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Abstract

The computational complexity of finding a Nash equilibrium in a nonzero sum bimatrix game is an important open q
We put forward the notion of(0,1)-bimatrix games, and show that some associated computational problems are as ha
the general case.
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1. Introduction

With the advent of the Internet, algorithms and p
tocols are starting to embed features imported fr
Game Theory. This has led to a growing interest
ward the computational complexity of the fundame
tal game theoretic notions. In the setting of nonco
erative games, particular attention has been give
the computation of Nash equilibria for nonzero su
games, which is considered one of the most impor
open questions in computational complexity today
8]. Despite an impressive amount of work (see, e.g.
10]) it is still unknown if a Nash equilibrium for thes
games can be computed in polynomial time, even
the two player case. On the other hand, NP-hardn
results are known for the computation of Nash equi
ria with additional properties, e.g., with payoffs abo
a given threshold [1,2].

In this paper we start exploring some complex
questions related to games where the payoff to
players is either zero or one. More precisely, we lo
at the computation of Nash equilibria for a class of
matrix games, which we callsimple bimatrix game
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(SBGs from now on), where the payoff matrices a
(0,1) matrices.

By reduction from 3SAT, we show that it is NP
complete to decide whether there is more than
Nash equilibrium in an SBG. The proof of this res
also leads to the NP-hardness of finding a Nash e
librium with payoff at leastk for one of the players.

To prove our results, we associate to an SBG a
rected graph and we introduce a graph property, wh
we callgood assignment. We reduce 3SAT to the ex
istence problem for good assignments (other tha
trivial one).

Adopting the terminology from [5], let us callim-
itation SBGs the SBGs where the row player, cal
theimitator, gets payoff 1 if she makes the same mo
as the opponent, and 0 otherwise.

We show the equivalence between SBGs and im
tion SBGs, and prove that there is a one-to-one co
spondence between good assignments and Nash
librium strategies for the imitator in imitation SBGs

Our reduction has the following interpretation.
an imitation SBG, there is always one Nash equi
rium corresponding to a win for the imitator, while th
existence of another Nash equilibrium, more favora
to the other player, is subject to the satisfiability o
given formula.

Our results can be summarized by the followi
theorem.

Theorem 1. It is NP-complete

(a) to decide whether an SBG has more than one N
equilibrium;

(b) to decide whether an imitation SBG has a Na
equilibrium with nonzero payoff for imitator’s op
ponent.

2. Background on bimatrix games

We consider SBGs instrategic or normal form.
These games are described in terms of two(0,1) ma-
trices, containing thepayoffsof the two players. The
rows (resp. columns) of both matrices are indexed
the row (resp. column) player’spure strategies.

A mixed strategy consists of a set of pure strateg
and a probability distribution (a collection of nonne
ative weights adding up to one) which indicates h
i-

likely it is that each pure strategy is played. In oth
words, each player associates to herith pure strategy
a numberpi between 0 and 1, such that

∑
i pi = 1.

Let us consider a two-player game, where e
player hasn pure strategies, and letx be a mixed
strategy of the row player, andy a mixed strat-
egy of the column player. Strategyx is the n-tuple
x = (x1, x2, . . . , xn), wherexi � 0, and

∑n
i=1 xi = 1.

Similarly, y = (y1, y2, . . . , yn), where yi � 0, and∑n
i=1 yi = 1. Let now A = (aij ) be the payoff ma-

trix of the row player. The entryaij is the payoff to the
row player, when she plays herith pure strategy an
the opponent plays the pure strategyj . According to
the mixed strategiesx andy, the entryaij contributes
to the expected payoff of the row player with weig
xiyj . The expected payoff of the row player can
evaluated by adding up all the entries ofA weighted by
the corresponding entries ofx andy, i.e., the payoff is∑

ij xiyj aij . This can be rewritten as
∑

i xi

∑
j aij yj ,

which can be expressed in matrix terms as2 xTAy.
Similarly, the expected payoff of the column player
xTBy.

