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Abstract.—Different genes often have different phylogenetic histories. Even within regions having the same phylogenetic
history, the mutation rates often vary. We investigate the prospects of phylogenetic reconstruction when all the characters are
generated from the same tree topology, but the branch lengths vary (with possibly different tree shapes). Furthering work of
Kolaczkowski and Thornton (2004, Nature 431: 980-984) and Chang (1996, Math. Biosci. 134:189-216), we show examples
where maximum likelihood (under a homogeneous model) is an inconsistent estimator of the tree. We then explore the
prospects of phylogenetic inference under a heterogeneous model. In some models, there are examples where phylogenetic
inference under any method is impossible—despite the fact that there is a common tree topology. In particular, there are
nonidentifiable mixture distributions, i.e., multiple topologies generate identical mixture distributions. We address which
evolutionary models have nonidentifiable mixture distributions and prove that the following duality theorem holds for most
DNA substitution models. The model has either: (i) nonidentifiability—two different tree topologies can produce identical
mixture distributions, and hence distinguishing between the two topologies is impossible; or (ii) linear tests—there exist
linear tests which identify the common tree topology for character data generated by a mixture distribution. The theorem
holds for models whose transition matrices can be parameterized by open sets, which includes most of the popular models,
such as Tamura-Nei and Kimura's 2-parameter model. The duality theorem relies on our notion of linear tests, which are
related to Lake's linear invariants. [Inconsistency of likelihood; linear invariants; Markov chain; mixture models; Monte
Carlo; non-identifiability; phylogenetic invariants; phyogenetics; rate variation; tree identifiability.]

It is now clear that there is considerable hetero-
geneity in substitution rates within a genome (see, e.g.,
Hellmann, 2005; Pond and Muse, 2005). Variation in evo-
lutionary forces is an obvious cause, but even within
neutrally evolving regions heterogeneity is relevant. For
phylogenetic studies based on multiple genes, hetero-
geneity is especially pertinent because gene trees are
well known to differ. Even for studies relying on a single
(ideally long) gene, substitution rates within the gene
might vary due to a variety of factors. For example,
recombination rates, which are known to affect substi-
tution rates, can vary dramatically over the scale of kilo-
bases (see Hellmann et al., 2003, 2005; McVean et al.,
2004; Myers et al., 2005). The latest versions of popular
phylogeny programs, such as MrBayes (Rohnquist and
Huelsenbeck, 2003), now allow for partitioned models to
account for varying phylogenetic histories. However, the
effects of partition-heterogeneity on phylogenetic stud-
ies are still poorly understood.

Our work considers models where different subsets
of sites evolve at different rates (the partitioning of the
sites into homogenous subsets is not known a priori).
More precisely, we consider a single tree topology gen-
erating the data, but the branch lengths can vary between
sites. Thus, the character data are produced from (possi-
bly) multiple tree shapes, though they share a common
topology. This differs from models, such as the gamma
rate-heterogeneity model, which assume a common tree
shape across all sites.

We first look at the effects of heterogeneity on phylo-
genetic inference under homogeneous models. Several
works, such as Kolaczkowski and Thornton (2004) and
Chang (1996), have presented mixture examples where
maximum likelihood (under a homogeneous model)
is inconsistent; i.e., the maximum likelihood topology
is different from the generating topology. We present

several new, simple examples (along with new mathe-
matical tools for their analysis) showing inconsistency.
Moreover, there are examples where the maximum like-
lihood is achieved on multiple topologies.

In some settings, even under heterogeneous models,
inference can fail. In particular, for certain models, there
are mixture distributions that are nonidentifiable. More
precisely, mixtures on different topologies generate iden-
tical distributions (of site patterns). Hence, it is impos-
sible to distinguish (using any methods) between the
multiple topologies that generate the distribution.

This inspires the study of which evolutionary models
have nonidentifiable mixture distributions. We present
a new duality theorem that says that a model either has
nonidentifiable mixture distributions, or there is a simple
method for reconstructing the common topology in a
mixture.

Our work builds upon several theoretical works
(Chang, 1996; Mossel and Vigoda, 2005) and experimen-
tal work (Kolaczkowski and Thornton, 2004) showing
examples where likelihood methods fail in the presence
of mixtures. Our nonidentifiability results are also related
to results of Steel et al. (1994). We discuss these results in
more detail when presenting related results. Our duality
theorem uses a geometric viewpoint (see Kim, 2000, for
a nice introduction to a geometric approach).

DEFINITION OF MIXTURE DISTRIBUTIONS

Consider an evolutionary model on a set of states Q,
such as the Jukes-Cantor model on Q = {A,C,T, G}). Let
S denote the number of states in the data. Thus for the
Jukes-Cantor and Kimura's 2-parameter model S = 4.

For a tree topology T, the probabilities of change across
a branch (or edge) e are determined by an instantaneous
rate matrix Q(e) and the length of the branch l{e). These
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FIGURE 1. The three 4-taxon trees (T,, T2, T3), and the two 5-taxon trees (S,, Si) of interest.

then define a transition probability matrix w{e). For a
tree T with a set w of transition probability matrices for
each branch of T, let (JL(T, w) denote the corresponding
distribution on the labelings of leaves (or taxa) of T by
states in Q.

In our framework, there is a single tree topology T and
a set of k different processes. The processes are defined
by a collection of k sets of transition probability matrices
w = (wi,..., Wk) where, for each i, u>; assigns each edge
of T a transition matrix. In other words, the zth tree is
defined by (T, if,). The proportion of sites contributed by
the zth tree (which is also the probability that a randomly
sampled site is generated under /x(T, iu,-)) is denoted p,-.
More precisely, we consider the mixture distribution:

Thus, with probability p, we generate a character accord-
ing to £i(T, wi). Note the tree topology is the same for all
the distributions in the mixture.

Let Mk denote the above class of mixture distributions
of size k. We will often consider a uniform mixture of
several trees. Thus, let Uk denote the class of mixture
distributions of size k where pi = p2 = • • • = pk = \/k.
In many cases we will consider examples from U2 (i.e.,
a uniform mixture of two trees). For each of our results
we will detail the precise setting.

Our focus in this paper is on the three 4-taxon trees
T\, T2, and T3 and the two specific 5-taxon trees Si and S3
depicted in Figure 1.

The surprising properties of maximum likelihood that
we study in this paper are best identified in the simplest
models. Hence we often consider examples in the binary
CFN (Cavender-Farris-Neyman) model and the Jukes-
Cantor model. The CFN model is the two-state version
of the Jukes-Cantor model. Thus in the CFN model S = 2.

The Jukes-Cantor and CFN models have a single pa-
rameter for the substitution rate for each branch. For
these models we can use the probability of a change of
state across a branch as the branch length parameter (in-
stead of the usual parameterization in which the branch
length is the expected number of changes per site).

