
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

REMOVING INDEPENDENTLY EVEN CROSSINGS∗

MICHAEL J. PELSMAJER† , MARCUS SCHAEFER‡ , AND DANIEL ŠTEFANKOVIČ§

Abstract. We show that cr(G) ≤ ( 2 iocr(G)
2

), settling an open problem of Pach and Tóth
[Geombinatorics, 9 (2000), pp. 194–207]. Moreover, iocr(G) = cr(G) if iocr(G) ≤ 2.

Key words. crossing number, independent odd crossing number, Hanani–Tutte theorem

1. Crossing numbers. Pach and Tóth [6] point out in “Which Crossing Num-
ber Is It Anyway?” that there have been many different ideas on how to define a notion
of crossing number, including—using current terminology—the following (see [6, 14]):

crossing number: cr(G), the smallest number of crossings in a drawing of G,
pair crossing number:1 pcr(G), the smallest number of pairs of edges crossing in

a drawing of G,
odd crossing number: ocr(G), the smallest number of pairs of edges crossing oddly

in a drawing of G.
We make the typical assumptions on drawings of a graph: there are only finitely

many crossings, no more than two edges cross in a point, edges do not pass through
vertices, and edges do not touch. (For a detailed discussion, see [14].) One may
consider relaxing some of these assumptions. For example, allowing more than two
edges to cross in a point leads to the notion of degenerate crossing number introduced
by Pach and Tóth [7]. Relaxing the touching condition has no effect on crossing
number or pair crossing number, but it would make odd crossing number identical to
zero. There are also conditions one might consider adding, such as requiring edges to
be straight-line segments, which leads to the notion of rectilinear crossing number (for
which the pair and odd versions coincide with the standard version). Finally, there
is the issue of whether adjacent edges are allowed to cross or whether their crossings
should count. Tutte [18] wrote, “We are taking the view that crossings of adjacent
edges are trivial, and easily got rid of.”

While this is true for the standard crossing number, it is not at all obvious for other
variants (or the particular variant that Tutte was studying). Székely [14] comments,
“We interpret this sentence as a philosophical view and not a mathematical claim.”

In [5], Pach and Tóth suggest a systematic study of this issue (see also [1, sec-
tion 9.4]): they introduce two rules that can be applied to any notion of crossing
number. “Rule +” restricts the drawings to drawings in which adjacent edges are
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not allowed to cross. “Rule −” allows crossings of adjacent edges, but does not count
them toward the crossing number. Pairing ocr, pcr, and cr with any of these two
rules gives a total of eight possible variants (since cr+ = cr as we mentioned above);
one of them has its own name: iocr := ocr−, the independent odd crossing number,
introduced by Tutte [18]. The diagram below is based on a similar figure from [1].

Rule + ocr+ pcr+ cr
ocr pcr

Rule − iocr = ocr− pcr− cr−

Very little is known about the relationships between these crossing number
variants apart from what immediately follows from the definitions: the values in
the display increase monotonically as one moves from the left to the right and
from the bottom to the top. Even the question cr = cr− remains open. Pach

and Tóth [6] did show that cr(G) ≤ (2 ocr(G)
2 ), and this implies that five of the

variants—namely, ocr+, ocr, pcr+, pcr, and cr—cannot be arbitrarily far apart,
but the result does not cover the “Rule −” variants. For cr versus ocr, the bound
by Pach and Tóth is still the best known, though it is expected to be far from
the truth. It implies that cr(G) ≤ (2 pcr(G)

2 ), a bound that can be strengthened:
Valtr [19] showed that cr(G) = O(pcr2(G)/ log pcr(G)), which Tóth [17] improved to
cr(G) = O(pcr2(G)/ log2 pcr(G)). Again, these bounds are not expected to be opti-
mal, and, indeed, cr = pcr has been conjectured. On the other hand, we do know
that ocr and pcr (and, therefore, ocr and cr) differ: the authors showed that there is
an infinite family of graphs with ocr(G) < 0.867 ·pcr(G) [13]. This separation was im-

proved by Tóth to ocr(G) < 0.855 ·pcr(G) [17]. The upper bound pcr(G) ≤ (2 ocr(G)
2 )

which follows from the bound by Pach and Tóth is still the best known in this case
as well.

In this paper, we show that all eight crossing number variants are within a square
of each other.

Theorem 1.1. cr(G) ≤ (2 iocr(G)
2 ).

This answers an open problem from [5, Problem 13]; also see [1, Problem
9.4.7]. Pach and Tóth asked whether there are functions f , g, and h for which
cr(G) ≤ f(cr−(G)), pcr(G) ≤ g(pcr−(G)), and ocr(G) ≤ h(iocr(G)) for all graphs

G. Theorem 1.1 implies that f = g = h = (2x2 ) will do, but this is probably not the
optimal choice for f , g, and h and quite possibly not for bounding cr in terms of iocr
either.

Theorem 1.1 immediately implies that iocr(G) = cr(G) if iocr(G) ≤ 1. In section 3
we strengthen this to iocr(G) = cr(G) if iocr(G) ≤ 2. Previously, we showed that
ocr(G) = cr(G) if ocr(G) ≤ 3 [10], but the result for iocr is harder, since a bound
on iocr(G) does not imply any a priori bound on the number of edges crossing some
other edge oddly. Indeed, the new result generalizes the Hanani–Tutte theorem, which
states that iocr(G) = 0 implies that cr(G) = 0. There are aspects of the Hanani–Tutte
theorem which are still not well understood, for example, to what extent it relies on
the underlying surface: it has only recently been extended to the projective plane;
that is, we now know that iocrN1(G) = crN1(G) if iocrN1(G) = 0 [9]. However, it
is not clear how to extend this to the case that iocrN1(G) ≤ 1 or how to prove the
Hanani–Tutte theorem for surfaces beyond the projective plane. We do know that
ocrS(G) = crS(G) if ocrS(G) ≤ 2 for arbitrary surfaces S [11].

