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Abstract We show that determining the rank of a tensor over a field has the same
complexity as deciding the existential theory of that field. This implies earlier NP-
hardness results by Håstad (J. Algorithm. 11(4), 644–654 1990). The hardness proof
also implies an algebraic universality result.
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1 Introduction

As computer scientists we can think of tensors as multi-dimensional arrays; 2-
dimensional tensors correspond to (traditional) matrices, and a 3-dimensional tensor
can be written as T = (ti,j,k) ∈ F

d1×d2×d3 . We will work over various fields, includ-
ing Q, R, and C, as well as GFp. The rank of a matrix M (over some field F) can be
defined as the smallest k so that M is the sum of k matrices of rank 1, where a matrix
of rank 1 is a matrix that can be written as x ⊗ y, where x and y are one-dimensional
vectors (over F), and ⊗ is the Kronecker (tensor, outer) product. The rank of a tensor
can be defined similarly: a 3-dimensional tensor T has (tensor) rank at most k (over
F) if it is the sum of at most k rank-1 tensors, where a rank-1 tensor is a tensor of the
form x ⊗ y ⊗ z (over F).
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Håstad [12] showed that determining the tensor rank over Q is an NP-hard prob-
lem; as Hillar and Lim [13] point out, his proof can be (mildly) adjusted to yield that
the tensor rank problem remains NP-hard over R and C; this is not immediate, since,
tensor rank can vary depending on the underlying field (this is a well known fact; we
will also see an example later on). This may suggest that tensor rank problems are
equally intractable. Our goal in this paper is to show that this is not the case, and that
the complexity of the tensor rank problem ranges wildly, as we consider different
underlying fields.

For a field F, let ETh(F) be the set of true existential first-order statements over
F, sometimes known as the existential theory of F. For example, letting ϕ(c) :=
(∃x)[x2 = c], we have that ϕ(2) �∈ ETh(Q), but ϕ(2) ∈ ETh(R),ETh(C), and
ϕ(−1) �∈ ETh(Q),ETh(R), and ϕ(−1) ∈ ETh(C). Our main result is that the tensor
rank problem over F is polynomial-time equivalent to the existential theory of F.

Theorem 1.1 Let F be a field. Given a statement ϕ in ETh(F), the existential theory
of F, we can in polynomial time construct a tensor Tϕ and an integer k so that ϕ is
true over F if and only if T has tensor rank at most k over F.

The existential theory of any finite field is NP-complete, so Theorem 1.1 implies
Håstad’s result that the tensor rank problem is NP-complete over finite fields [12].
If we use ∃Q, ∃R, and ∃C for the computational complexity class associated with
deciding ETh(Q), ETh(R), and ETh(C), respectively, then we can rephrase Theorem
1.1 as saying that the tensor rank problem is ∃Q-complete over the rationals, ∃R-
complete over the reals, and ∃C-complete over the complex numbers.1

While none of these complexity classes have been placed exactly with respect to
traditional complexity classes, we do know that

NP ⊆ ∃C ⊆ ∃R ⊆ PSPACE.

The lower bound is folklore [8, Proposition 8].2 The inclusion ∃C ⊆ ∃R follows from
the standard encoding of complex numbers as pairs of reals, and the upper bound of
PSPACE on ∃R is due to Canny [9].

∃R appears to contain problems harder than problems in NP or ∃C: even a—
seemingly simple—special problem in ∃R such as the sum of square roots problem
has not been located in the polynomial-time hierarchy (see [1]). On the other hand,
Koiran [16] showed that ∃C ⊆ AM, where AM is the class of Arthur-Merlin games,
which is known to lie in �

p
2 , the second level of the polynomial-time hierarchy.3 This

1The complexity class ∃R was introduced explicitly in [24, 26] and some other papers, but other
researchers probably thought of ETh(R) as a complexity class before, e.g., Shor [28], and Buss, Frandsen
and Shallit [8].
2We are not aware of any stronger lower bounds on ∃F for any field F. If we allow rings, then ∃Z, for
example, is undecidable, its complexity equivalent to the halting problem ∅′. This was shown in a famous
series of results by Davis, Robinson, and Matiyasevic [10, 19].
3Koiran’s result assumes the generalized Riemann hypothesis (GRH); as far as we know there is no
unconditional upper bound on ∃C other than PSPACE.