For branch e, the probability is denoted p(e). Note that
for the CFN model the branch lengths satisfy 0 < p(e) <
1/2, whereas for the the Jukes-Cantor model the branch
lengths satisfy 0 < p(e) < 1/4.

PHASE TRANSITION FOR INCONSISTENCY
OF MAXIMUM LIKELIHOOD

We consider a class of 4-taxon mixture examples where
maximum likelihood has intriguing properties. Figure 2
presents the class of mixture examples we study for the
CFN and Jukes-Cantor models. We take a uniform mix-
ture of the two trees. We will use fx to denote the mixture
distribution. Note, the trees have a common topology T-\
and only differ in their branch probabilities. In our nota-
tion, the example is in U2, which is the class of uniform
mixtures of size 2.

The terminal branch probabilities are a function of the
parameters x and C. The parameter C is any valid branch
probability, thus 0 < C < 1/S. The parameter x controls
the variation of the branch lengths between the two trees.
We need that C + x and C - x are valid branch probabil-
ities, thus we require 0 < x < min{C, | - C}.

When x = 0 the two trees are identical. The internal
branch probability is defined by a third parameter a
where 0 < a < 1/S. We will study the properties of the
likelihood function as a varies.

This class of examples was studied by Kolaczkowski
and Thornton (2004). Using computational simulations,
they showed that when a is sufficiently small, maximum
likelihood (over M1, i.e., under a homogeneous model)
is inconsistent. Also, under a violated model, maximum
parsimony performed better than maximum likelihood
for some range of a. We delve into the properties of
maximum likelihood on these examples. Our aim is to

FIGURE 2. Mixture distribution on tree 7 .̂ C is a parameter that can
take any values 0 < C < 1/2 in the C M model and 0 < C < 1/4 in the
Jukes-Cantor model; x is a parameter controlling the variation between
the two trees; and a is the internal branch length.
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FIGURE 3. For the CFN and Jukes-Cantor model, we consider the mixture distribution /x on tree Tu which is defined in Figure 2. C, x, and a
are parameters of this mixture example from Figure 2. Recall Cs(fx) is the maximum expected log-likelihood of \x on tree S. For various choices
of C and .r, we plot £T3(M) — £T, (M) m the curve marked T3, and £T2(M) — £Tl (M) in the curve marked T2. The x-axis is a, which is the choice of
internal branch probability. Note, when the internal branch probability a is small, the likelihood of T3 is larger than that of the generating tree
T\. When the curve for T3 hits the x-axis (at a = ac), maximum likelihood is ambiguous; i.e., Cr3(n) = £r, (M)-

formally establish a more precise picture of the behavior
of maximum likelihood, and to devise mathematical
tools for the analysis of likelihood methods. We will
also discover interesting new properties, and further
questions will arise that we will explore later in the paper.

In Figure 3 we study maximum likelihood of the three
4-taxon trees on \x for the CFN and Jukes-Cantor mod-
els. For each tree we look at the maximum expected log-
likelihood of a homogeneous model. Thus likelihood is
maximized over M1, whereas the character data is gen-
erated over U2. More precisely, the maximum expected
log-likelihood is defined as:

where

w is an assignment of a branch length to each branch of
the tree topology T, and V is the set of all possible data

patterns (i.e., V = Q"). Thus, for tree T, we are finding
the single set w of branch lengths that maximizes the
sum over data patterns of the frequency of the pattern
multiplied by natural log of the probability the pattern
is produced by the proposed tree (T, w).

The character data are generated from a mixture dis-
tribution on tree T\, and thus one would presume that
tree Tj has the maximum likelihood. However, the be-
havior of the likelihood function as a varies has a phase
transition at the critical point a = ac (which is a function
of C and x) as depicted in Figure 3.

For a > ac, tree T\ is the maximum likelihood tree.
However, this changes at a = ac. When a < ac the max-
imum likelihood tree is T3; thus, maximum likelihood
(under a homogeneous model) is an inconsistent es-
timator of the phylogeny. We prove the inconsistency
holds for all choices of C, all a < ac, and for all x
sufficiently small. (We expect the result holds for all
x.) Our proof uses a new approach which we out-
line in our methodology section. A detailed proof
is included in the supplemental material available at
http://systematicbiology.org (for a detailed statement,
see Supplemental Material, Theorem 1 for the Jukes-
Cantor model and Theorem 2 for the CFN model).

http://sysbio.oxfordjournals.org/
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At the critical point a = ac, there are multiple topolo-
gies achieving the maximum likelihood. In particular,
we have £r3 = Cjx. Hence, likelihood cannot distinguish
between these two tree topologies. We prove this ambi-
guity of maximum likelihood holds for all choices of C
and x in the CFN model. In the Jukes-Cantor model, we
prove that maximum likelihood is ambiguous at ac for
all choices of C and all x sufficiently small.

In the CFN model we prove that

The simplest case is C = 1/4, in which case ac = y^f^i %

16x2 for small x. Note, ac -> 0 as x ->• 0. In other words,
as the heterogeneity decreases (i.e., x —> 0), the inconsis-
tency of likelihood arises from a shorter internal edge
(i.e., ac -» 0). This is necessary because at x = 0 the two
trees are the same, and then ambiguity of likelihood only
occurs for ac = 0. In the Jukes-Cantor model, we prove
there exists some etc > 0, but we do not know its exact
value.

In contrast to our results, we note that Chang (1996)
proved inconsistency of maximum likelihood on a differ-
ent class of mixture examples. In particular, his examples
included invariable sites.

Even more intriguing ambiguity properties occur at
the critical point a =aCf which we explore now. Later
in the paper (section 5-Taxon Mixtures and Slow Mixing
of MCMC Methods) we discuss the implications of the
above likelihood results to Markov chain Monte Carlo
algorithms for sampling from the posterior distribution.

NONIDENTIFIABILITY AT THE CRITICAL POINT a = ac

We now explore the above examples at the critical
point ctc. We address whether any method (even using a
heterogeneous model) can infer the common generating
topology.

In the CFN model, at a = ac, not only is maximum
likelihood ambiguous, but the distribution itself is non-
identifiable. In particular, there is a mixture distribution
ix' on tree T3 that is identical to the distribution [x on T\.
Consequently, no phylogenetic reconstruction method
can distinguish between the two tree topologies. Figure 4
presents the mixture on tree T3 where the resulting dis-
tribution [i' satistifies \x' = \x. (Note, \x' and \x are both in
the class U2.) Given characters sampled from \x (or equiv-
alently \x'), it is impossible to determine if the character
data are generated from topology T\ or T$. No phyloge-

FlGURE 4. Mixture distribution on tree T3, which is identical to the
distribution on tree T^ in Figure 2 for the CFN model. The parameters
C and x are the same parameters as defined in Figure 2. The parameter
ac is a setting of the parameter a from Figure 2 where nonidentifiability
holds in the CFN model.

netic methods can distinguish between the two topolo-
gies. This nonidentifiability holds for any choice of the
parameters C and x. See Theorem 5 in Supplemental
Material for a precise statement of the nonidentifiabil-
ity result and an extension of the result to a nonuniform
mixture of two trees.