A pair (x, y) is in Nash equilibrium ifxTAy �
x′TAy, andxTBy � xTBy′, for all stochasticn-vec-
torsx′ andy′. If the pair(x, y) is in Nash equilibrium,
we say thatx (resp.y) is a Nash equilibrium strat-
egyfor the row (resp. column) player. It is well know
that a Nash equilibrium in mixed strategies always
ists [6].

To avoid trivial pure strategy Nash equilibria, w
assume that the matricesA and B do not have en
tries equal to 1 in the same position. In other wo
the game does not have outcomes where both pla
win. On the other hand, there are outcomes where
players lose, because of the nonconstant sum ass
tion.

3. Hardness results

Let G be a directed graph. Letx be an assign
ment of nonnegative weights to the vertices ofG.
We will assume thatx is normalized, i.e.,‖x‖1 =∑

i xi = 1. Theincomeix(v) of a vertexv is the sum
of weights of verticesu which point tov, i.e., ix(v) =

2 We use the notationxT to denote the transpose of vectorx.
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u:(u,v)∈G xu. A vertexv is happyif it has highest in-

come (i.e.,ix(v) � ix(u) for all u ∈ G). A vertexv is
working if it has nonzero weight (i.e.,x(v) > 0). An
assignmentx is good if all the working vertices are
happy. As we will see later there always exists a go
assignment.

Lemma 2. It is NP-complete to decide if there are
least two good assignments in a given graphG.

Proof. We will show a reduction from 3SAT. LetF
be a formula withm clauses andn variables. With-
out loss of generality we can assume thatm = 3k , for
some integerk > 1. Let graphH have literal vertices
xi, xi, 1 � i � n, clause vertexC and clause filling
verticesv1,C, v2,C for each clauseC in F . Connect
each literal vertex� to clause vertexC, if � is in C.
Connect clause filling verticesv1,C, v2,C to the clause
vertexC. Add a ternary treeT with edges directed to
wards the root, such that the clause vertices are
leaves ofT . Let a be the root ofT . Connecta to the
clause filling vertices. This definesH . Now we con-
struct the graphG by adding vertices toH . For each
triple d of vertices inH –a we add an equality check
ing vertexwd and connect the vertices ind to wd . We
also add verticesyi, yi, zi, 1 � i � n, and connectyi

to bothxi andzi , yi to bothxi andzi , anda to both
yi and yi , for 1 � i � n. Finally we add a vertexr
and connect all the equality checking vertices, ver
a, andzi, 1 � i � n, to r . A sketch of this construc
tion is shown in Fig. 1. Clearly the weight assignme
which givesr weight 1 is good (nobody earns an
thing).

We now prove that there is another good weight
signment inG if and only if F is satisfiable.

Assume thatF is satisfiable. Fix a satisfying as
signments of F . Assign weight 1 to the satisfie
literals and weight 3 to their predecessors (a s
set of theyi and yi ). (Note that we are using in
teger weights; we can then derive a normalized
signment by properly scaling all the weights.) Assi
weight 1 to each clause vertex and some of its
ing vertices so that the income of each clause v
tex is 3. Further assign weight 3 to the vertexa and
weight 1 to the rest of vertices inT . Assign weight
0 to all the remaining vertices ofG. Clearly the ob-
tained assignment is good, as the reader can ve
Fig. 1. A sketch of graphG. The large rectangle includes graphH ,
except for vertexa.

by direct inspection of the status of each type of v
tices.

To show the other direction, assume thatx is a good
assignment inG. If a does not work then the assig
mentx must giver weight 1 and weight 0 to ever
other vertex, becauseG –a is an acyclic graph andr
is its unique sink. Hence we can assume thata works.
Similarly at least one of the successors ofa (other
thanr) must work, because otherwisea could not have
a positive income. Sincer cannot have a higher in
come thana, the weight of thezi ’s and of the equality
checking vertices is zero. Without loss of generality
the weight ofa (and hence also the income of eve
happy vertex) be 3.