The independent odd crossing number is implicit in Tutte’s paper “Toward a
Theory of Crossing Numbers” which attempts to build an algebraic foundation for
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the study of the standard crossing number [18]. From an algebraic point of view, ocr
and iocr are much more convenient parameters than the standard crossing number;
for example, as Pach and Tóth pointed out, ocr ≤ k and iocr ≤ k can be recast as
problems over vector-spaces [6]. Tutte’s algebraic approach has been continued by
Székely [14, 15] and, along different lines, Norine [3] and van der Holst [20]. Theo-
rem 1.1 justifies the approach of studying standard crossing number via independent
odd crossing number by showing that they are not too far apart; indeed, it is tempting
to conjecture that cr(G) = O(iocr(G)). And in spite of the fact that determining the
independent odd crossing number of a graph is NP-complete [8], we feel that due to
its algebraic nature, it offers an intriguing and underutilized alternative approach to
algorithmic aspects of crossing number problems.

2. Removing even more crossings. An edge in a drawing of a graph is odd if
it is part of an odd pair, which is a pair of edges that cross an odd number of times.

i-even

odd

i-odd

even

Edges that are not odd are even, and they cross every
edge an even number of times (possibly zero times).
An edge in a drawing is independently odd if it is part
of an independently odd pair, which is a pair of non-
adjacent edges that cross an odd number of times.
Edges that are not independently odd are indepen-
dently even; thus, an independently even edge crosses
all nonadjacent edges evenly (possibly zero times),
while it may cross adjacent edges arbitrarily. For con-
venience, we will usually write i-odd for independently
odd and i-even for independently even. Throughout
this paper graphs are simple; that is, they have no
loops or multiple edges, unless we say otherwise.

Pach and Tóth showed that if E is the set of even
edges in a drawing D of G, then G can be redrawn so that all edges in E are crossing-
free. As a corollary, they obtained cr(G) ≤ (2 ocr(G)

2 ) [6]. We strengthen the Pach and
Tóth result to the case that E is the set of independently even edges. According to
Pach and Sharir [4], this has been conjectured.

Our redrawing has the additional property that for every crossing-free cycle C,
the edges and vertices of the graph in the interior (exterior) of C remain in the interior
(exterior) of C after redrawing; we call such a redrawing stable.

Lemma 2.1. If D is a drawing of a graph G in the plane, then G has a stable
redrawing in which the independently even edges of D are crossing-free and every pair
of edges crosses at most once.

With this lemma, the proof of Theorem 1.1 is immediate.
Proof of Theorem 1.1. Start with a drawing D of G that realizes iocr(G), that

is, iocr(D) = iocr(G). If F is the set of i-odd edges in D, then |F | ≤ 2 iocr(D). By

Lemma 2.1, there is a drawing of G with at most ( |F |
2 ) crossings.

To prove Lemma 2.1, we adapt the following result (a different strengthening of
the Pach and Tóth result) from odd edges to i-odd edges. The rotation of a vertex
is the cyclic order in which edges leave the vertex in a drawing read clockwise. The
rotation system of a drawing is the collection of all vertex rotations.

Lemma 2.2 (Pelsmajer, Schaefer, and Štefankovič [10]). If D is a drawing of G
in the plane and F is the set of odd edges in D, then G has a redrawing with the same
rotation system, in which G− F is crossing-free and there are no new pairs of edges
that cross an odd number of times.
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Remark 1. We may assume that the redrawing in Lemma 2.2 is stable: If G is
connected, this is a consequence of Lemma 2.2 not changing the rotation; a vertex v
lying inside (or outside) a crossing-free cycle C of G in D remains on the same side
of the drawing, since a path from v to C has to start on the same side of C after the
redrawing (since the rotation system does not change) and C remains crossing-free
(since it belongs to G−F ), so the path cannot cross C. If G is not connected, we can
find a stable redrawing of each connected component of G and combine the drawings
into a single stable redrawing, using the method of the proof of Claim 1 in section 3.

Splitting a vertex means creating two copies of the vertex with an edge between
them so that any edge incident to the original vertex is incident to exactly one of the
two copies. (According to this definition, it makes sense to talk about the edges of the
original graph occurring in the graph after a vertex split, even though the incidences
of edges will change.)

Now we can state our analogue of Lemma 2.2 for i-odd edges.
Lemma 2.3. If D is a drawing of G in the plane and F is the set of i-odd edges in

D, then one can apply a sequence of vertex splits to obtain a graph G′, with drawing
D′ and set F ′ of i-odd edges in D′, such that (1) there are no new independent odd
pairs (so F ′ ⊆ F ), (2) every edge of G′ − F ′ that is not a cut-edge of G′ − F ′ is
crossing-free in D′, and (3) if C is a cycle of G′ − F ′ and v ∈ V (C), then v has
at most one incident edge in the interior of C and at most one incident edge in the
exterior of C.

An edge is a cut-edge if and only if it belongs to no cycles, so property (2) can
be restated as saying that the union of cycles in G′ − F ′ is crossing-free in D′. Also,
if Y is the set of cut-edges of G′ − F ′, then G′ − (F ′ ∪ Y ) is crossing-free in D′.

Proof of Lemma 2.3. Fix a drawing D of G = (V,E), and let F be the set of
i-odd edges in D. We establish the lemma by induction. We will modify G during
the proof by splitting vertices; namely, a vertex of degree d is split into two vertices
of degrees d1, d2 ≥ 3. We have d1 + d2 = d+2, so d31 + d32 < d3, and thus, we can use
induction over the weight

w(G) :=
∑

v∈V

d(v)3

of G, where d(v) is the degree of v in G. For two graphs of the same weight, we induct
over the number of cycles that are not crossing-free.

