addition need to get a good handle on all the local maxima.
Unfortunately, we do not see a way to reduce this more refined question to operator norms
(and it seems unlikely that one exists). Hence, it would seem that we should have to perform
a fine-grained analysis of F ⊗

d,β after all. But luckily another path is open to us. Instead of
proceeding analytically, we resort to probabilistic ideas. and we harness “quiet-planting”
arguments with the notion of non-reconstruction on the Potts model on the d-regular tree.
We review the latter in the next section.

2.2 Non-reconstruction on the regular tree
Let Td be the infinite d-regular tree with root o. For a probability distribution µ ∈ {µp, µf}
we define a broadcasting process σ = σd,β,µ on Td as follows. Initially we draw the color σo

of the root o from the distribution νµ. Subsequently, working our way down the levels of the
tree, the color of a vertex v whose parent u has been coloured already is drawn from the
distribution

P [σv = σ | σu] = µ(σ)eβ1{σ=σu}∑
τ∈[q] µ(τ)eβ1{τ=σu} .

Naturally, the colours of different vertices on the same level are pairwise independent, but
not jointly since there is potentially some correlation with the root. Let ∂ℓo be the set of all
vertices at distance precisely ℓ from o. We say that the broadcasting process has the strong
non-reconstruction property if

∑
τ∈[q] E

[∣∣P [σo = τ | σ∂ℓo] −P [σo = τ ]
∣∣] = e−Ω(ℓ), where the

expectation is over the random configuration σ∂ℓo (distributed according to the broadcasting
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process). In words, this says that the information about the spin of the root inferred from
the spins of vertices at depth ℓ decays in the broadcasting process; the term “strong” refers
that the decay is exponential with respect to the depth ℓ.

▶ Proposition 2.6 ([22, Theorem 50]). Let d, q ≥ 3 be integers and β > 0 be real.
(i) For β < βh, the broadcasting process σd,β,µp has the strong non-reconstruction property.
(ii) For β > βu, the broadcasting process σd,β,µf has the strong non-reconstruction property.

In order to prove Theorems 1.1–1.3 we will combine Proposition 2.6 with reweighted
random graph models known as planted models. To be precise, we will consider two versions
of planted models, a paramagnetic and a ferromagnetic one. Then we will deduce from
Proposition 2.6 that the Boltzmann distribution of these planted models has the non-
reconstruction property in a suitably defined sense. In combination with some general facts
about Boltzmann distributions this will enable us to prove Theorems 1.1–1.3 without the
need for complicated moment computations.

2.3 Second Moment via planting and non-reconstruction
We proceed to introduce the paramagnetic and the ferromagnetic version of the planted
model. Roughly speaking, these are weighted versions of the common random regular graph
G where the probability mass of a specific graph is proportional to the paramagnetic or
ferromagnetic bit of the partition function. To be precise, for ε > 0, recall the subsets
Sp = Sp(ε), Sf = Sf(ε) of the configuration space [q]n. Letting

Zf(G) =
∑
σ∈Sf

eβHG(σ) and Zp(G) =
∑

σ∈Sp

eβHG(σ), (12)

we define random graph models Ĝf , Ĝp by

P
[
Ĝf = G

]
= Zf(G)P [G = G]

E[Zf(G)] , P
[
Ĝp = G

]
= Zp(G)P [G = G]

E[Zp(G)] . (13)

Thus, Ĝf and Ĝp are d-regular random graphs on n vertices such that the probability that
a specific graph G comes up is proportional to Zf(G) and Zp(G), respectively. Note, the
expected value of Zf(G) and Zp(G) is captured by the function Fd,β , and we have (see
Lemmas 3.2 and 3.3 in the full version)

E[Zp(G)] = nO(1) exp(nFd,β(νp, ρp)) and E[Zf(G)] = nO(1) exp(nFd,β(νf , ρf)). (14)

The key ingredient to prove Theorem 1.3 is to quantify the overlap of two typical
configurations in the conditional Boltzmann distributions (under Sf and Sp). To be precise,
for a graph G = (V, E), the overlap of two configurations σ, σ′ ∈ [q]V is defined as the
probability distribution ν(σ, σ′) ∈ P([q]2) with

νc,c′(σ, σ′) = 1
n

∑
v∈V (G)

1 {σv = c, σ′
v = c′} (c, c′ ∈ [q]).