The sum of weights of the predecessors ofa must
be 3, and hence the weight of any vertex inH –a is at
most 1. Assume this is not the case, i.e., that ther
a vertexw in H –a with weight larger than 1. LetW ′
be the set of predecessors ofa, if w is not a predeces
sor ofa, and the set of predecessors ofw, otherwise.
Let W ′′ be the set containing the two vertices fromW ′
of highest weight. Since the sum of the weights of
vertices inW ′ is at least 3, the sum of the weights
the vertices inW ′′ is at least 2, so that the two ve
tices inW ′′ together withw have weight strictly large
than 3. This is a contradiction, since the correspo
ing equality checking vertex has income strictly larg
than 3.

Therefore all the vertices inT –a must have
weight 1. In particular each clause vertex must
working, and hence be happy. Therefore for e
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clause vertexC at least one of its literals must b
working, otherwiseC would earn at most 2. Note tha
xi and xi cannot both be working for otherwiseyi

andyi would have weight 3, and hencezi would earn
6, thus makinga unhappy. It follows that the set o
working literal vertices induces a satisfying assig
ment forF . �

We now show the connection between good ass
ments and Nash equilibria.

Lemma 3. Let (I,C) be an SBG. LetG[C] be the
oriented graph with adjacency matrixC. The Nash
equilibrium strategies of the imitator in(I,C) are in
one-to-one correspondence with the good assignm
in G[C].

Proof. Let x be a good assignment forG[C]. Then
the vector of incomesxTC is maximal on coordinate
wherex is nonzero. Lety be uniform on entries on
which x is nonzero. The vector of pure strategy pa
offs for the imitator in(I,C) is Iy = y, and hence
(x, y) is a Nash equilibrium for(I,C).

To see the other direction, let us consider any N
equilibrium (x, y) for (I,C). Assumex is not a good
assignment forG[C]. Then there is a nonzero ent
of x, sayxi , such that(xTC)i < (xTC)j , for somej .
Thereforeyi = 0, which in turn implies thatxi = 0,
which is a contradiction. �

The following example illustrates the one-to-o
correspondence stated in Lemma 3.

Example 4. Let us consider the matrix

C =



0 1 1 1
1 0 0 0
1 0 0 0
0 0 0 0


 .

It is easy to check that the following are good assi
ments forG[C]:
x1 = (1

2, 1
4, 1

4,0
)
, x2 = (1

2, 1
2,0,0

)
,

x3 = (1
2,0, 1

2,0
)
, x4 = (0,0,0,1).

Moreover, let us consider the vectors

y1 = (1
3, 1

3, 1
3,0

)
, y2 = (1

2, 1
2,0,0

)
,

y = (1,0, 1,0
)
, y = (0,0,0,1).
3 2 2 4
The pairs(xi, yi), for i = 1, 2, 3, 4, are Nash equilibri
for the game(I,C).

We are now ready to prove the theorem stated in
Introduction.

Proof of Theorem 1. (a) The proof follows from
Lemma 2 and from the correspondence between N
equilibria and good assignments stated in Lemma

(b) The problem of deciding whether an imitatio
SBG has a Nash equilibrium with payoff at leastk

for the column player is clearly in NP. The Na
equilibrium corresponding to the good assignmen
Lemma 2 in which onlyr works has payoff zero fo
the column player, sincer is a sink, and the respectiv
row of the adjacency matrix is zero. The Nash eq
libria corresponding to good assignments arising fr
satisfying assignments ofF have nonzero payoff fo
the column player. �

We finally show a general relation between imi
tion games and bimatrix games. The following lem
implies that finding Nash equilibria of imitation gam
is not easier than finding Nash equilibria of gene
games, in a sense to be made precise below.