Suppose that C is a crossing-free cycle, with a vertex u that is incident to more
than one edge on the same side of C. We modify the graph by splitting u into u1

(replacing u on C) and u2 (attached to the edges on the side with more than one edge)
and inserting an edge between u1 and u2. This operation results in a graph G′ with
smaller weight, and it does not create new i-odd edges (since edges in the exterior of
C cannot cross edges on the interior, as all edges along C are crossing-free). We can
now apply induction to G′ to obtain the result. Thus, we may assume that for every
vertex u in a crossing-free cycle C, u is incident to at most one edge on the interior of
C and at most one edge on the exterior of C. It follows that any two edges incident
to a vertex u in a crossing-free cycle do not cross.

Suppose that C is a cycle made up of i-even edges only, and C is not crossing-
free. At each vertex u of C we can ensure that the two edges of C incident at u
(say, e and f) cross evenly by modifying the rotation at u and redrawing G close to u
(Figure 1). The rotation of the remaining edges at u can then be changed so that each
of them crosses e and f evenly (Figure 2). After the redrawing, all the edges of C are
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e f ⇒ e f

Fig. 1. If e and f form an odd pair, redraw near u.

e f ⇒ e f
or e f

Fig. 2. If another edge incident to u crosses e oddly and f evenly (or vice versa) or if it crosses
both e and f oddly, it can be redrawn so that it crosses both e and f evenly.

even and we can apply Lemma 2.2 to remove all crossings with edges of C without
changing the rotation system or adding new pairs of edges that cross oddly. Now C
is crossing-free, and no new i-odd pairs have been added. Suppose that C′ is a cycle
that was crossing-free before the redrawing. If C and C′ share a vertex u, then the
rotation at u is not modified when making C crossing-free, so the drawing of C′ near
u is unchanged. C′ remains crossing-free under the stable redrawing of Lemma 2.2,
too. Thus, we have decreased the number of cycles that are not crossing-free.

We can therefore assume that any cycle consisting of i-even edges is crossing-free.
Any other i-even edge is a cut-edge in the graph restricted to i-even edges.

With Lemma 2.3, we can now prove Lemma 2.1. Note that property (3) is not
needed for this proof; it is used in section 3.

Proof of Lemma 2.1. Fix a drawing D of G, and let F be the set of i-odd edges
in D. Apply Lemma 2.3 to obtain a graph G′ with drawing D′, let F ′ be the set of
i-odd edges in D′, and let Y be the set of cut-edges in G′ −F ′. Since F ′ ∪ Y contains
all crossings in D′, G′ − (F ′ ∪ Y ) is crossing-free in D′ and we can let S be the set of
its faces. Within each face of S, the edges of Y contained in it can be redrawn one by
one without creating any crossings, since no edge of Y can complete a path that cuts
a face in two (because then it would be part of a cycle in G′−F ′, which contradicts it
being a cut-edge of G′ −F ′). This yields a crossing-free drawing of G′ −F ′, and each
of its faces corresponds to a face of S, with boundary formed from the boundary of
the face of S and the edges of Y in that face. Therefore, each edge of F ′ still has both
endpoints incident to a face. Within each face, all such edges of F ′ can be drawn so
that every pair of edges crosses at most once.2

SinceG′ was obtained fromG by a sequence of vertex splits,G can be obtained from
G′ by a sequence of edge contractions. The edges in E(G′)−E(G) are crossing-free, so
applying that sequence of contractions to the current drawing of G′ yields a drawing of
G in whichG−F ′ is crossing-free and each pair of edges in F ′ crosses at most once. Since
F ′ ⊆ F , it only remains to show that the overall redrawing is stable.

Let C be any cycle in G−F that is crossing-free in D. If a vertex u of C is split by
Lemma 2.3, the cycle is either lengthened by one as u is replaced by an edge and its

2We will see this redrawing technique again in the next section: redrawing cut-edges of G′ − F ′,
which preserves faces to the extent that each edge of F ′ continues to have a face that is incident to
both its endpoints.
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endpoints u1 and u2, or u’s position in C is merely replaced by u1 or u2. In this way,
C is replaced by a crossing-free cycle C′. Vertices and edges on the interior (exterior)
of C end up in the interior (exterior) of C′, and if the split edge is contracted, they end
up in the interior (exterior) of C again. This property also holds true when splitting
and contracting a vertex that is not in C. Other redrawings performed in the proof
of Lemma 2.3 do not affect the drawing near C, except when Lemma 2.2 is applied,
and redrawings from Lemma 2.2 are stable. Finally, when we redraw edges of F ′ ∪ Y
at the beginning of this proof, we do not switch between the interior and exterior of
C. So overall, our redrawing is stable.

3. Small independent odd crossings numbers. In this section, we prove the
following theorem.

Theorem 3.1. If iocr(G) ≤ 2, then cr(G) = iocr(G).
The proof is based on an analysis of the “odd configurations” that can occur

in a drawing; we performed such an analysis when we proved ocr(G) ≤ 3 implies
cr(G) = ocr(G) in [10]. The present situation is more difficult. In [10], we used
Lemma 2.2 and then contracted all crossing-free edges, reducing the problem to a
multigraph with fixed rotation in which every edge contributes to ocr. Since ocr ≤ 3,
we then only had to analyze very small multigraphs. The same method will not
work here because contractions affect iocr, and ocr is unknown. Here, we only have
Lemma 2.3.

Proof of Theorem 3.1. Fix a drawing D of G realizing iocr(G), and let F ⊆ E(G)
be the set of i-odd edges in D. Let G′ with drawing D′ be as in Lemma 2.3, with
F ′ ⊆ F the set of i-odd edges in D′. Then iocr(D′) ≤ iocr(D) = iocr(G).