For a graph G let σG,f denote a sample from the conditional distribution µG,β( · | Sf). and
define σG,p similarly for Sp. The following lemma studies the overlap for two configurations
in the conditional distribution µĜp,β( · | Sp), a similar lemma applies to the ferromagnetic
phase Sf , see Lemma 3.9 in the full version.
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▶ Lemma 3.8. Let d, q ≥ 3 be integers and β < βh be real. Let σĜp,p, σ′
Ĝp,p be independent

samples from µĜp,β( · | Sp). Then E
[
dTV

(
ν(σĜp,p, σ′

Ĝp,p), νp ⊗ νp
)]

= o(1).

To utilise Lemmas 3.8 and 3.9, we proceed to apply the second moment method to truncated
versions of the paramagnetic and ferromagnetic partition functions Zp, Zf where we expressly
drop graphs that violate the overlap bounds from Lemmas 3.8. Thus, we introduce the
events Ep = {G : E

[
dTV(ν(σG,p, σ′

G,p), νp ⊗ νp)] = o(1)} and the analogous event Ef for the
ferromagnetic phase. Consider now the random variables

Yp(G) = Zp(G) · 1 {G ∈ Ep} and Yf(G) = Zf(G) · 1 {G ∈ Ef}

Combining Lemma 3.8 with the Nishimori identity (17), we obtain

E[Yp]
E[Zp] = P

[
Ĝp ∈ Ep

]
∼ 1 and E[Yf ]

E[Zf ]
= P

[
Ĝf ∈ Ef

]
∼ 1

and thus E[Yp] ∼ E[Zp] and E[Yf ] ∼ E[Zf ]. Crucially, estimating the second moments of these
two random variables is a cinch because by construction we can avoid an explicit optimisation
of the function F ⊗

d,β from (11). Indeed, because we drop graphs G whose overlaps stray far
from the product measures νp ⊗νp and νf ⊗νf , respectively, we basically just need to evaluate
the function F ⊗

d,β at νp ⊗ νp and νf ⊗ νf , which is a matter of relatively simple algebra (due
to convexity arguments). We thus obtain the following.

▶ Corollary 3.10. Let d, q ≥ 3 be integers and β > 0 be real.
(i) If β < βh, then E[Yp(G)] ∼ E[Zp(G)] and E[Yp(G)2] ≤ exp(o(n))E[Zp(G)]2.
(ii) If β > βu, then E[Yf(G)] ∼ E[Zf(G)] and E[Yf(G)2] ≤ exp(o(n))E[Zf(G)]2.

At this stage, one can combine Corollary 3.10 together with (14) to derive the first two parts
of Theorem 1.3 (using also the results from Section 2.1).

3 Quiet planting and non-reconstruction

In this section we give an outline of the proof of Lemma 3.8, which was the main ingredient
to carry out the second moment method of Section 2.3.

While the planted models defined in (13) are useful for the second-moment argument,
working with them directly is rather unwieldy. Fortunately, there is a relatively simple way
out using the so-called Nishimori identities; on the way, we will also introduce some of the
ingredients that are used for the metastability/slow-mixing results.

To elaborate, we complement the definition (13) of the planted random graphs Ĝf , Ĝp
by also introducing a reweighted distribution on graphs for a specific configuration σ ∈ [q]n.
Specifically, we define a random graph Ĝ(σ) by letting

P
[
Ĝ(σ) = G

]
= P [G = G] eβHG(σ)

E[eβHG(σ)]
. (15)

Furthermore, recalling the truncated partition functions Zf , Zp from (12), we introduce
reweighted random configurations σ̂f = σ̂f(ε) ∈ [q]n and σ̂p = σ̂p(ε) ∈ [q]n with distributions

P [σ̂f = σ] = 1 {σ ∈ Sf}E[eβHG(σ)]
E[Zf(G)] , P [σ̂p = σ] = 1 {σ ∈ Sp}E[eβHG(σ)]

E[Zp(G)] . (16)