Fig. 1 Complexity of the tensor rank problem over various rings. Previously all these problems were
known to be NP-hard using Håstad’s argument [12, 13]

suggests that the tensor rank problem over C may be significantly easier to solve (if
still hard) than the tensor rank problem over R.

The complexity of ∃Q is open, it is not even known (or expected) to be decidable.
The currently best result in that direction is the undecidability of the ∃∀-theory of Q,
using definability results forZ overQ in the footsteps of Julia Robinson [15, 21]. Any
decidability results for the tensor rank problem overQwould, by our reduction, imply
rather surprising decidability results for ∃Q.4 We do know, however, that ∃R ⊆ ∃Q,
since deciding the feasibility of a set of strict polynomial inequalities is hard for ∃R
[26], and lies in ∃Q.

Figure 1 summarizes our results for various fields. We note in particular that the
upper bounds imply that there are (at least in principle) algorithms for solving the
tensor rank problem over finite fields, R and C.

There are many computational problems related to tensors, and, as Hillar and Lim
[13] showed compellingly, most of them are hard. Many of their hardness results are
NP-hardness proofs via direct reductions from NP-complete problems, however, in
one or two cases, they reduce from an ∃R-complete problem, and in those cases they
also get ∃R-completeness results (even though they do not state this explicitly); in
particular, testing whether 0 is an eigenvalue of a given tensor over R is ∃R-complete
(see Example 2.5 for a correction of their proof).

Our point is that it is important to capture the computational complexity of these
algebraic problems more precisely than saying that they areNP-hard, since there may
be a significant variance in their hardness (from ∃C, close to NP, to ∃R, probably
closer to PSPACE, to ∃Q, likely undecidable). For ∃R, there already is a sizable
number of complete problems, starting with Mnëv’s universality theorem showing
that stretchability of pseudoline arrangements is complete for ∃R [20, 22, 28], but
also including the rectilinear crossing number [4], segment intersection graphs [18]
and many others. Less is known about ∃Q, and ∃C.

Our proof of Theorem 1.1 will work via a minimum rank problem for matrices
with multilinear entries; versions of this problem were previously studied by Buss,
Frandsen and Shallit [8]. We also show that both the minimum rank problem and
the tensor rank problem exhibit algebraic universality. Algebraic universality implies
that solutions to a problem may require algebraic numbers of high complexity.

4If Z had an existential definition in Q, then it would follow that ∃Q ≡ ∃Z ≡ ∅′. Koenigmsann [15] gives
some evidence that there is no such definition (implying that his universal definition of Z inQ is optimal),
however, there may be other routes towards the undecidability of ∃Q, and it may be undecidable without
being as hard as ∅′.



Remark 1.2 Shitov [27] has recently shown a stronger result—the complexity of the
tensor rank over an integral domain is the same as the complexity of the existential
theory of that integral domain.

2 Definitions and Tools

2.1 Tensors

A (3-dimensional, rational) tensor is a an array T = (tijk)
d1,d2,d3
i,j,k=1 ∈ Q

d1×d2×d3 .
Lower dimensional subarrays of a tensor are known as fibres (one dimension) and
slices (two dimensions). We denote subarrays by using “:” instead of a variable,
e.g., t:jk is a column-fibre of T , and t::k is a frontal slice. See [17] for a survey and
additional notation.

We will use the symbol ⊗ for the tensor (Kronecker, outer) product: for two vec-
tors u ⊗ v is a matrix with entries (u ⊗ v)ij = u(i)v(j), for three vectors u ⊗ v ⊗ w

is a tensor with entries (u⊗ v ⊗w)ijk = u(i)v(j)w(k). We say the tensor u⊗ v ⊗w

has rank 1 unless it consists of zeros only, in which case it has rank 0. If a tensor
T can be written as a sum of at most r rank-1 tensors, we say T has rank at most
r . If T = T1 + · · · + Tr , and each Ti has rank at most 1, we call (Ti)

r
i=1 a (rank-r)

expansion of T .
The following two results are adapted from the conference version of Håstad’s

paper [11]; in the journal version [12] they were replaced by references to other
papers.