Suppose that G′ can be redrawn with at most iocr(D′) crossings so that G′ − F ′

is crossing-free. We can then obtain a drawing of G with at most iocr(D′) crossings
by contracting the edges of E(G′)−E(G), which are all crossing-free. Thus, cr(G) ≤
iocr(D′). Since iocr(D′) ≤ iocr(G) and iocr(G) ≤ cr(G) by their definitions, this
yields cr(G) = iocr(G).

By the argument in the preceding paragraph, we can prove the theorem by es-
tablishing the following claim.

Main Claim. Suppose that G is a graph with a drawingD for which
iocr(D) ≤ 2. Let F be the set of i-odd edges in D. If it is true that
(i) every cycle C in G− F is crossing-free in D, and
(ii) for each vertex v ∈ V (C), v is incident to at most one edge on

the interior of C and v is incident to at most one edge on the
exterior of C,

then G has a stable redrawing with at most iocr(D) crossings, in
which G− F is crossing-free.

The theorem follows from the main claim by applying it with G = G′, D = D′,
and F = F ′. Figure 3 shows a drawing of a graph that fulfills the conditions of the
main claim.

We establish the main claim by induction on the number of vertices plus the
number of edges of G.

Let Y be the set of cut-edges of G−F . Then G− (F ∪Y ) consists of the union of
cycles in G − F together with any (isolated) vertices that are incident only to edges
in F ∪ Y . Thus, G − (F ∪ Y ) minus its isolated vertices is the edge-disjoint union
of the 2-connected blocks (maximal 2-connected components) of G − F . Each face
of G − (F ∪ Y ) is bounded by a disjoint union of cycles and isolated vertices. If Y
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Fig. 3. A graph G drawn such that F consists of two pairs of i-odd edges (dotted); cut-edges of
G− F are dashed, and 2-connected components are cross-hatched. Claim 1 establishes that we can
assume that the interiors of the 2-connected components are empty and the outer face of G−(F ∪Y )
contains F ∪ Y , where Y is the set of cut-edges of G− F .

is drawn (or redrawn) without crossings, then the faces of G − F correspond to the
faces of G− (F ∪ Y ), as described in the proof of Lemma 2.1.

Claim 1. We may assume that G is 2-connected, that the interior of each
crossing-free cycle in D is empty in D, and that the outer face of G−(F ∪Y ) contains
F ∪ Y .

Proof. If C is a crossing-free cycle with nonempty interior and exterior, then
apply induction to D minus the interior and to D minus the exterior. The stable
redrawings can be combined into a stable redrawing of G. Thus, we may assume that
C has either empty interior or empty exterior.

By considering the drawing on a sphere instead of a plane, we can consider any
face of G− (F ∪Y ) to be the outer face of the drawing: let it be a face that intersects
F ∪ Y . (This may change the meaning of interior and exterior for a cycle C, but the
redrawing is otherwise stable, and at the end of the proof, the original meanings can
be reobtained via the sphere again.) The exterior of every cycle in G − (F ∪ Y ) is
nonempty, so every cycle in G − (F ∪ Y ) has empty interior. Hence, every face of
G − (F ∪ Y ), aside from the outer face, is the interior of a single cycle (as opposed
to having more than one cycle in the face boundary). Therefore, the outer face of
G− (F ∪ Y ) contains all of F ∪ Y .

If G is not connected, let H be a component. H lies on the exterior of each
crossing-free cycle in G − H (i.e., the exterior of each cycle in G − H − (F ∪ Y )).
Obtain stable redrawings of H and G−H by induction. In the redrawing of G−H ,
there must be an open disk in the outer face of G − H − (F ∪ Y ) that does not
intersect G−H ; insert the redrawing of H into that disk to obtain a stable redrawing
of G.

If G is connected but not 2-connected, let H be a leaf-block with cut-vertex x.
Redraw H and G − (V (H) − x) by induction, and insert the first drawing into the
exterior face of the second drawing restricted to (G − (V (H) − x)) − F , with no
additional crossings, so that both copies of x are drawn at the same point.
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Claim 2. We may assume that F contains exactly two disjoint i-odd pairs in D;
in particular, |F | = 4 and iocr(D) = 2.

Proof. If F contains two disjoint i-odd pairs in D, then |F | ≥ 4 and iocr(D) ≥ 2;
since |F | ≤ 2 iocr(G) = 4 and iocr(D) ≤ 2, we have |F | = 4 and iocr(D) = 2 in this
case.

If F does not contain exactly two disjoint i-odd pairs in D, then there is some
edge e ∈ F that is part of every edge pair contributing to iocr(D). Let F ′ = F − e be
the set of (one or two) edges that form i-odd pairs with e.

Since no two nonadjacent edges in G − e cross oddly, we can apply Lemma 2.1,
which produces a stable redrawing D∗ of G− e that is crossing-free. By Claim 1, the
endpoints of e lie on the boundary of the outer face of G − (F ∪ Y ), and a stable
redrawing will not change that. The boundary of the outer face of G − F in D∗

consists of the edges and vertices in the boundary of the outer face of G − (F ∪ Y )
plus the edges of Y , so the endpoints of e belong to its boundary, too. Adding the
edges of F ′ to D∗ − F ′ one by one according to D∗, each edge divides at most one
face into two. Then e can be drawn so that it does not cross D∗ − F ′ and it crosses
each edge of F ′ at most once. Since |F ′| = iocr(D′), this suffices.

Redrawings can result in edges with self-intersections; these can be easily removed
by modifying the drawing of the edge locally near the self-intersection (see [10], for
example).

Claim 3. We may assume that G−F has no isolated vertices, each leaf of G−F
is incident to exactly two edges of F , and G has minimum degree at least 3.

Proof. If G has a vertex of degree 1, then contract it to a neighbor and apply
induction. We can then add the contracted edge to the drawing without creating any
crossings.