We have the following paramagnetic and ferromagnetic Nishimori identities. Nishimori
identities were derived in [15] for a broad family of planted models which, however, does
not include the planted ferromagnetic models Ĝp, Ĝf . Nonetheless, the (simple) proof of
Proposition 3.1 is practically identical to that in [15] (and is given in the full version).
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▶ Proposition 3.1. We have the distributional equalities

(Ĝp, σĜp,p) d= (Ĝ(σ̂p), σ̂p), (Ĝf , σĜf ,f)
d= (Ĝ(σ̂f), σ̂f). (17)

Proposition 3.1 paves the way for a more hands-on description of the planted models
in (13). Indeed, the random graph models (Ĝ(σ̂p), σ̂p) and (Ĝ(σ̂f), σ̂f) are invariant under
permutations of the vertices, so σ̂p and σ̂f are uniformly random given their colour statistics,
and the random graphs Ĝ(σ̂p) and Ĝ(σ̂f) themselves are uniformly random and easy to
sample given the planted assignment σ̂p or σ̂f and given the edge statistics ρĜ(σ̂p),σ̂p and
ρĜ(σ̂f),σ̂f . Moreover, because (νp, ρp) and (νf , ρf) are local maxima of the first moment
function Fd,b(ν, ρ), a first moment argument based on (8) allows us to control the vertex-edge
colour statistics very accurately, i.e., there exist c, t0 > 0 such that for all t ∈ [0, t0]

P
[
dTV

(
νσ̂p , νp

)
+ dTV

(
ρĜ(σ̂p),σ̂p , ρp

)
> t

]
≤ nO(1)e−ct2n, (18)

and similarly for the deviations from (νf , ρf) in the ferromagnetic phase (see Lemmas 3.4 and
3.5 in the full version). At this point we have handy descriptions of the models (Ĝ(σ̂p), σ̂p)
and (Ĝ(σ̂f), σ̂f), and therefore, via Proposition 3.1, (Ĝp, σĜp,p) and (Ĝf , σĜf ,f).

We will next utilise the information on the distribution of σ̂p, ρĜ(σ̂p),σ̂p to couple the
distribution of the colouring produced by the tree broadcasting process and the colouring that
σ̂p induces on the neighbourhood of some particular vertex of Ĝ(σ̂p), say v. In particular,
for ℓ = ⌈log log n⌉, the ℓ-neighbourhood of v is going to be tree-like, so conditional on the
statistics νσ̂p , ρĜ(σ̂p),σ̂p , an inductive coupling (see Lemma 3.6) shows that

dTV(σ̂p,∂ℓv, τ∂ℓo) = dℓ
(

dTV(νσ̂p , νp) + dTV(ρĜ(σ̂p),σ̂p , ρp) + n−0.99
)

.

From (18), it then follows that the last quantity is o(n−1/5) with probability 1 − o(1/n).
Hence, the colourings σ̂p,∂ℓv and τ∂ℓo can be coupled such that both are identical with
probability 1 − o(n−1/5). Consequently, from the tree broadcasting results of Proposition 2.6,
we obtain that

∑
c∈[q] E

∣∣∣νp(c) − µĜ(σ̂p),β(σv = c | σ∂ℓv = σ̂p,∂ℓv)
∣∣∣ < ℓ−3 which translates

via the Nishimori identity into∑
c∈[q]

E
∣∣∣νp(c) − µĜp,β(σv = c | σ∂ℓv = σĜp,p,∂ℓv)

∣∣∣ < ℓ−3. (19)

Proof Sketch of Lemma 3.8. Due to the Nishimori identity (17), it suffices to prove that
for a sample σĜ(σ̂p),p from µĜ(σ̂p),β( · | Sp) that

dTV
(
ν(σ̂p, σĜ(σ̂p),p), νp ⊗ νp

)
= o(1). (20)

To see (20), for colors s, t ∈ [q], we consider the first and second moment of the number
of vertices u with σ̂p(u) = s and σĜ(σ̂p),p(u) = t. To facilitate the analysis of the second
moment, it will be convenient to consider the following configuration σ′

Ĝ(σ̂p),p. Let v, w be
two random vertices such that σ̂p(v) = σ̂p(w) = s. Also let ℓ = ℓ(n) = ⌈log log n⌉. Now,
draw σ′′