Lemma 2.1 (Håstad [11]) Suppose T = (tijk) is a tensor of rank r (over some field),
and the slice M = (t::k1) has rank 1, so M = u1 ⊗ v1 for some u1, v1. Then T can
be written as T = ∑r

�=1 u� ⊗ v� ⊗ w�.

In other words, T has a rank-r expansion using the slice M as one of the rank-1
terms.

Lemma 2.2 (Håstad [11]) Suppose T = (ti,j,k) is a tensor of rank r (over some
field), and there is a set of linearly independent slices Mh = (t::h) of rank 1, so
Mh = uh ⊗ vh, for h ∈ H . Then T can be written as T = ∑r

�=1 u� ⊗ v� ⊗ w�.

In other words, if we have a set of linearly independent, rank-1 slices of a tensor,
we can always assume that they occur in a minimum rank expansion of the tensor.

2.2 Logic and Complexity

Over a field (or ring) F we can define the existential theory ETh(F) of F as the set of
all true existential first-order sentences in F. We work over the signature (0, 1, +, ∗)

and allow equality as predicate (for Q and R we can define order from that: x ≥ 0 if
and only if (∃y0, y1, y2, y3)[x = y2

0 + y2
1 + y2

2 + y2
3 ], using Lagrange’s theorem for

Q).



Lemma 2.3 (Buss et al. [8]) Suppose F is a field (a commutative ring without zero
divisors is sufficient). Given a first-order existential sentence over F one can con-
struct (in polynomial time) a family of (multivariate) polynomials p1, . . . , pn with
integer coefficients so that ϕ is true if and only if (∃x)[p1(x) = 0∧ · · · ∧ pn(x) = 0]
is true over F. If F is not algebraically closed, then we can assume that n = 1.

We write ∃F for the complexity class which is formed by taking the polynomial-
time downward closure of ETh(F). Lemma 2.3 then says that testing feasibility of
a system of polynomial equations over F is complete for the complexity class ∃F,
that is, it is hard for the complexity class (every problem in the class reduces to
it), and it lies in the class (feasibility of a polynomial system over F can be tested
in ∃F).5 We are particularly interested in F ∈ {GFp,Q,R,C}. We discussed rela-
tionships between these complexity classes and traditional complexity classes in the
introduction.

Since a polynomial with integer coefficients can be calculated via a sequence of
sums and products of variables and constants 1 and −1, the following result follows
immediately from Lemma 2.3.

Lemma 2.4 Let F be a field (or commutative ring without zero divisors). Deciding
whether a system of equations of the types xi = xj + xk , xi = xjxk , xi = xj , and
xi = 1, is solvable over F is complete for ∃F.

Call a such system of equations a quadratic system.
Let us illustrate ∃R-completeness with an example relevant to tensors. This

corrects an example from Hillar and Lim [13, Remark 2.3].

Example 2.5 (Hillar and Lim [13]) A tensor T = (ti,j,k)
n,n,n
i,j,k=1 has eigenvalue λ if

there is a non-zero vector x, the eigenvector, so that

n,n∑

i,j=1

ti,j,kxixj = λxk.
6

So λ = 0 is an eigenvalue of T if there is a non-zero vector x satisfying∑n,n
i,j=1 ti,j,kxixj = 0, which is a homogenous quadratic system of equations, and,

obviously every homogenous quadratic system can be written in this form. So decid-
ing whether a tensor has 0 as an eigenvalue is computationally equivalent to deciding
whether a homogenous quadratic system has a non-trivial solution. This problem is
sometimes called H2N (for Hilbert’s homogenous Nullstellensatz), and, over R, was
shown to be ∃R-complete in [25].7 Thus, deciding whether 0 is an eigenvalue of
a tensor T over R is ∃R-complete. Hillar and Lim [13, Remark 2.3] also sketch a