Suppose that G has a vertex v of degree 2, with incident edges e and f . If v is
incident to an edge of F , let f ∈ F . Contract v along e to the other endpoint u of e,
and remove any self-intersections. Any newly created (independent) odd pair would
involve f and an edge f ′ that formed an (independent) odd pair with e prior to the
contraction (so f ′ ∈ F ), so F still contains all i-odd pairs. Apply induction to redraw.
Reinsert v on f close to u, letting e be uv. This yields a stable redrawing of G in
which G − F is crossing-free. Thus, we may assume that G has minimum degree at
least 3.

A vertex of G is incident to at most one edge from each i-odd pair, so it is incident
to at most two edges of F . Therefore, a leaf of G−F must be incident to exactly two
edges of F , and there can be no isolated vertices of G− F .

To complete the argument, we find it useful to extend the definition of rotation
from single vertices to crossing-free connected subgraphs. Suppose that H is a com-
ponent of G − F , and let D∗ be a drawing of G such that H is crossing-free. The
outer face boundary of H in D∗ − F is a closed walk W , oriented clockwise. As we
traverse the outer face alongside W , we pass the ends of edges (or “half-edges”) of F
that are incident to H ; let this cyclic ordering of ends of edges be called the rotation
at H in D∗.

The rotation at H is determined by the full drawing of G, but we also need a way
to talk about potential rotations at H just based on the incidence of edges in F with
H . So consider any crossing-free drawing of H , and let W be its outer face boundary.
(We do not draw any edges not belonging to H .) Note that cut-vertices of H appear
more than once in W . If v is an endpoint of e ∈ F in H and v appears multiple times
in W , then let the end of e at v be assigned to any one of the copies of v in W . Repeat
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this for all ends of edges in F that are incident to H . If more than one edge end is
assigned to the same element of W , then order them arbitrarily. This yields a cyclic
ordering of the ends of edges in F incident to H , which we call an abstract rotation
at H .

A rotation can be represented by a cyclic permutation of edges in F , with each
edge appearing at most twice. (See Figure 4 for an example.) If we wish to distinguish
the two ends of an edge e, we write them as e1 and e2.

a

b
c

d

e

Fig. 4. The rotation at H in the given drawing is the cyclic permutation (a, b, c, d, e); the
abstract rotations at H are (a, b, c, e, d), (a, b, e, c, d), (a, b, c, d, e), (a, b, e, d, c), (a, b, d, c, e), and
(a, b, d, e, c).

Remark 4. For use in upcoming proofs, we briefly consider the cyclic permutations
of edges of F in which no edge appears twice. A set of size one or two has only one
cyclic permutation. There are two distinct cyclic permutations of {a, b, c}: abc and
its reverse, acb. Since there are 4!/4 = 6 cyclic permutations of {a, b, c, d}, if we
group each one with its reverse, then there are three distinct pairs: {abcd, adcb},
{abdc, acdb}, and {acbd, adbc}. Observe that we can switch between these pairs if
we are allowed to swap consecutive elements: we can move from abcd or adcb to
the second pair by swapping c and d, move from the second pair to the third pair by
swapping b and d, and move from the third pair to the first pair by swapping b and c.

Claim 5. We may assume that for any component H of G− F , there exists an
edge of F with both endpoints in H.

Proof. Suppose that H is a component of G − F and no edge of F has both
endpoints in H . Then G−F has more than one component. By Claim 3, H has more
than one vertex.

Let F ′ ⊆ F be the set of i-odd edges incident toH . |F ′| ≥ 2 since G is 2-connected
(by Claim 1).

Since H is connected, we may contract H within the plane to a vertex vH by a
sequence of n(H)−1 edge contractions, deleting any loops created, and removing any
self-intersections. Let G/H and D/H be the resulting (multi)graph and drawing, in
which each edge of F ′ now has vH as an endpoint. Two edges of F ′ can have the
same endpoint in G−H , so G/H may have multiple edges. Since each pair of i-odd
edges in F does not have shared endpoints, G/H can have up to two pairs of multiple
edges, where each pair contains one edge from each pair of i-odd edges in F .

Any crossings created by the contraction are between two edges of F ′. Since those
edges all share the endpoint vH in D/H , no new i-odd pairs are created, and any such
pair that now shares the endpoint vH is no longer i-odd. Therefore, iocr(D/H) = 0 if
|F ′| = 4, and iocr(D/H) = 1 if |F ′| = 3. Remove one edge from each pair of multiple
edges, apply induction to redraw, and then add back each removed edge, drawn in
parallel to its multiple edge mate. Let D′/H be the resulting drawing of G/H .

If D/H has no multiple edges, then cr(D′/H) ≤ iocr(D′/H) ≤ iocr(D/H). If
D/H has two pairs of multiple edges, then D′/H is crossing-free. Suppose then that
D/H has one pair of multiple edges. Since every edge in F is part of an i-odd pair,
removing one reduces iocr by 1, so immediately after applying induction there is at
most one crossing and, therefore, adding the edge back adds at most one crossing. So
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cr(D′/H) ≤ iocr(D/H) in this case and in every case. Also, D′/H is a stable redraw-
ing of D/H since F and vH are in the outer face of G− (F ∪ Y ) restricted to G−H .

Let D′′[H ] be a stable redrawing of D restricted to H obtained by applying
Lemma 2.1 to the drawing of H in D. Since H contains no edges of F , D′′[H ] is
crossing-free, and each endpoint of F ′ in H is on the boundary of its outer face. Fix
an abstract rotation at H in D′′[H ]. If it is the same as the rotation at vH in D′/H ,
then we can replace vH in that drawing by D′′[H ], obtaining a drawing of G whose
only crossings are the crossings in D′/H . This completes the proof. If the rotation at
H in D′′[H ] is equal to the rotation at vH reversed, then we can flip the drawing of
H in the plane, which reverses its rotation so that it equals the rotation at vH . Then
we finish the proof as before. Otherwise, by Remark 4, vH must be incident to all
four edges in F (i.e., |F ′| = 4). Recall that in this case D′/H is crossing-free. Also,
as observed in the remark, by swapping two consecutive elements in the rotation at
vH , and possibly reversing the rotation, we can obtain the rotation at H . We make
the swap by redrawing near vH , which adds one crossing, and, if necessary, flip the
drawing of H to reverse the rotation at H . Then we can replace vH in D′/H by D′′[H ]
(possibly flipped) to get a drawing of G with exactly one crossing so that G − F is
crossing-free. In each case, we obtain a stable redrawing since flipping H will not
switch the contents of the interior (exterior) of any cycle in G− F .