Ĝ(σ̂p),p from µĜ(σ̂p),β( · | Sp) and subsequently generate σ′
Ĝ(σ̂p),p by re-sampling the

colours of the vertices at distance less than ℓ from v, w given the colours of the vertices
at distance ℓ from v, w and the event Sp. Then σ′

Ĝ(σ̂p),p has distribution µĜ(σ̂p),β( · | Sp).
Moreover, since for two random vertices v, w their ℓ-neighbourhoods are going to be disjoint
w.h.p., the reconstruction property in (19) implies that w.h.p. for all χ, χ′ ∈ [q]

P
[
σ′

Ĝp,p(v) = χ, σ′
Ĝp,p(w) = χ′ | σ̂p, Ĝ(σ̂p), v, w

]
= νp(χ)νp(χ′) + o(1). (21)
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Hence, for a colour t ∈ [q] let X(s, t) be the number of vertices u with σ̂p(u) = s

and σ′
Ĝp,p(v) = t. Then (21) shows that w.h.p. E

[
X(s, t) | σ̂p, Ĝ(σ̂p)

]
∼ n

q2 and

E
[
X(s, t)2 | σ̂p, Ĝ(σ̂p)

]
∼ n2

q4 . Thus, (20) follows from Chebyshev’s inequality. ◀

4 Metastability and Slow mixing

In this section, we prove Theorems 1.1 and 1.2. Recall from Section 1.3 the paramagnetic and
ferromagnetic states Sp(ε) and Sf(ε) for ε > 0. For the purposes of this section we will need
to be more systematic of keeping track the dependence of these phases on ε. In particular,
we will use the more explicit notation Zε

p(G) and Zε
f (G) to denote the quantities Zp(G) and

Zf(G), respectively, from (12). The following lemma, based on Theorem 1.3, reflects the fact
that νp and νf are local maxima of the first-moment function Fd,β .

▶ Lemma 4.1. Let q, d ≥ 3 be integers and β > 0 be real. Then, for all sufficiently small
constants ε′ > ε > 0, there exists constant ζ > 0 such that w.h.p. over G ∼ G, it holds that
1. If β < βh, then Zε

p(G) ≥ e−n3/4E[Zε
p(G)] and Zε′

p (G) ≤ (1 + e−ζn)Zε
p(G).

2. If β > βu, then Zε
f (G) ≥ e−n3/4E[Zε

f (G)] and Zε′

f (G) ≤ (1 + e−ζn)Zε
f (G).

Theorem 1.1 will follow by way of a conductance argument. Let G = (V, E) be a graph,
and P be the transition matrix for the Glauber dynamics defined in Section 1.4. For a set

S ⊆ [q]V define the bottleneck ratio of S to be Φ (S) =
∑

σ∈S, τ ̸∈S
µG,β(σ)P (σ,τ)

µG,β(S) . The following
lemma provides a routine conductance bound (e.g., [32, Theorem 7.3]). For the sake of
completeness the proof is included in the full version.

▶ Lemma 4.2. Let G = (V, E) be a graph. For any S ⊆ [q]V such that µG(S) > 0 and any
integer t ≥ 0 we have ∥µG,SP t − µG,S∥T V ≤ tΦ(S).

Proof of Theorem 1.1. We prove the statement for the pairing model G, the result for G
follows immediately by contiguity. Let ε′ > ε > 0 and ζ > 0 be small constants such that
Lemma 4.1 applies, and let G ∼ G be a graph satisfying the lemma. Set for convenience
µ = µG,β ; we consider first the metastability of Sf(ε) for β > βu.