A nonidentifiable mixture distribution was previously
shown for the CFN model by Steel et al. (1994); how-
ever, their result was nonconstructive (i.e., the existence
of such a mixture was proven without constructing a spe-
cific example or determining the number of trees in the
mixtures). However, their result had the more appealing
feature that the set of trees in the mixture were scalings
of each other (i.e., the tree shape was preserved).

For the Jukes-Cantor model, at a = ac, maximum like-
lihood is ambiguous. However, unlike the case for the
CFN model, the mixture distribution /x at the critical
point ac is identifiable; i.e., there is no mixture distri-
bution on another tree topology which is identical to
ix. In fact, we prove there are no nonidentifiable mix-
ture distributions in the Jukes-Cantor model. This raises
the general question: which models have nonidentifiable
mixture distributions? Our duality theorem addresses
this question.

GEOMETRIC INTUITION

Before presenting our duality theorem, it is useful to
look at nonidentifiable mixture distributions from a geo-
metric perspective. The geometric viewpoint presented
here is closely related to the work of Kim (2000) (and we
encourage the interested reader to refer to that work for
useful illustrations of some concepts presented in this
section). This geometric approach is especially useful for
the proof of our duality theorem.

Consider the 2-state CFN model with a tree topol-
ogy T on 4 taxa and a set w of transition matrices
for the branches. This defines a distribution fx(T, w)
on assignments of {0,1} to the 4 taxa. The distribution
lx{T,w) defines a point 2 6 R1 where 2 = (z\,..., 220
and 21 = /x(0000), 22 = /x(0001), 23 = /x(0010),..., 224 =
/x(llll). (In other words, the first coordinate of 2 is de-
fined by the probability of all taxa getting assigned 0, and
so on for the 24 possible assignments to the 4 taxa.) Sim-
ilarly, for a 4-state model, a distribution /x(T, w) defines
a point in 44 dimensional space.

Let D\ denote the set of points corresponding to distri-
butions ix(T\, w) for the 4-taxon tree T\. Similarly, define
D2 for T2, and D3 for T3. Figures 5a and b are different
illustrations of what these sets of points might look like
for the three 4-taxon trees. (These are 2-dimensional rep-
resentations of a high dimensional set, hence they are
only for illustration purposes.) These curves are referred
to as the "model manifold" by Kim (2000).

The set of mixture distributions obtainable from topol-
ogy T\ is the set of convex combinations of points in D\,
which we denote as the set Hi. Note that these are the
set of all mixture distributions without any constraint on
the size of the mixture (parameter k) and for any choice
of the distribution on the trees (parameters p\, ... , pk)-
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(a) (b)

(c) (d)

FIGURE 5. (a and b) Illustrations of the distributions obtainable from a homogenous model. The corresponding set of mixture distributions
are shown in (c) and (d). The points in the intersection of two sets in (d) correspond to nonidentifiable mixture distribution.

Similarly define the sets Hi and H3 for trees Ti and 73,
respectively. By definition, the sets Hi, Hi, and H3 are
convex sets. Figures 5c and d show the sets Hi, Hi, and
H3 for the examples in Figures 5a and b.

In Figure 5d the sets intersect. Thus there are points 2
that lie in Hi and H3. That means the distribution defined
by 2 is obtainable from a mixture on topology Ti and
also from a mixture on topology T3. This corresponds to
a nonidentifiable mixture distribution, which we studied in
the section Nonidentifiability at the Critical Point, for the
CFN model. If Hi and H3 intersect, it is impossible (using
any methods) to separate the sets Hi and H3.

Do these sets Hi and H3 overlap in the commonly used
evolutionary models? This is the focus of our duality the-
orem presented in the next section. We prove that either
these sets Hi and H3 overlap (and there is nonidenti-
fiability), or there is a simple way to separate the sets.
In particular, in the latter case there is a hyperplane that
strictly separates the sets. By strictly separating, we mean
that no point in Hi or H3 is on the hyperplane, and Hj
lies on one side while H3 lies on the other side. A strictly
separating hyperplane implies a method, which we refer
to as a linear test, for determining whether the mixture
distribution is in Hi or H3.

Consequently, we can address for many models
whether there is nonidentifiability by proving whether or
not there is a strictly separating hyperplane. For the sym-
metric models (CFN, Jukes-Cantor, and Kimura's 2- and
3-parameter models) we address the existence of non-
identifiable mixture distributions in the section Implica-
tions of the Duality Theorem.

The duality theorem relies on intuition from con-
vex programming, which is a central topic in opera-
tions research and theoretical computer science. Convex
programming refers to the optimization of a linear func-
tion over a convex set. The development of polynomial-
time algorithms for convex programming (e.g., ellipsoid
methods) relied on convex programming duality. One
view of convex programming duality says that for any
2-convex sets, either the sets have nonempty intersection
or there is a separating hyperplane. In contrast to the
above perspective of a strictly separating hyperplane, in
this setting the sets might both intersect the hyperplane
and then the hyperplane is not useful for our purposes.
Using properties of the sets that can arise from evolu-
tionary models, we prove that a separating hyperplane
is in fact a strictly separating hyperplane if the sets do
not intersect.

NEW DUALITY THEOREM:
NON-IDENTIFIABLE MIXTURES OR LINEAR TESTS

We begin by formally defining nonidentifiable mixture
distributions, and then present our duality theorem. Re-
call the formal definition of a mixture distribution in the
section Definition of Mixture Distributions, defined by
a topology T, a collection of assignments of transition
matrices w = (wi,..., Wk), and a distribution p\,..., pk
on the k trees.

We say a model has a nonidentifiable mixture distri-
bution if there exists a collection of transition matri-
ces w = {w\,..., Wk) and distr ibution pi, ..., pk, such
that there is another tree topology T / T, a collection
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w' = (w[,..., w'k) and a distribution p\,..., p'k such
that:

H(T, w) = ii(T, u/)

In other words,

it

1=1 (=1

The mixture distributions (which are on different
topologies) are identical. Hence, even with unlimited
characters, it is impossible to distinguish these two dis-
tributions and we cannot infer which of the topologies T
or T' is correct. If the above holds, we say the model has
nonidentifiable mixture distributions.