Claim 6. We may assume that G− F is connected.
Proof. By Claim 5, we can assume that for every component H of G−F , there is

some edge e ∈ F with both endpoints in H . Suppose that H ′ is another component
of G − F , and let e′ ∈ F have both endpoints in H ′. Let {f, f ′} = F − {e, e′}. G is
2-connected by Claim 1, so f and f ′ must each connect H to H ′, and G− F has no
other components. G − F has a stable redrawing with no crossings by Lemma 2.1,
and the boundary of its outer face (which has two components, the boundary of the
outer face of H and the boundary of the outer face of H ′) contains all endpoints of
edges of F . Fix abstract rotations at H and at H ′. Then f and f ′ can be added to
the outer face (dividing the outer face into two faces) so that G − {e, e′} is drawn
crossing-free. If the ends of f and f ′ alternate with the ends of e in the rotation at
H , then e can be drawn near H so that it crosses only f , and does so once; otherwise,
e can be drawn near H with no crossings. Similarly, e′ can be drawn near H ′ with at
most one crossing, so altogether we produce a drawing of G as desired.

Let T be the block-cutpoint tree of G − F . In one partite set of T , each vertex
is a block of G− F (a maximal 2-connected subgraph of G− F ); in the other partite
set, each vertex is a cut-vertex of G − F . Adjacency in T is containment in G − F .
(See Figure 5.) Since G−F cannot be a single vertex by Claim 3, each block is either
a maximal 2-connected subgraph of G−F or a cut-edge of G−F with its endpoints.
By the inductive assumption, each 2-connected block is bounded by a crossing-free
cycle in D.

Each leaf of T is a block in G− F , called a leaf-block of G− F .

B1 B2

v1 v2 v3 v4

v5
B1

v1

v1v2

v2

v2v3

v3

v3v4

v4

B2

v3v5

Fig. 5. A graph with two 2-connected blocks (left) and its block-cutpoint tree (right).
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Claim 7. We may assume that G − F has more than one block; equivalently,
|V (T )| > 1. Also, if H is a leaf-block and v is the cut-vertex of G− F in H, then no
edge of F has both endpoints in H − v.

Proof. We first show the claim about leaf-blocks. If H is a leaf-block with only
two vertices (a cut-edge with its endpoints), then an edge of F with both endpoints
in H − v would be a loop, which is not possible, since G is simple.

Suppose then that H is a 2-connected leaf-block. By Claim 1 and condition (ii) of
the main claim, no two edges of F are incident to the same vertex of H − v. Suppose
that e ∈ F has endpoints u, u′ in H − v, and let P be the u, u′-path on the boundary
of H that does not contain v. Choose e so that P is minimal; then there is no edge
of F with both endpoints in P .

Suppose that there is an edge f ∈ F with exactly one endpoint in P ; this endpoint,
x, is in P−{u, u′}. Since G−F is connected, f extends via its other endpoint through
G−F to form an x, v-path Q. Since v, x alternates with u, u′ along the cycle bounding
H , Q crosses e oddly. Then Q contains an edge that crosses e oddly, and since Q
does not contain u or u′, this forms an i-odd pair; since Q contains only one edge of
F , namely f , this edge has to be f . By Claim 2, there is at most one such edge.

By Lemma 2.1 or induction, G−e has a stable redrawing with at most one crossing
(between two other edges of F ). Since H is 2-connected, it is bounded by a cycle, so
in the redrawing, the only edge incident to P − {u, u′} in the exterior of H is f (if
such an edge exists). Therefore, e can be added to the drawing so that e crosses no
edge other than f , which it crosses once. Hence, in this case, we have found a stable
redrawing of G with at most two crossings, and we are done.

Finally, we have to show that we can assume that G − F does not consist of a
single block. G − F cannot be a two-vertex block, since then every edge of F would
be a multiple edge, which is impossible, since G is simple. Hence, if G−F is a single
block, it must be a 2-connected component and every edge of F has both endpoints
on G− F . We can then apply the leaf-block argument, replacing v with an arbitrary
vertex on the boundary of H ; in this case, Q is not needed to show that e and f cross
oddly.

Claim 8. If H is a 2-connected leaf-block of G − F and v is the cut-vertex of
G− F in H, then we may assume that H − v is incident to all four edges of F .

Proof. Let F ′ be the set of edges in F that are incident to H − v. Assume that
|F ′| ≤ 3.

By Claim 7, no edge of F has both endpoints in H − v. H is bounded by a cycle,
so by Claim 1 and condition (ii) of the main claim, no two edges of F can be incident
to the same vertex in H and v is incident to exactly one edge vu of G − F on the
exterior of H (for some vertex u). Let R be the clockwise cyclic ordering of all edge
ends at H in D. (The rotation at H in D only includes edges of F , so R is the usual
rotation at H plus the edge vu.)

Let G′ and D′ be obtained from G and D by contracting H − v within the plane
to a vertex vH . Then vH is a leaf in G′ − F . Temporarily ignoring all but one copy
of each multiple edge in G′, apply induction to get a stable redrawing; then multiple
edges can be drawn near their remaining copies so that we obtain a stable redrawing
D′′ of G′. By essentially the same argument as in the proof of Claim 5, we have
iocr(D′′) ≤ iocr(D′).