Since Glauber updates one vertex at a time it is impossible in one step to move from
σ ∈ Sf(ε) to τ ∈ [q]n\Sf(ε′), i.e., P (σ, τ) = 0, and therefore

Φ
(
Sf(ε)

)
=

∑
σ∈Sf(ε)

∑
τ /∈Sf(ε) µ(σ)P (σ, τ)

µ
(
Sf(ε)

) =
∑

σ∈Sf(ε)
∑

τ∈Sf(ε′)\Sf(ε′) µ(σ)P (σ, τ)
µ

(
Sf(ε)

)
By reversibility of Glauber, for any σ, τ ∈ [q]n we have µ(σ)P (σ, τ) = µ(τ)P (τ, σ), and there-

fore the numerator is upper-bounded by µ
(
Sf(ε′)\Sf(ε)

)
. Hence, Φ

(
Sf(ε)

)
≤ µ

(
Sf(ε′)\Sf(ε)

)
µ
(

Sf(ε)
) =

Zε′
f (G)−Zε

f (G)
Zε

f (G) ≤ e−ζn, where the last inequality follows from the fact that G satisfies
Lemma 4.1. Lemma 4.2 now ensures that for all nonnegative integers T ≤ eζn/3∥∥µ

(
· | Sf(ε)

)
P T − µ

(
· | Sf(ε)

)∥∥
T V

≤ T · Φ(Sf) ≤ e−2ζn/3. (22)

Now, consider the Glauber dynamics (σt)t≥0 launched from σ0 drawn from µG,β,Sf(ε), and
denote by Tf = min {t > 0 : σt /∈ Sf(ε)} its escape time from Sf(ε). Observe that σt has the
same distribution as µ( · | Sf(ε))P t, so (22) implies that for all nonnegative integers T ≤ eζn/3

it holds that
∣∣P [σT ∈ Sf(ε)] − 1

∣∣ < e−2ζn/3, or equivalently P [σT /∈ Sf(ε)] ≤ e−2ζn/3. By a
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union bound over the values of T , we therefore obtain that P[Tf ≤ eζn/3] ≤ e−ζn/3, thus
proving that Sf(ε) is a metastable state for β > βu. Analogous arguments show that Sp(ε)
is a metastable state for β < βh.

The slow mixing of Glauber for β > βu follows from the metastability of Sf(ε). In
particular, from Theorem 1.3 we have that

∥∥µ
(

· | Sf(ε)
)

− µ
∥∥ ≥ 3/5 and therefore, from

(22),
∥∥µ

(
· | Sf(ε)

)
P T − µ

∥∥ ≥ 1/2, yielding that the mixing time is eΩ(n). ◀

The key and much more challenging ingredient to establish Theorem 1.2 is to bound the
probability that Swendsen-Wang escapes Sp(ε) and Sf(ε). More precisely, for a graph G, a
configuration σ ∈ [q]n, and S ⊆ [q]n, let P G

SW (σ → S) denote the probability that after one
step of SW on G starting from σ, we end up in a configuration in S.

The following proposition shows that for almost all pairs (G, σ) from the ferromagnetic
planted distribution

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, the probability that SW leads to a configuration in

the ferromagnetic phase, slightly enlarged, is 1−e−Ω(n). Note here that SW might change the
dominant colour due to recolouring step, so, for ε > 0, we consider the set of configurations
S̃f(ε) that consists of the ferromagnetic phase Sf(ε) together with its q − 1 permutations,
and the probability that SW escapes from it, starting from a ferromagnetic state.

▶ Proposition 4.4. Let q, d ≥ 3 be integers and β ∈ (βu, βh). Then, for all sufficiently small
constants ε′ > ε > 0, there exists constant η > 0 such that with probability 1 − e−ηn over the
planted distribution (G, σ) ∼

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, it holds that P G

SW

(
σ → S̃f(ε′)

)
≥ 1 − e−ηn.

An analogous Proposition 4.3 applies for the paramagnetic distribution
(
Ĝ

(
σ̂p(ε)

)
, σ̂p(ε)

)
.

The proof of these Propositions requires a delicate analysis of the percolation step in SW since
we need probability bounds that are exponentially close to 1. Especially for Proposition 4.4,
the presence of a giant component (corresponding to the dominant colour) complicates the
arguments significantly since we need to take into account the underlying vertex-edge colour
statistics of

(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
) studied in Section 3. Even with Propositions 4.3 and 4.4 at

hand, concluding Theorem 1.2 requires a bit of work based on the planting ideas.