5In other models, e.g., the Blum-Shub-Smale model [7] this was well-known earlier.
6There are other definitions of eigenvalues for tensors as well.
7The proof in [25] yields a quartic systems, but that can be reduced to quadratic, by removing the final
(unnecessary) squaring operation.



proof of the ∃R-completeness of H2N, but their proof of hardness of the quadratic
homogenous system is not correct; in their notation, they require z2 = ∑n

i=1 x2
i ,

but this cannot be guaranteed. For example, they would take the quadratic system
(x+2)2 = 0 and homogenize it as x2+4xz+4z2 = 0 and require x2 = z2. While the
original system has a non-trivial solution, x = −2, it is easy to see that the homog-
enized system only has the trivial solution x = z = 0. The hardness proof seems to
require a non-uniform construction as in [25].

2.3 Algebraic Universality

A solution to a system of algebraic equations may have high complexity, e.g., con-
sider x0 = 1, x1 = x0 + x0, x2 = x1x1, . . ., xn = xn−1xn−1. This system of
n + 1 equations defines a number xn requiring a bit expansion of exponential length.
Similarly, one can define a linear system whose solution is an algebraic number of
high degree. ∃R-completeness reductions often preserve this property, so that ∃R-
complete problems require solutions of high complexity. For example, Bienstock and
Dean [4, 5] showed that any straight-line drawing of a graph with the smallest num-
ber of crossings may require vertex coordinates of double-exponential precision. This
is a very weak type of algebraic universality. A stronger variant would, for example,
show that for any algebraic number there is a graph which contains that algebraic
number (after some normalization). A much stronger type of universality result goes
back to Mnëv [20] who showed that any basis semialgebraic set is homotopy (even
stably) equivalent to the realization space of a pseudoline arrangement. That is, for
every basic semialgebraic set Mnëv defines a pseudoline arrangement so that the
space of straight-line realizations of that pseudoline arrangement is essentially the
same as the basic semialgebraic set up to some form of algebraic equivalence. We
will show a weaker type of algebraic universality for the tensor rank problem. To do
this properly, we need a definition of the realization space of a rank-r tensor. For a 3-
dimensional tensor T ∈ Q

d1×d2×d3 , and integer r define the rank-r realization space
of T as

R(T , r) :=
{

(u1, v1, w1, . . . , ur , vr , wr) : T =
r∑

�=1

u� ⊗ v� ⊗ w�

}

.

Obviously, R(T , r) ⊆ R
(d1+d2+d3)r is an algebraic set; that is, it can be written

as the set of common roots of a family of multivariate polynomials (with integer
coefficients).

We would like to show that every algebraic set (with integer coefficients) over R
is essentially the same as some R(T , r) for some T and r , but it seems to have too
many degrees of freedom, so instead we work with

R(T , S, r) :=
{

(w1, . . . , wr) : T =
r∑

�=1

S� ⊗ w�

}

,

where S is a family of r rank-1 matrices.



We need to make precise the notion of being “essentially the same”, we will use the
notion of stable equivalence introduced by Richter-Gebert to uniformize various uni-
versality constructions [22, 23]. Stable equivalence implies homotopy equivalence,
and it maintains complexity of algebraic points [23]. Two sets are rationally equiva-
lent if there is a rational homeomorphism between the two sets. A set X is a stable
projection of Y if

Y = {(y, y ′) : y ∈ X, 〈pi(y), y′〉 = ci, 1 ≤ i ≤ n},
where the pi are multivariate polynomials with integer coefficients, and the ci are
constants. Two sets are stably equivalent if they are in the same equivalence class
with respect to stable projections and rational transformations.

We will show that for every algebraic set (with integer coefficients), there are T ,
S, and r so that the algebraic set is stably equivalent toR(T , S, r), so this, restricted,
tensor rank problem is universal for algebraic sets. By using R(T , S, r) instead of
R(T , r) we side-step the fact that the two Håstad lemmas do not yield stable equiva-
lence: forcing a particular ui⊗vi to equal a slice of T changes the number of algebraic
components of the solution set, so it cannot maintain homotopy equivalence.