Consider the rotation at vH in G′, but with vHv replaced by vu: if this is the
same as R or its reverse, then we can put H back in the drawing, possibly flipped,
without adding crossings. Otherwise, by Remark 4, we must have |R| > 3, which
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implies that |F ′| = 3. Thus, we may assume that R is vu, e1, e2, e3. Since |F | = 4,
two of the edges in {e1, e2, e3} form an odd pair, which is not independent after H−v
is contracted, so iocr(D′) < 2; hence, D′′ has less than two crossings. If the clockwise
order around vH in D′′ is vHv, e1, e2, e3 or vHv, e3, e2, e1, we can insert H without
adding crossings. Thus, by symmetry, we may assume that the clockwise order around
vH in D′′ is vHv, e2, e1, e3 or vHv, e2, e3, e1. In the former case we can replace vvH by
H , adding only one crossing between e1 and e2; in the latter case we insert H with
orientation reversed (so v, e3, e2, e1 appear in that clockwise order around H) and add
one crossing between e2 and e3. Since iocr(D′′) < 2, the total number of crossings is
at most 2 and all those crossings are between edges of F .

Claim 9. If every isolated vertex of G− (F ∪Y ) has degree at most 3 in G, then
we may assume that G− F is drawn with no crossings.

Proof. If a cut-edge e of G−F crosses another edge f oddly, then e and f share an
endpoint v. Each vertex of a cycle is incident to at most one edge with crossings, so v
is not in any cycle of G− F . Then by assumption, v has degree at most 3 in G. The
edges incident to v can be made to cross pairwise evenly by redrawing them near v
(which may change the rotation at v). Therefore, if we repeat this for all such vertices
v, all cut-edges in G−F are now even. Since G− (F ∪Y ) remains crossing-free, with
F still on the outer face of G− (F ∪Y ), applying Lemma 2.2 yields a stable redrawing
of G such that G− F is crossing-free, with no new i-odd pairs.

Let F = {a, b, c, d}. We use {a1, a2, b1, b2, c1, c2, d1, d2} to label the ends of edges
in F .

Claim 10. We may assume that T is a path.
Proof. If T is not a path, there are at least three leaf-blocks. Claims 8 and 3

imply that every 2-connected leaf-block H with cut-vertex v is incident to four ends
of F , and every other leaf-block has a leaf of G that is incident to two ends of F .
Since F has eight edge ends, either G − F has one 2-connected leaf-block and two
leaves or G− F has no 2-connected leaf-blocks and three or four leafs.

For any stable redrawing of G−F , the endpoints of F will still be on the boundary
of the outer face. Suppose that G− F has a stable redrawing which has an abstract
rotation for which the ends of some edge a ∈ F are consecutive in that rotation.
Then the edges of F can be drawn such that a is crossing-free and every two edges in
{b, c, d} cross at most once. This gives less than three crossings unless the rotation is
a1a2b1c1d1b2c2d2 (without loss of generality). That rotation can be avoided if there
exists a leaf of G − F that is not incident to a, since swapping the ends at that leaf
gives another rotation pattern. Otherwise, a2 and b1 are at one leaf of G − F , d2
and a1 are at another leaf of G− F , and the other ends are at H − v, where H is a
2-connected block of G−F with cut-vertex v. But then we can flip the drawing of H
to get a new drawing of G−F with rotation a1a2b1c2b2d1c1d2. Thus, we may assume
that no edge has consecutive ends in any abstract rotation of any stable redrawing of
G− F (including the rotation in D).

Consider the case that G− F has four leaves. Each leaf is incident to two edges of
F . By the previous paragraph, we may assume the leaves of G−F are incident to edge
pairs {a, b}, {c, d}, {a, b}, and {c, d}, in that order, along the outer face ofG−F . Also,
there is no good redrawing of G − F that would swap the positions of leaves incident
to different edge pairs, so G− F cannot have a cut-vertex that separates the leaves.

We wish to apply Claim 9, so consider any isolated vertex v of G − (F ∪ Y ). If
v is a leaf of G − F , then it has degree 3 in G. Otherwise, v is not incident to any
edges of F , only to edges in Y . Such an edge leads to a leaf-block of G − F , which
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contains a leaf of G− F ; since v cannot separate the four leaves, v must have degree
less than 4. Thus, we may apply Claim 9, so G − F is crossing-free in D. However,
the rotation implies that each edge a, b must cross each edge c, d oddly, giving four
i-odd pairs in D, which is a contradiction.

Thus, we may assume that G−F does not have four leaves. So G−F has exactly
three leaf-blocks.

Suppose that G− F has a 2-connected leaf-block H with cut-vertex v. Then by
Claims 8 and 3, G− F has two leaves, and each edge of F has one end at H − v and
the other end at a leaf. Then Claim 9 applies, so D−F is crossing-free. If the rotation
at H − v is abcd, then to avoid consecutive ends, the rotation must be abcd(ab)(cd),
where elements within parentheses can be swapped because they are incident to the
same leaf of G− F . But then {a, c}, {a, d}, and {b, d} are all i-odd pairs in D, which
is a contradiction.

This means that G−F has three leaves and no 2-connected leaf-blocks. Six ends
of edges in F are at the leaves, and two ends are not. There must be two edges a, b
that have both ends at the leaves. Since a and b do not have consecutive ends in
any abstract rotation, the rotation at G − F is (xa1)y(a2b1)z(b2w), where elements
in parentheses are incident to the same leaf of G − F (and can be swapped) and
{x, y, z, w} = {c1, c2, d1, d2}. Also, c and d may not have consecutive ends in any
abstract rotation at D − F , so the rotation is (c1a1)d1(a2b1)c2(b2d2) without loss of
generality. If d1 or c2 is at a cut-vertex of G − F , then this drawing has another
abstract rotation which differs just in the position of d1 or c2; this, however, is a
rotation pattern we already covered in an earlier case. Hence, we may assume that
no cut-vertex of G− F is incident to any ends of edges in F . Since T has maximum
degree 3, any vertex of G− F not in a cycle has degree at most 3. The previous two
sentences mean that Claim 9 applies, so G − F was not actually redrawn. But then
{a, d}, {c, d}, and {b, c} are all i-odd pairs in D, which is a contradiction.