Determining which evolutionary models have non-
identifiable mixture distributions relies on a new dual-
ity theorem, which relates to the evolutionary parsimony
method of Lake (1987). (Lake's method is now classified
as a linear invariant; see Pachter and Sturmfels, 2005, for
an introduction to invariants.)

Recall from section Geometric Inuition the definition
of the set Hi as the points (corresponding to the set of mix-
ture distributions) obtainable from topology T\. Similarly
we have H3 for topology 73. If the convex sets Hi and H3
intersect, then there is a mixture distribution obtainable
by both topologies, and hence the model has nonidenti-
fiable mixture distributions. We prove (under certain as-
sumptions on the model) that if the sets do not intersect,
then there is a hyperplane that strictly separates the sets.

The existence of a strictly separating hyperplane im-
mediately yields what we refer to as a linear test. A hyper-
plane is defined by a vector y. If y is a strictly separating
hyperplane for the sets Hi and H3, then yTz < 0 for all
2 G Hi and yTu > 0 for all u e H3. We define a linear test
as a vector y which defines a strictly separating hyper-
plane. The existence of such a linear test for T\ and T3
immediately yields a linear test for any pair of 4-taxon
trees. It suffices to consider trees with 4-taxon, because
the full topology can be inferred from all 4-taxon subtrees
(Bandelt and Dress, 1986).

Our duality theorem holds for models whose tran-
sition matrices can be parameterized by an open set. This
means that there is an open set W of vectors in M.d (for
some d) and the transition probabilities for the model
(i.e., the entries of the transition probability matrices we)
can be expressed as a set of multilinear polynomials with
domain W. This holds for most of the popular mod-
els, including Tamura-Nei, HKY, Felsenstein, Kimura's
2- and 3-parameter, Jukes-Cantor, and CFN models. (See
Felsenstein, 2004, for an introduction to these models.)
For all of the reversible models whose transition rates
can be solved analytically, it turns out that they can be
parameterized by an open set. We demonstrate this in
the supplemental material for the Tamura-Nei model.

This assumption on the model implies that the transi-
tion probabilities can be expressed as multilinear polyno-

mials in the parameters of the model. Using this form of
the model we can prove the following duality theorem.

For every phylogenetic model whose transition matri-
ces can be parameterized by an open set, we prove that
exactly one of the following holds:

Nonidentifiable: There is a nonidentifiable mixture distri-
bution on 4-taxon trees. Thus, in the worst case, it is
impossible to infer the common tree topology from
a mixture distribution, because there are multiple 4-
taxon tree topologies that generate identical mixture
distributions.

Linear test: There is a linear test that separates any pair
of 4-taxon trees. This implies ian easy method for re-
constructing the common topology from a mixture
distribution. Note, the test is determining the gener-
ating tree topology, but it has no connections to (or
implications for) likelihood methods.

The duality theorem uses a classical result of Bandelt
and Dress (1986), which implies that if a model has non-
identifiable mixture distributions, then there is an exam-
ple with just 4-taxon. This simplifies the search for non-
identifiable mixture distribution*;, or for proving they do
not exist.

IMPLICATIONS OF THE DUALITY THEOREM

Linear tests are closely related to linear invariants, such
as Lake's method. A linear invariant is a hyperplane that
contains the entire set Hi and does not intersect H3. A lin-
ear invariant can be transformed into a linear test. Conse-
quently, Lake's linear invariants for the Jukes-Cantor and
Kimura's 2-parameter model give a linear test for these
models. Therefore, there are no nonidentifiable mix-
ture distributions in the Jukes-Cantor and Kimura's 2-
parameter models. This is in contrast to the example from
the section Nonidentifiability at the Critical Point of a
nonidentifiable mixture distribution for the CFN model.

Whereas every linear invariant can be transformed
into a linear test, the reverse implication is not necessar-
ily true. Thus linear tests are potentially more powerful
than linear invariants.

For Kimura's 3-parameter model we show that there
are nonidentifiable mixture distributions. We prove this
result by showing there is no linear test for this model,
and then the duality theorem implies there is a noniden-
tifiable mixture distribution. This proof is nonconstruc-
tive, thus we prove there exist nonidentifiable examples
without providing an explicit example. In many cases
nonconstructive proofs are substantially simpler than
constructive proofs. On the other hand, because of the
nonconstructive nature of our proof, we do not have
bounds on the size of the mixture (i.e., parameter k).
Because Kimura's 3-parameter model is a special case
of any super model such as the general time-reversible
model (GTR), some examples of GTR models will be non-
identifiable in this setting.

It is, however, unknown at this point how large the set
of nonidentifiable mixture distributions is in the CFN or
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K3 models. Earlier work of Allman and Rhodes (2006)
proved that, when restricting attention to mixtures of
size 3 or smaller, the set of nonidentifiable mixture dis-
tributions form an insignificant portion of all mixtures
(more precisely, the set of nonidentifiable mixtures has
measure zero). For larger mixtures, it is an interesting
question whether the nonidentifiable mixtures are a sig-
nificant portion of all mixtures.

In future work we hope to address the existence of
nonidentifiable mixture distributions in models such as
Tamura-Nei and HKY models. The models considered in
this paper are symmetric, which is utilized in the proofs
on the existence of linear tests.

5-TAXON MIXTURES AND SLOW MIXING
OF MCMC METHODS

In this section we address the implications of some
of our earlier examples for Markov chain Monte Carlo
(MCMC) algorithms. In particular, we consider exten-
sions of the 4-taxon mixture examples, which showed
inconsistency of maximum likelihood in the CFN and
Jukes-Cantor models.

Figure 6 presents a 5-taxon mixture example for the
Jukes-Cantor model. (This example is related to the ear-
lier 4-taxon examples with C = 1 /8 and the internal edge
approximately ac.)

We study maximum likelihood of the 15 5-taxon trees,
and analyze the likelihood landscape with respect to
nearest-neighbor interchanges (NNI). For sufficiently
small x, we prove that the two trees Si and S3 (depicted
in Fig. 1) are local maximum with respect to NNI tran-
sitions. In particular, we prove that each of these trees
has larger expected log-likelihood than any of the 8 5-
taxon trees that are connected to Si or S3 by an NNI
transition. Thus, in the tree space defined by NNI transi-
tions, Si and S3 are local maxima separated by a "valley"
(trees with lower expected likelihood). As the number of
characters increases, the valley becomes deeper. Hence,
Markov chain Monte Carlo algorithms using NNI tran-
sitions take longer to escape from a local maxima as the
number of characters is increased. Consequently, MCMC
algorithms with NNI transitions converge exponentially
slowly (in the number of characters) to the posterior
distribution.