3 Hardness of Tensor Rank

In this section we will see that the tensor rank problem over a field F is complete
for ∃F. In the Blum-Shub-Smale model, the same proof shows that the tensor rank
problem over F is NPF-complete. We will not discuss the Blum-Shub-Smale model
in detail, and refer the reader to [6].

3.1 A Minimum Rank Problem

For a matrix A with entries being multinomials expressions in F[x1, . . . , xn], the
minrank of M is the smallest (matrix) rank of A over F achievable by replacing
variables xi with values in F and evaluating the resulting expressions.

Definition 3.1 Let minrankF(A) be the minimum rank of A (as a matrix over F) over
all possible assignments of values in F to variables in A.

Buss, Frandsen and Shallit [8] showed that the minrank problem over F is com-
plete for ∃F, even if entries are restricted to be in F ∪ {x1, . . . , xn}. We will show
that the minrank problem is ∃F-hard for matrices of a very specific form which lends
itself to be turned into a tensor rank problem.8

Suppose we are given a quadratic system S with m equations e1, . . . , em; we con-
struct a square 3m×3mmatrixAwith affine entries whose minrank will be connected

8There is also a notion of minrank for matrices with entries in {+,−}. Given such a matrix is there a real
matrix of rank at most 3 with that sign pattern? This problem turns out to be ∃R-hard as well [2, 3], but
does not seem to be related to our minrank problem.



to the feasibility of S (see Definition 3.1 and Lemma 3.2 below for a precise state-
ment). To simplify the statements and the proofs we make the following assumptions
on the quadratic system:

A1 No variable occurs more than once in an equation.
A2 Any two equations share at most one variable.
A3 If w = uv is an equation in S then v occurs exactly twice in S and the other

occurrence of v is in an equation of the form v = z.

Assumptions A1 and A2 are not restrictive since we can always “copy” a variable v

to a variable v′ using equation v′ = v (and then use v′ in place of v). Assumption
A3 is not restrictive since we can replace an equation w = uv by a pair of equations
v′ = v,w = uv′, where v′ is a new variable.

The following 3 × 3 matrices are the main building block in our construction

det

⎛

⎝
1 0 a

0 1 b

1 1 c

⎞

⎠ = c − (a + b), (1)

det

⎛

⎝
1 0 c

0 1 a

−1 b 0

⎞

⎠ = c − ab. (2)

To construct the matrix A we first place 3× 3 blocks on the diagonal as follows: The
�-th diagonal 3 × 3 block is given by

• the matrix in (1) if e� is of the form c = a + b,
• the matrix in (2) if e� is of the form c = ab,
• the matrix in (1) with b = 0 if e� is of the form c = a,
• the matrix in (1) with b = 0, a = K if e� is of the form c = K , where K is a

rational constant.

Note that equation e� is satisfied if and only if the determinant of the block is zero. Let
Ru be the increasing list of rows that contain variable u and let Cu be the increasing
list of columns that contain variable u. From assumption A1 it follows that a 3 ×
3 block contains at most one occurrence of u. Thus |Ru| = |Cu| and u occurs at
positions (Ru[i], Cu[i]) for i = 1 . . . |Ru|. Also note that for distinct variables u, v

we have that Ru and Rv are disjoint (since in the matrices in (1) and (2) the variables
are in different rows). Now we add a few more entries into the matrix A. For every
variable u, for every 1 ≤ j �= k ≤ |Ru| we add an entry u − uj , with new variable
uj , at position (Ru[j ], Cu[k]) in A. This completes the construction of matrix A.

Observation 1 The construction satisfies the following:

1. u occurs exactly at positions Ru × Cu and it always occurs with coefficient 1,
2. the non-zero entries of A outside of the diagonal 3 × 3 blocks are at indices⋃

u Ru × Cu,
3. uj only occurs in the Ru[j ]-th row and it always occurs with coefficient −1,
4. leaving out every 3rd row and every 3rd column of A (that is, rows and columns

whose index is divisible by 3) yields the 2m × 2m identity matrix.