Claim 11. We may assume that G− F is crossing-free in D.
Proof. If a cut-edge e of G− F crosses another edge f oddly, then e and f share

an endpoint v. Each vertex of a cycle is incident to at most one edge with crossings,
so v is not in any cycle of G−F . Then by Claim 10, v is incident to exactly two edges
of G − F , say e and f . We can redraw edges near v so that e and f cross all edges
incident to v evenly, using the method in Lemma 2.3 (see Figures 1 and 2). These
redrawing moves do not create any i-odd pairs. Repeat for every vertex v that is not
in any cycle of G− F . Since every cut-edge of G− F was i-even, they are now even,
and G − F is now even. Now apply Lemma 2.2 to get a stable redrawing of G such
that G− F is crossing-free, with no new i-odd pairs.

Claim 12. We may assume that F has no stable redrawing with at most two odd
pairs such that G− F remains crossing-free.

Proof. Consider the rotation at G− F for such a drawing. Two edges of F form
an odd pair if and only if their ends alternate in the rotation, since G−F is connected.

It is easy to redraw F with the same rotation in the outer face of G−F such that
each pair of edges crosses at most once. Since two edges of F that cross at most once,
cross if and only if their ends alternate in the rotation at G− F , we have obtained a
stable redrawing of G with at most two crossings.

We can now complete the proof of Theorem 3.1.
By Claims 7 and 10, G− F has exactly two leaf-blocks. If both are 2-connected,

then by Claim 8, the edges of F have eight distinct endpoints in G − F . Then each
odd pair is actually an i-odd pair, which contradicts Claim 12. Suppose that H is a
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2-connected leaf-block of G−F and v is the cut-vertex of G−F in H . We may assume
that the rotation at G−F restricted to H is a1b1c1d1. G−F has a leaf v′ incident to
distinct edges x, y ∈ F , and let {z, w} = F − {x, y} (with {x, y, z, w} = {a, b, c, d}).
We can redraw near v′ so that x, y is an even pair, without creating i-odd pairs. If
z2 and w2 (the ends of z and w that are not in H − v) are at distinct vertices, then
there are exactly two odd pairs, contradicting Claim 12. Thus, we may let u be the
vertex shared by z2 and w2. Then u is not in any cycle of G−F , so the drawing has a
rotation a1b1c1d1((x2y2)z2w2), where the last four ends can be reordered arbitrarily
as long as x2 and y2 are consecutive (Figure 6). No matter how a, b, c, d maps to
x, y, z, w, we may draw x and y without adding crossings: If {x, y} is {a, b}, {b, c},
or {c, d}, we can add z and w to the drawing without crossings. If {x, y} is {a, c} or
{b, d}, we draw z and w with one crossing, and if {x, y} is {a, d}, then z and w can
be drawn with one crossing each, such that G− F remains crossing-free.

H

a1 b1 c1
d1

? ?
v u v′

z2 w2 x2 y2

Fig. 6. G− F , shown with a possible rotation.

Now we can assume that G−F has two leaves v, v′ and no 2-connected leaf-blocks.
Suppose that a is incident to both leaves; then we may assume that a1, b1 are incident
to v and a2, c1 are incident to v′. Then {a, d} must be an i-odd pair, so the rotation
at G−F (Figure 7) contains (a1b1)d1(a2c1)d2 as a cyclic subsequence, where elements
in each pair of parentheses might be in reverse order. Since {b, c} is the other i-odd
pair, the rotation at G−F is obtained from the above cyclic sequence by replacing d1
by c2b2d1, c2d1b2, or d1c2b2 or by replacing d2 by b2c2d2, b2d2c2, or d2b2c2. In each
case, either b or c will form an i-odd pair with d, which is a contradiction.

?
v v′a1

b1 a2

c1

d1

d2

Fig. 7. G− F with all ends except b2 and c2.

Thus, we may assume that a1 and b1 are incident to v and that c1 and d1 are
incident to v′. If the rotation at G−F has the form (a1b1)x2y2(c1d1)z2w2, then there
is a drawing with no crossings if {x, y} equals {a, b} or {c, d}, and otherwise, there is
a drawing where there are no crossing pairs of edges except x, y and z, w (which may
or may not be crossing pairs). If the rotation at G−F is (a1b1)x2y2z2(c1d1)w2, then
there is an abstract rotation where the w1 and w2 are consecutive. Without loss of
generality, assume that w = d. F − c can be drawn without crossings and then c can
be drawn with at most two crossings.

So we may assume that the rotation has the form (a1b1)x2y2z2w2(c1d1). By
flipping the drawing of blocks of G−F as needed, one can obtain a drawing of G−F
with a rotation of a different pattern (which was already ruled out) unless there is a
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2-connected block H with cut-vertices u, u′ such that x2, y2, z2, and w2 are incident
to (distinct) vertices of (one component of) H − {u, u′}. By redrawing the edge ends
near v and v′, we can make a, b and c, d even pairs. This contradicts Claim 12.

4. An open problem. While we now know that the independent odd crossing
number is polynomially bounded within the crossing number of a graph, we do not
know if every graph has a drawing realizing the independent odd crossing number
which has a polynomial number of crossings. Indeed, it is not even clear whether there
is any bound on the number of crossings in an iocr-optimal drawing that depends on
the independent odd crossing number only, and not on the size of the graph. For
the odd crossing number, we were able to show such a result: every graph G has an
ocr-optimal drawing with at most 9ocr(G) many crossings [12]. We used this result to
show that ocr is fixed-parameter tractable (extending work of Grohe [2] for crossing
numbers).
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