These results improve recent work of Mossel and
Vigoda (2005), who proved similar results for examples
on a mixture of two different tree topologies. Note, in
contrast to the work of Mossel and Vigoda, in our set-
ting there is a correct topology. We expect our MCMC

FIGURE 6. 5-Taxon example for Jukes-Cantor model where Markov
chains with NNI transitions are exponentially slow. The quantity x is a
parameter measuring the variation between the trees, which needs to
be sufficiently small for the slow-mixing result to hold.

results to extend (as in Mossel and Vigoda, 2005) to
other transitions such as subtree pruning and regrafting
(SPR) and tree bisection and reconnection (TBR). Note,
our results do not imply anything about the conver-
gence rate of Metropolis-coupled Markov chain Monte
Carlo (MC3), which is used in MrBayes (Rohnquist and
Huelsenbeck, 2003), but we hope that the mathematical
tools we present will be useful in future theoretical work
on the convergence properties of MrBayes.

NONUNIFORM MIXTURES

Our examples for the inconsistency of maximum likeli-
hood (section Phase Transition for Inconsistency of Max-
imum Likelihood), the nonidentifiability for the CFN
model (section Nonidentifiability at the Critical Point),
and the slow convergence of MCMC algorithms (section
5-Taxon Mixtures and Slow Mixing of MCMC Methods)
use a uniform mixture of two trees. A uniform mixture
simplifies the mathematical computations but is not an
essential feature. There exist nonuniform mixtures with
the same phenomenon.

For example, we can achieve nonidentifiablity in the
CFN model with a nonuniform mixture by taking an ap-
propriate modification of our earlier example. In partic-
ular, by allowing the branch length of the internal edge
to be different between the two trees and choosing these
lengths appropriately (as a function of the mixing param-
eter p), we obtain a nonidentifiable mixture distribution.
This construction is detailed in Supplementary Material
(see Theorem 5).

METHODOLOGY

Proving results on maximum likelihood methods are
difficult. Hence, our proof method for inconsistency of
maximum likelihood on the mixture examples of Figure 2
may be a useful tool for certain analyses. Note our results
are for the region x > 0. The proof uses properties of the
x = 0 case. When x = 0 the two trees in the mixture are
identical, hence the character data are generated from a
pure (i.e., nonmixture) distribution. Moreover, for x = 0
we have ac = 0 (i.e., the internal branch length is zero),
hence the distribution can be generated from any topol-
ogy. Therefore, for x = 0 we can easily determine the
assignments of branch probabilities that maximizes the
likelihood. When x is small and non-zero, we consider
the Taylor expansion of the likelihood function. Conse-
quently, we obtain the likelihood as a function of the
Jacobian and Hessian of the likelihood function.

In Supplementary Material (Lemma 3), we state the
main technical lemma, which is proved in Stefankovic
and Vigoda (2006), and present an extension of this result
(Lemma 4) tailored to the purposes of this paper. We then
prove the maximum likelihood results for the 4-taxon
mixture examples in the CFN and Jukes-Cantor models.
The stated results for MCMC methods on the 5-taxon
examples are proved in Stefankovic and Vigoda (2006).

The proof of our duality theorem is related to convex
programming duality as noted earlier. For a pair of
convex sets, such as Hi and H3 defined in the section
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Geometric Intuition, convex programming duality
implies that if the sets do not intersect, then there is a hy-
perplane separating the sets. However, the hyperplane
may intersect both sets. In particular, for the hyperplane
defined by the vector y, we may have yTz < 0 for all
2 e Hi and yTu > 0 for all u e H3.

We prove that there is in fact a strictly separating hy-
perplane y. Recall, if it is strictly separating, it implies
that yTz < 0 for all z e Hi and yTu > 0 for all ue H3.T0
obtain this we consider a separating hyperplane y and
suppose that there is a point z € H\ where yTz = 0. Using
the fact that the set Hi is the convex hull of a set of multi-
linear polynomials (with an open set as its domain), we
can then argue that for some z' very close to z we have
z' e Hi and yTz' > 0, which contradicts the assumption
that y is a separating hyperplane. The details of the proof
are contained in Stefankovic and Vigoda (2006).

CONCLUDING REMARKS

A nice aspect of our duality theorem is that if a model
has no linear test distinguishing 4-taxon trees, then there
are ambiguous mixture distributions. For many models,
such as Kimura's 3-parameter model, this simplifies the
proof that the model has ambiguous mixture distribu-
tions. In particular, certain symmetries of the model can
be used to narrow the space of possible tests.

We expect our proof approach for analyzing maximum
likelihood will be useful for related problems. The proofs
rely on the internal edge probabilities approaching zero
in the limit. This is a consequence of the proof methodol-
ogy that uses the first few terms of the Taylor expansion.
It appears that all known proof techniques for analyzing
maximum likelihood require at least some subset (or all)
of the edge probabilities go to zero (e.g., see Chang, 1996;
Mossel and Vigoda, 2005). Avoiding these asymptotics
seems to be a difficult open question. We expect these
results to hold for a much larger class of examples, with
larger internal branch lengths. This is supported to some
extent by the results of computational experiments re-
ported in Kolaczkowski and Thornton (2004). New math-
ematical tools will be needed for such extensions.
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SUPPLEMENTARY MATERIAL

1 TAMURA-NEI CAN BE PARAMETERIZED BY AN OPEN
SET

For the Tamura-Nei model, we will show how the model can be
parameterized by an open set. The model has rates a0, «i and /3 and
time t. For i, j e {0,1,2,3}, the transition, probabilities are the following
(see (13.11) in Felsenstein, 2004):

exp(-/30[l - exp(-aff)]

+ [1 -

where I = L'/2J, 8 is the standard Kronecker delta function, and e(a, b)
is an indicator function that is 1 if a, b e {0,1} or a, b e (2,3}, and 0
otherwise. Setting
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for phylogenetic models, including covarion and mixture models.
J. Comp. Biol. 13:1101-1113.
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x0 = exp(-aoO, x, = exp(-a}t), y = exp(-fit),

we have

P r ( ; \i,t) = xty8(i = -xt)
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Hence, the transition probabilities can be expressed as multi-linear
polynomials in x0, x^, and y.

2 MAIN THEOREMS ABOUT MAXIMUM LIKELIHOOD

Here we prove the following theorem about the Jukes-Cantor model.

Theorem 1. Consider the Jukes-Cantor model. For the two trees in Figure 2,
let fj. denote the mixture distribution defined by a uniform mixture (i.e., p^ =
p2) of these two trees. Note /x is from the class U2 (the set of uniform mixtures
of size 2). Recall the maximum likelihood £,((T) is over a homogenous model
(i.e., the class M1).

For all C e (0,1/4), there exists x0, for all x < x0, there exists
ac = ac(C, x) e (0,1/4) such that:

1. For a = ac, the maximum likelihood of T\ and T3 are the same; i.e.,

CTl(jx) = CT3(fi).