The third item in Observation 1 follows from assumption A3 and the form of
the matrices in (1) and (2). Note that the only occurrence of a variable in a column
whose index is not divisible by 3 must come from “b” in (2), that is, an equation
of the form c = ab. The other occurrence of b is in a row whose index is divisible
by 3 (using assumption A3). Since both occurrences of b are in rows whose index
is divisible by 3 we have that Rb × Cb is in the left-out part of A. We showed that
for every u either all entries of Cu or all entries of Ru are divisible by 3 and hence
if we leave out every third column and every third row there will be no off-diagonal
entries.

We have the following connection between the quadratic system S and its matrix
A.

Lemma 3.2 Assume that a quadratic system S satisfies assumptions A1, A2, and A3.
Let A be the matrix corresponding to S. System S is solvable over F if and only if
minrankF(A) = 2m.

Example 3.3 Before proving Lemma 3.2 let us illustrate the construction with an
example. Let S = {u = xy, y = x, u = 2}. Then the matrix A corresponding to S is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 u 0 0 0 0 0 u − u1
0 1 x 0 0 x − x1 0 0 0

−1 y 0 0 0 y − y1 0 0 0
0 0 x − x2 1 0 x 0 0 0
0 0 0 0 1 0 0 0 0
0 y − y2 0 1 1 y 0 0 0
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 0
0 0 u − u2 0 0 0 0 1 u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

The quadratic system S encodes the equation x2 = 2. This equation has a solution
over R and hence, by Lemma 3.2, minrankR(A) = 6. On the other hand the equation
does not have a solution over Q and hence, by Lemma 3.2, minrankQ(A) ≥ 7.

Proof of Lemma 3.2 From Observation 1 (part 4) we have minrankF(A) ≥ 2m.
Suppose that S has a solution σ with values in F. For each variable u assign

value σ(u) to u and all ui’s in A. Note that this assignment makes all entries out-
side the diagonal 3 × 3 blocks zero (since those entries are of the form u − ui).
Also note that each 3 × 3 block has rank 2 (since it contains a 2 × 2 identity matrix
and has determinant equal to zero—here we use the fact that σ is a solution of S).
The rank of a block diagonal matrix is the sum of the ranks of the blocks and hence
minrankF(A) = 2m.

It remains to show that minrankF(A) = 2m implies that S has a solution in F. Let
σ be an assignment with values in F such that the rank of σ(A) is 2m. Consider the
�-th 3 × 3 diagonal block B̂. Let Â be the matrix obtained from σ(A) by leaving out
every third row and every third column except for the column and the row with index
3�. Note that Â is a (2m+ 1)× (2m+ 1) matrix and, by Observation 1 (part 4), if we



leave out the row and column with index 2� + 1 from Â we get the identity matrix.
Hence we have

det(Â) = Â2�+1,2�+1 −
∑

i �=2�+1

Âi,2�+1Â2�+1,i

= det(B̂) −
∑

i �∈{2�−1,2�,2�+1}
Âi,2�+1Â2�+1,i .

We have
∑

i �∈{2�−1,2�,2�+1}
Âi,2�+1Â2�+1,i =

∑

i �=�

A3i−2,3�A3�,3i−2+
∑

i �=�

A3i−1,3�A3�,3i−1. (4)

Note that A3�,3i−2 = 0 for all i �= � since the first column in (1) and (2) does not
contain any variables (also see Observation 1 (part 2)). If A3�,3i−1 �= 0 then the i-
th block contains a variable in the 2-nd column (and hence in the 3-rd row) and that
variable also occurs in the 3-rd row of the �-th block. If A3i−1,3� �= 0 then the i-th
block contains a variable in the 2-nd row and that variable also occurs in the 3-rd
column of the �-th block. Thus if both A3�,3i−1 �= 0 and A3i−1,3� �= 0 then ei and e�

would share two variables (occurring in the 2-nd and 3-rd row of the i-th block). This
is impossible (because of assumption A2) and hence (4) has value 0. We conclude
that det(Â) = det(B̂).