Proof Sketch of Theorem 1.2. We consider first the metastability for the ferromagnetic
phase when β > βu. Let ε′ > ε > 0 and η, ζ > 0 be small constants such that Lemma 4.1
and Proposition 4.4 apply. Let θ = 1

10 min{η, ζ}.
Let Q be the set of d-regular (multi)graphs that satisfy both items in Lemma 4.1.

Moreover, let Q′ be the set of d-regular (multi)graphs G such that the set of configurations
where SW has conceivable probability of escaping S̃f(ε′) has small weight, i.e., the set

SBad(G) =
{

σ ∈ S̃f(ε)
∣∣ P G

SW

(
σ → S̃f(ε′)

)
< 1 − e−ηn

}
has aggregate weight ZBad(G) =

∑
σ∈SBad(G) eβH(G) less than e−θnZε

f (G). For a d-regular
graph G such that G ∈ Q ∩ Q′, using arguments analogous to those for Glauber, we have
that ΦSW

(
S̃f(ε)

)
≤ 10e−θn. By arguments analogous to those in the proof of Theorem 1.1,

we have that S̃f(ε) is a metastable state for graphs G ∈ Q ∩ Q′. Therefore, to finish the
metastability proof for the random graph, it suffices to show that P(G ∈ Q ∩ Q′) = 1 − o(1).

To do this, let G(n, d) be the set of all multigraphs that can be obtained in the pairing
model and Λd,β(n) =

{
(G, σ)

∣∣ G ∈ G(n, d), σ ∈ S̃f(ε)
}

. Let E be the pairs (G, σ) ∈ Λd,β(n)
where one step of SW starting from G, σ stays within S̃f(ε′) with probability 1 − e−Ω(n),
more precisely E =

{
(G, σ) ∈ Λd,β(n)

∣∣ P G
SW

(
σ → S̃f(ε′)

)
≥ 1 − e−ηn

}
. The aggregate weight

corresponding to pairs (G, σ) /∈ E can be lower-bounded by∑
(G,σ)∈Λd,β\E

eβHG(σ) ≥
∑

G∈Q\Q′

∑
σ∈ΣBad(G)

eβHG(σ) ≥ e−θn
∑

G∈Q\Q′

Zε
f (G).
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For graphs G ∈ Q we have Zε
f (G) ≥ e−n3/4E[Zε

f (G)], and therefore

∑
(G,σ)∈Λd,β\E

eβHG(σ) ≥ e−(θn+n3/4)∣∣Q\Q′∣∣ E[
Zε

f (G)
]

= e−(θn+n3/4)∣∣Q\Q′∣∣ ∑
(G,σ)∈Λd,β

eβHG(σ)∣∣G(n, d)
∣∣

From the definition of
(
Ĝ

(
σ̂f(ε)

)
, σ̂f(ε)

)
, cf. (15),(16), observe that∑

(G,σ)∈Λd,β\E eβHG(σ)∑
(G,σ)∈Λd,β

eβHG(σ) = P
[(

Ĝ(σ̂f(ε)), σ̂f(ε)
)

∈ Λd,β\E
]

≤ e−ηn ≤ e−10θn,

where the penultimate inequality follows from Proposition 4.4 and the last from the choice of θ.
Combining the last two inequalities, we obtain P[G ∈ Q\Q′] = o(1). Since P[G ∈ Q] = 1−o(1)
from Lemma 4.1, it follows that P[G ∈ Q ∩ Q′] ≥ P[G ∈ Q] − P[G ∈ Q\Q′] ≥ 1 − o(1). This
concludes the proof for the metastability of the ferromagnetic phase S̃f(ε) when β > βu.

A similar bottleneck-ratio argument shows that Sp(ε) is a metastable state for β < βh. The
slow mixing of SW for β ∈ (βu, βh) follows from the metastability of S̃f(ε) when β ∈ (βu, βp]
and the metastability of Sp(ε) when β ∈ [βp, βh). In particular, let S ∈ {S̃f(ε), Sp(ε)} be
such that

∥∥µ
(

· | S
)

− µ
∥∥ ≥ 1/2, then Lemma 4.2 gives that for T = eΩ(n), it holds that∥∥µ

(
· | S

)
P T

SW − µ
∥∥ ≥ 1/2 − 1/10, yielding that the mixing time is eΩ(n). ◀
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