2. For nil a < ac, T3 is the maximum-likelihood tree; i.e.,

CT3(ji) >

For the CFN model we can prove ambiguity of likelihood at the criti-
cal point ac for all x, and the maximum likelihood is on the "wrong tree"
when a < ac and x is sufficiently small. Here is the formal statement
of the theorem.

Our proofs of the above theorems rely on technical tools devel-
oped in Stefankovic and Vigoda (2006). We first describe the rele-
vant technical lemmas in Section 2.2, and then prove Theorems 1
and 2 in Sections 2.4 and 2.3, respectively. Before going into the
proofs we formally present the nonidentifiability result at the critical
point.

2.1 Nonidentifiabile Mixture for CFN at ac

We next present the proof of a nonidentifiable mixture distribution
in the CFN model. The result is a generalization of the example, and
also shows there exists nonuniform mixtures that are nonidentifiable.
The theorem implies Part 1 of Theorem 2 as a special case.

In the following we describe the branch lengths on a 4-taxon tree T
as a 5-dimensional vector w. For 1 < i' < 4, the i th coordinate of w is
the branch length of the edge incident to the leaf labeled i. The final
coordinate of w is the branch length of the internal edge of T.

In the following theorem, p is the mixing parameter. When p ^ 1/2
(i.e., it is not a uniform mixture), then the branch length of the internal
edge will differ between the two trees.

Now we can formally state the theorem.

T h e o r e m s . Consider the CFN model. For any 0 < a,b < 1/2 and
0 < p < 1/2, let

w = - - (a,b, b,a, y)

w' = (b,a,a, b, S),

where

Theorem 2. Consider the CFN model. For the two trees in Figure 2, let \x
denote the mixture distribution defined by a uniform mixture (i.e., p\ = p2)
of these two trees. Note /z is from the class U2 (the set of uniform mixtures
of size 2). Recall the maximum likelihood £,,(7) is over a homogenous model
(i.e., the class M1).

For all C e (0,1/2), there exists x0, for all x < x0, there exists
ac = ac(C, x) e (0,1/2) such that:

1. For a = ac, the maximum likelihood of Ti and T3 are the same; i.e.,

2. For all a < otc, T3 is the maximum-likelihood tree; i.e.,

Remark 3. For the CFN model, we in fact prove part (1) of Theorem 2 holds
for all x 6 (0, min{C, 1/2 - C}). This follows from Theorem 5.

Remark 4. We prove there exists at least one critical point ac where part
1 holds (i.e., £T,(M) = £T3(M))' but there may be many such points ac. In

ection 21 we prove that
lds ( e , £T,(M) £

Section 2.1 we prove that

(1)

is such a critical point. (In fact, at that particular critical point the distribution
is also nonidentifiable.) Since there may be multiple critical points, Part 2 holds
zuith respect to the smallest critical ac, which we cannot determine the exact
value of.

We expect that the ac in (1) is the unique critical point. However, our
proof methodology only uses the highest order terms of the likelihood function.
Hence, it is not detailed enough to prove the uniqueness ofac.

y = nip,

S = ?7/(l — p), and

ab

Consider the folloioing mixture distribution, which is in the class M2:

ix = pix(J\, w) + (1 - p)n(Tu w')

The distribution \JL is invariant under the swapping of leaves 1 and 3. In
particular, for the mixture distribution (which is also in M2)

ji = pn(.T3, «;) + ( ! - p)/u.(T3, w')

we have

Hence, whenever y and S satisfy 0 < y, 8 < 1/2 then \x and jx are valid
distributions and the topology is nonidentifiable (since there is a mixture /x
on TT that is identical to a distribution jx on T3). Note for every 0 < p < 1/2,
there exists a and b where y and 8 are valid, and hence the above construction
defines a nonidentifiable mixture distribution.

Since the distribution \x is invariant under the relabeling of leaves 1 and
3, likelihood maximized over M1 is the same for topology T^ and T3; i.e.,

CT^ix) = CT3(tx)

Part 1 of Theorem 2 is the special case when p = 1/2, and a and b
are rephrased as a = 1/2 - (C + x) and b = 1/2 - (C — x). Note, when
p = 1/2, 8 = y and thus the internal edge has the same branch length
in the two trees.
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In Stefankovic and Vigoda (2006) (see Proposition 17) we give a
relatively simple proof of the above theorem. That proof relies on some
symmetry properties of the model which are introduced as a precursor
to the proof of the duality theorem. Since we have not introduced these
properties here, we instead present a more "brute-force" style proof.

Proof. Swapping the leaves 1 and 3 changes T, into T3. Let a denote an
assignment of labels from (0,1} to the leaves, i.e., or : {1,2,3,4} ->• {0,1}.
Let a denote the assignment obtained from o with the assignment for
leaves 1 and 3 swapped (i.e., a(l) = CT(3), <T(3) = a(l) and a(i) = a{i)
for i = 2,4).

An assignment a has the same probability in (Ti, w) as the assign-
ment a in (T3, w). Hence,

ix(o) = (2)

Note, many assignments are fixed under swapping the labels for
leaves 1 and 3. In particular, for a as any of the following values:

0000, 0001, 0100,0101,1010,1011,1110,1111

we have a = a and hence tx(a) = /x(a). Thus we will can ignore these
assignments and prove that the probabilities of the other assignments
remain the same when the labels of leaves (1) and (3) are swapped.

We will show that in the mixture distribution /x, the probabilities of
assignments 0010 and 1000 are the same:

/x(0010) = /i(1000) (3)

Since for a = 0010, we have a = 1000, then from (3) and (2) it follows
that

= £(0010) and /u(1000) = £(1000).

Moreover, since the CFN model is symmetric, we also have

li(1101) = £(1101) and /LI(0111) = £(0111).

Finally, we also show that

Ai(0110) =

which implies

(4)

4 to have weight C, and the other internal edge to have weight 0.
Let v denote this assignment of edge weights. For every tree S, this
assignment generates distribution ix (i.e., fx(S, v) = (x). This is also the
unique such weight (see Stefankovic and Vigoda, 2006, for a proof).
Thus this is the assignment of edge weights for S that maximizes the
expected log-likelihood under /x.

For x small the following lemma bounds the expected maximum
expected log-likelihood in terms of the log-likelihood at x = 0 and the
Hessian and Jacobian of the likelihood function. The error term will be
o(x2), which is a smaller order term when x is sufficiently small. This
will then imply that for x sufficiently small, Cs(^x) is close to £s(Mo)
and we simply need to compute the Hessian and Jacobian functions to
bound Cs(ixx).