Now Â has rank at most 2m, since σ(A) has rank 2m, but dimension (2m + 1) ×
(2m + 1), so its columns are linearly dependent, and we conclude that

0 = det(Â) = det(B̂)

and hence the �-th equation is satisfied by the assignment σ , for all � ∈ [m]. Thus σ

is a solution of S in F.

3.2 A Tensor Rank Problem

We are left with translating the minrank problem from the previous section into a
tensor rank problem. Recall that given a quadratic system S we constructed a matrix
A consisting of diagonal blocks (with constants and variable terms) and additional,
affine entries in rows and columns divisible by 3.

Define a tensor TA from A as follows:

• for every variable x in A let the partial derivative Ax := ∂A/∂x be a (frontal)
slice of T ; ∂A/∂x is the matrix containing the coefficients of x in A,

• add one final (frontal) slice A1 containing all the constant values of A.

Note that if σ assigns a value in F to each variable in A, then σ(A) = A1 +∑
x σ (x)Ax . Let n be the number of variables in A; TA is a 3m × 3m × n + 1 tensor.

Lemma 3.4 A has minrank at most 2m if and only if TA has tensor rank at most
2m + n.



Proof If A has minrank 2m, then there is a σ assigning σ(x) ∈ F to each variable
x occurring in A so that the rank of σ(A) is 2m. Now σ(A) = A1 + ∑

x σ (x)Ax ,
where the sum is over all n variables x occurring in A. In other words, A1 = σ(A) +∑

x(−Ax). Since σ(A) has matrix rank 2m, it can be written as the sum of 2m rank-
1 matrices, so A1 can be written as the sum of 2m + n rank-1 matrices—each Ax

has rank 1. Hence, every slice of TA can be written using the Ax and the 2m rank-1
matrices summing up to A1, implying that T has tensor rank at most 2m + n.

For the other direction, assume that TA has tensor rank at most 2m + n. We first
observe that the n matrices Ax are linearly independent: Suppose that

∑
x λ(x)Ax =

0 for some vector λ. The matrix A contains two types of variables: the original
variables u (from the quadratic system), and the additional variables uj . Now any
non-zero entry in Au is unique in the sense that no other Ax has an entry in the same
position, so λ(u) = 0 for the original variables. But then any non-zero entry in Auj

is unique among the remaining matrices (belonging to the non-original variables),
so λ(uj ) = 0 for all remaining variables, establishing λ = 0. Therefore, the Ax are
linearly independent.

Lemma 2.2 now implies that T can be written using the Ax and 2m additional
rank-1 tensors. So T = ∑

x Ax ⊗ zx + ∑2m
i=1 ui ⊗ vi ⊗ wi , and, in particular,

A1 =
∑

x

τ (x)Ax +
2m∑

i=1

B ′
i ,

where τ(x) = zx(1), and Bi = wi(1)(ui ⊗ vi), where the Bi are rank-1 matrices.
In other words, A1 − ∑

x τ (x)Ax = ∑2m
i=1 Bi has matrix rank at most 2m. Setting

σ(x) := −τ(x) we have that A1 + ∑
x σ (x)Ax has rank 2m, and, moreover, equals

σ(A). But this shows that the minrank of A is at most 2m, which is what we had to
prove.

The following is a well-known result. For more results on tensor rank over various
rings, see Howell [14].

Corollary 3.5 There is a tensor T with rankQ(T ) > rankR(T ).

Proof Let A be the matrix from Example 3.5, and consider the tensor TA constructed
in Lemma 3.4. Then rankQ(TA) ≥ 7 + 9 = 16, while rankR(TA) = 6 + 9 = 15.

We can now complete the proof of our main result.

Proof of Theorem 1.1 Lemmas 2.3 and 2.4 allow us to translate ϕ into a quadratic
system S so that ϕ is true over F if and only if S has a solution over F. Lemma 3.2
translates S into a minrank problem over a matrix A, and Lemma 3.4 turns that into
a tensor rank problem over F.