Lemma 5. Let A,B be two m × n matrices with
nonnegative entries, whereAT and B have no zero
row. Let C = ( 0 B

AT 0

)
and let I be the (m + n) ×

(m + n) identity matrix. The Nash equilibria of th
game(A,B) are in one-to-one correspondence w
the Nash equilibrium strategies of the row player
the game(I,C).

Proof. Let x, y be a Nash equilibrium of the gam
(A,B). Let x′T = (αxT, βyT), whereα,β > 0 are
such thatβ maxi (Ay)i = α maxi (xTB)i and‖x′‖1 =
1. Note that suchα,β exist since maxi (Ay)i > 0 and
maxi (xTB)i > 0.

Let y′ be uniform on the coordinates on whichx′
is nonzero. Note that the vectorx′TC of pure strategy
payoffs to the imitator’s opponent is(βyTAT, αxTB),
which is maximal on the coordinates played by the
itator’s opponent, becausex, y is a Nash equilibrium
of the game(A,B), and by the definition ofα andβ.
Clearlyx′, y′ is a Nash equilibrium of the game(I,C).
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Let x′, y′ be a Nash equilibrium of the game(I,C).
Let x′T = (xT, yT). Because of the assumption onA

andB, bothx andy are nonzero.
Let α,β be such that‖αx‖1 = ‖βy‖1 = 1. Then

(αx,βy) is a Nash equilibrium of the game(A,B). �
Remark 6. In Lemma 5 we have assumed thatAT and
B have at least one nonzero entry in each row. N
that the adjacency matrix of Lemma 2 does not sat
this assumption, since it contains a zero row, co
sponding to vertexr in the construction of graphG
(see Fig. 1).

However we can modify any given bimatrix gam
(A,B) without changing its equilibrium structure, b
adding a constant to any column ofA and/or to any
row of B. In particular, we can replace any all-ze
column ofA by a column of all ones, and we can r
place any all-zero row ofB by a row of all ones.

This transformation allows us to conclude that i
itation SBGs are as hard as general SBGs, in the
lowing sense: if we can efficiently decide if there
more than one Nash equilibrium for imitation SBG
then we can do it for general SBGs (see part (a
Theorem 1).

However the transformation changes the pay
structure, so that we cannot reach a similar conclus
for part (b) of Theorem 1.

The following example illustrates Lemma 5 and
proof.

Example 7. Let us consider the bimatrix game(I,C),
where

C =



0 0 1 1
0 0 0 1
1 1 0 0
1 0 0 0


 .

A Nash equilibrium strategy for the imitator
given by x′ = (1

2,0,0, 1
2), while a Nash equilibrium

strategy for the imitator’s opponent is a mixed str
egy which is nonzero and uniform on the coordina
wherex′ is nonzero.

Now consider the bimatrix game(A,B), where
A = (1 1

1 0

)
andB = (1 1

0 1

)
.

Now, from the second part of the proof of Lemma
pick α = β = 2. We readily obtainx = (1,0), andy =
(0,1), which form a Nash equilibrium for(A,B).
4. Open questions and further work

Despite a lot of effort over the last years, the ans
to the fundamental complexity questions in Ga
Theory has so far remained elusive. SBGs provid
simpler and somewhat more structured framework
which some of these questions still make sense,
might become easier.

Our work on SBGs leaves a number of unanswe
questions.

Are SBGs ashardas more general bimatrix game
For instance, are they any easier than games wher
payoffs can be 0, 1, or 2? Or, rather, is there a po
nomial time computable reduction mapping the la
games into SBGs?

The most popular algorithm for computing Na
equilibria for bimatrix games is Lemke–Howson a
gorithm [3]. There are simple instances of bimat
games where Lemke–Howson algorithm takes ex
nential time [9]. Are there lower bounds on the perf
mance of Lemke–Howson algorithm for SBGs?

Quasi polynomial time algorithms are known f
the computation of anapproximate Nash equilibrium
for bimatrix games [4]. Is it easier (perhaps po
nomial-time) to find an approximate Nash equilibriu
for SBGs?
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