Before stating the general lemma, let us preview the terminology
in our setting. We are interested in computing the likelihood for dis-
tribution nx where x > 0. We will use the distribution /x = ix0 which
corresponds to the tree with internal edge weight zero. (Note under \x
each of the 44 assignments to the leaves has positive probability.) To
bound the maximum likelihood of \xx on some tree topology S (which
can be any topology), we need that the distribution is achievable on S.
In our case, this is clearly true, as discussed above.

If x is small, then

fxx =

where A/xx is a vector whose sum of coordinates is zero (thus, A/xx is
a vector representing the change in fxx from ix). As x -*• 0 we will have
A/xx —> A[xQ. We will use A/x for bounding the maximum likelihood of
fxx for x small. The maximum expected log-likelihood of ixx on S will
be expressed in terms of the expected log-likelihood of /x under the tree
corresponding to \xx, which is

and the first few terms from the Taylor expansion.
Here is the formal statement of the lemma.

Lemma 6 (Stefankovic and Vigoda, 2006). Let \xbea probability distri-
bution on £2" such that every element has non-zero probability. Let S be a
leaf-labeled binary tree on n nodes. Suppose that there exists v in the closure
of the model such that fx(S, v) = /x and that v is the unique such weight. Let
A/xx be such that A/u^l = 0, and Aixx -» Ajuo as x -> 0.

Let g(w) = CsiV1{fi), and hx(w) = (A/x*)7" \nixs,w. Let H be the Hessian
of g at v and Jx be the Jacobian ofhx at v. Assume that H has full rank. Then

Ai(0110) = £(0110),

= £(0011).

= £(1100), /x(1001) = £(1001),

Hence, (3) and (4) imply that those assignments which are not fixed
by swapping leaf labels 1 and 3, have the same probability in fx and
£. Thus to complete the proof, we need to show that (3) and (4) hold.
These are straightforward to check in any symbolic algebra system,
such as Maple.

2.2 Proof Tools for Maximum Likelihood Results
In this section we present the technical tools needed to prove The-

orems 1 and 2. Before stating precise lemmas, we begin by explaining
some of the intuition of the proofs and how the notation applies to the
theorems.

Let ixx denote the mixture distribution defined by the example in
Figure 2 (in the CFN or Jukes-Cantor model). Our result is for x > 0,
but the proof will use properties of the case x = 0. Let ix = ix0. Note in
the case x = 0, the two trees in the mixture are identical. Hence, ix = fi0

is a pure distribution (i.e., generated by a single tree). Moreover, for
x = 0, since the internal edge weight is 0 this distribution is achievable
on every topology; simply set the terminal edges to taxa 1, 2,3, and

s(ix + xA/xx) <ixT -— JoH"1 JO
T + o(x2). (5)

If (H~^JT)i < 0 for all i such that u, = 0 then the inequality in (5) can be
replaced by equality.

Remark 7. When (H" 1 / 7 ) / < 0 for all i such that u,- = 0 then the likeli-
hood is maximized at non-trivial branch lengths. In particular, for the CFN
model, the branch lengths are in the interval (0,1/2), and there are no
branches of length 0 or 1/2. Similarly for \he ]ukes-Cantor the lengths are in
(0,1/4).

We will need the following extension of the above result.

Lemma 8. Let \xbea probability distribution on Q" such that every element
has non-zero probability. Let Sbea leaf-labeled binary tree on n nodes. Suppose
that there exists v in the closure of the model such that(x(S,v) = tx and that v is
the unique such weight. Let A(xx be such that A/xJl = 0, and A/xx ->• A/x0

as x -> 0. Let g(w) = Cs,w(ix) and hx(w) = (Aixx)
T ln/xS;UJ. Let H be the

Hessian of g at v and Jx be the Jacobian ofhx at v. Assume that H has full
rank. Then
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-(Aw)TH(.Aw) + xJ0(Aw)\ +o(x2).
2 J

(6)

where the maximization is restricted to Aw such that (Aw), > 0 whenever
v, = 0.

Remark 9. Now we remark on hoiu the optimization problem in (6) can be
solved. Let 1 be the set of indices with Vj = 0. Let u be an optimal solution
of (l/2)uTHu + x]0u subject to the restriction M,- > 0 for i e I. Note that
u exists because the optimization happens on a continuous function over a
compact set. Let / ' c / be a set of indices that are zero in u. Let } ' be JQ

restricted to indices that are not in I' and let H' be H restricted to indices not
in I'. Then, by the optimality of u, we have that u restricted to indices not in
l'is(HTHxJ')T.

Thus the maximization problem in (6) can be solved as follows. For each
V C [ do the following. Let ]' be Jo with entries at indices in I' zeroed out
and let H' be H xoith entries at indices in V zeroed out. Compute (H')"1 (xj ')T

and check whether all entries at positions in I are non-negative. If they are
then xJ'(H')~l(xJ')T is a candidate solution. Pick the largest candidate so-
lution. Note that only solutions that satisfy the restriction ut > 0 for i e /
are candidate, and by the previous paragraph an optimal solution is candi-
date. Thus using the procedure described we obtain an optimal solution of
(6).

Proof of Lemma 8. In the proof of Lemma 6 from Stefankovic and Vigoda
(2006), it is proved that

+ x A/xx) = ixT -(AvfH(Av) + xJx(Av)

(7)

U2 := -16C4 + 32C3 - 16C2 + 2

L73 := -8C4 + 16C3 - 16C2 + 8C - 2

L74 := -2(2C2 - 2C + I)2

We will need the following property of the polynomials.

Observation 10. The polynomials Z, U2 and —U\, —U3, -L/4 are positive
forC e (0,1/2).

The observation is easily proved by plugging in C = 1/4, and then
checking that the polynomials do not have roots on (0,1/2); e. g., using
the method of Sturm sequences.

Let Hj be the Hessian and /, the Jacobian for T,-. Because of symmetry
we have that the Hessians are the same. We let H := H\ = H2 = H3 and
let H' be H with the last (fifth) row and column replaced by zeros. The
Jacobians differ only in the last coordinate. Let / ' be the vector which
agrees with /,, }2, J3 on the first four coordinates and is zero on the last
(fifth) coordinate.

Let I, be the last coordinate of —H"1/;. Recall that if lt is positive
then, by Lemma 6,

>)-^r(Ji)oH-\li)l+o(^). (8)

On the other hand, if l-t is not positive then, by Remark 9,

T X2 , - ,

CT,fa + xA/ix) = fjL lr\fj, +xhx(v) (J')(Hr) (/') +o(x). (9)

and £,,+Al,(/x + xA/xx) < Cv(ix + xAfxx) for ||Au|| = u>(x). Thus (7) is
maximized for ||Au|| = O(x).