3.3 Universality

Reviewing the hardness proofs carefully shows that they also yield algebraic univer-
sality. Let us start with the minrank problem:



Corollary 3.6 For every algebraic set V specified using integer coefficients, we can
find a matrix A whose entries are multilinear expressions in F[x1, . . . , xm], and an
integer k so that V is stably equivalent to {(x1, . . . , xd) : minrankF(A) = k}.
Proof Suppose we are given an algebraic set V = {(x1, . . . , xd) ∈ F

d :
p1(x1, . . . , xd) = · · · = pn(x1, . . . , xd) = 0}. We transform the system
p1(x1, . . . , xd) = · · · = pn(x1, . . . , xd) = 0 into a quadratic system S (as in Lemma
2.4). While S may require additional variables, each of these is equal to a polyno-
mial transformation of the xi so that the realization space of S is stably equivalent
to the original algebraic set V (in this case via a rational transformation). In the next
step, we turn S into a matrix A with multilinear expressions over x1, . . . , xm, and an
integer k as in Lemma 3.2 so that S is solvable if and only if minrankF(A) = k. More-
over, the variables of S are variables ofA, thoughA may contain additional variables.
However, those, as before, equal existing variables when minrankF(A) = k, so S is
stably equivalent to {(x1, . . . , xd) : minrankF(A) = k}, and then, by transitivity, so
is V .

In other words, the minrank problem for matrices with multilinear expressions
over a field is universal for algebraic sets over that field. This gives us universality of
the tensor problem as well.

Corollary 3.7 For every algebraic set V we can find a tensor T , an integer r , and a
family of r rank-1 matrices S so that V is stably equivalent to the realization space
R(T , S, r).

Proof By Corollary 3.6, the algebraic set V is stably equivalent to a minrank problem
minrankF(A) = kA for matrix A and kA as constructed in the proof of Lemma 3.2.
From A we construct a 3m × 3m × (n + 1) tensor T and an integer k = 2m + n,
as in Lemma 3.4, so that V �= ∅ if and only if the tensor rank of T is at most k.
We know what the potential basis for T looks like: it consists of the n matrices Axi

,
the coefficient matrix of xi , and 2m matrices Bi , two for each of the m blocks in the
minrank problem (keeping first and second column in each block). Letting Si = Axi

for 1 ≤ i ≤ n, and Si = Bi−n for n + 1 ≤ i ≤ 2m + n, we know that if T has tensor
rank at most k = 2m + n, then it can be written using the Si . Consider an element of
the realization space

R(T , S, r) =
{

(w1, . . . , wr) : T =
r∑

i=1

Si ⊗ wi

}

.

Recall that t::n+1 = A1, the matrix of constants from the minrank problem, so, as in
the proof of Lemma 3.4 we know that

A1 =
r∑

i=1

wi[n + 1]Si,

which means A1 = ∑n
i=1 wi[n + 1]Axi

+ ∑r
i=n+1 Si . This implies, as we argued

in the lemma, that −wi[n + 1] is the value of xi in a solution to the minrank



problem. So R(T , S, r) is stably equivalent to the minrank problem, and, thus, to V

(the conditions on the remaining wi are affine, so they can be removed by a stable
projection).

4 Open Questions

There are several natural follow-up questions suggested by the results of this paper.
For example, what is the complexity of tensor rank for symmetric tensors? Is tensor-
rank hard for a fixed rank (2 or 3 even) or is it fixed-parameter tractable? Over the
complex numbers, Koiran’s result places the problem at the second level of the poly-
nomial hierarchy assuming the Generalized Riemann hypothesis is true. With the
recent successes of exact algorithms for NP-hard problems, is there a way to make
Koiran’s result algorithmic? Is there a way to remove the assumption?
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11. Håstad, J.: Tensor rank is NP-complete. In: Automata, languages and programming (Stresa, 1989),
volume 372 of Lecture Notes in Computer Science, pp. 451–460. Springer, Berlin (1989)
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