The edge weights u + Au are invalid if, for some /, u, = 0 and (Aw)/ =
0. On the other hand, if for all i where u, = 0 we have (An), > 0 and Av
are sufficiently small, then then v + Av are edge weights. Note that we
are considering || Au|| = O(x). Hence, we have Au is sufficiently small
by choosing x sufficiently small. Therefore,

= ixr ln/z + xh(v) + max -(Aw)TH(Aw) + xJx(Aw)\
an. L2 J

+ O(x3),

where the maximum is taken over Au; such that (Ato), > 0 whenever
u, = 0. From A/z* ->• A/Lt0 it follows that

Note that when £, is positive then the right hand side of (8) is strictly
bigger than the right-hand side of 9.

A tedious computation yields

max I -(Au;)' H{Aw) + xJx(Aw)

= max \-(Aw)TH(Aw) + xJ0(Aw)] [1 + o(l)],
Au. {2. J

where the maxima are taken over Aiu such that (Aw),- > 0 whenever
v, = 0 . •

2.3 Proof of Theorem 2 for the CFN model
We begin with the simpler proof for the CFN model.
Let a = fi • x1 be the weight of the middle edge.
We will need the following polynomials in C:

Z := (1 - 4C + 4C2)(1 - 2C + 2C2)2

U\ := 24C6 - 72C5 + 86C4 - 52C3 + 16C2 - 2C

u«/z,
e2 =

Since U\ and U3 are negative and Z is positive, then t2 is always
negative.

For small /8 we have that l3 is positive and t\ is negative. Thus, tree
T3 has higher likelihood than T2 and Ti (for sufficiently small x). In
addition, by Remark 7, since l3 > 0, the maximum likelihood for T3 is
achieved with non-zero branch lengths. For T] and T2 the optimization
procedure outlined in Remark 9 may give zero length edges. But, since
we only want to upper bound the likelihood for these trees, we can
allow zero length edges. This proves Part (b) of Theorem 2.

We know from Theorem 5 that there exists an a'c where the likeli-
hood of Ti and T3 are equal. We want to show there exists ac where the
likelihoods of Ti and T3 are the same, and, for a < ac, T3 is the maxi-
mum likelihood tree. This requires showing there exists ac where the
following hold: at ac we have t\ = t3 (and both are positive so that the
maximum likelihoods on these trees are achieved at non-zero branch
lengths); and for a < ac we have £.1 > l3 (and U is positive).

For large /} (i.e., large a) we have that t3 is negative and l\ is positive.
Thus for large )3, tree Ti has higher likelihood than T2 and T3.

We first argue that for any a, ^ > 0 and/or l3 > 0. Then the result
follows easily by considering the smallest a where U = h-

Multiply U by the positive polynomial (-Hi) and add it to l3. Since
-U, is always positive, then if —t\U\ + l3 > 0 then at least one of t\
and l3 must be positive. Note
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We obtain

~(U2 - U3U1) = ^(192C10 - 960C9 + 2224C8 - 3136C7

+2960C6 - 1936C5 + 890C4 - 232C3 + 32C2 - 4C + 2),

which is positive for C e [0,1/2] (this is proved using Sturm sequences
as before). Thus, at least one of U or t3 is always positive.

Take the smallest /3C where ^ = l3. We know there exists at least
one such /3C since for small ft we have ii > 0 and l3 < 0, whereas for
large /3 we have lA < 0 and l3 > 0. Since at least one of U and £3 is
positive, we have that both £1 and l3 are positive when £1 = l3. Thus
the maximum likelihoods on Ti and T3 are the same at & (since 61 = £3),
and are achieved on non-zero branch lengths (since £\,t3 > 0).

All the formulas are continuous in /3 and hence for all yS < fic :—
ac/x~2 the likelihood of T3 is higher than the likelihood of Ti, and for
all £ > fic the likelihood of T3 is smaller than the likelihood of Ti.

This completes the proof of the theorem.

2.4 Proof of Theorem 1 for the Jukes-Cantor model
The proof for the Jukes-Cantor model will follow the same lines as

the argument for the CFN model; however, some of the quantities are
more complicated.

Let a = fl • x2 be the weight of the middle edge.
We will need the following polynomials in C:

Z = (-1

x(2,359,296C15 + 11,010,048C14 - 42,385,408C13

+ 55,336,960C12) - 33,972,224C" + 4,602,880C10

+ 9,055,232C9 - 8,473,344C8 + 4,156,416C7 - l,372,704C6

+ 326,728C5 - 57,200C4 + 7,308C3 - 654C2 + 37C - 1)

IT, = 21,233,664C16 - 98,697,216C15 + 203,702,272C14

- 247,480,320C13 + 196,929,536C12 - 107,718,656c11

+ 41,333,888C10 - 11,267,328C9 + 2,317,632C8 - 465,360C7

+ 123,492C6 - 33,482C5 + 6,644C4 - 846C3 + 62C2 - 2C

U2 = 393,216C12 - 1,515,520c11 + 2,001,920C10 - 917,504C9

- 441,728C8 + 830,176C7 - 517,696C6 + 183,344C5

- 39,128C4 + 4,604C3 - 164C2 - 22C + 2

U3 = 49,152C12 + 548,864C" - l,646,080C10 + 2,025,984C9

- l,440,896C8 + 672,800C7 - 226,064C6 + 60,968C5

- 14,600C4 + 3,044C3 - 476C2 + 46C - 2

We will need the following property of the polynomials.

Observation 11. The polynomials Z,U2 and —U\,—U3 are positive for
C e (0,1/4).

Once again the observation is proved by plugging in C = 1/8 and
then using Sturm sequences to prove thai: the polynomials do not have
roots on (0,1/4).

Define H, / ] , ]i, J3, and / as in the proof for the CFN model. More
precisely, let i-J, be the Hessian and /, the Jacobian for 7}. Because of
symmetry we have that the Hessians are the same, thus let H := Hi =
H2 = H3. The Jacobians differ only in the last coordinate. Let / be the
vector which agrees with Ji, J2, J3 on the first four coordinates and is
zero on the last (fifth) coordinate. Let U be the last coordinate of -H"1 /,.
Recall that if lx is positive then (8) holds, and if lt is not positive then
(9) holds.

Note that when <!, is positive then the right-hand side of (8) is strictly
bigger than the right-hand side of (9). We now have

i,=p + U3/Z,

Note that t2 is always negative. As in the CFN model, for small fi
we have that i3 is positive and U is negative. Thus tree T3 has higher
likelihood than T2 and Ti (for sufficiently small x). The proof of Part (a)
is along identical lines as for the CFN model. However the polynomial
of interest, i.e., (1/Z)((J2 — U3 • Hi) is significantly more complicated.

This completes the proof of the theorem.
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