
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

INAPPROXIMABILITY OF THE INDEPENDENT SET
POLYNOMIAL IN THE COMPLEX PLANE\ast 

IVONA BEZ\'AKOV\'A , ANDREAS GALANIS , LESLIE ANN GOLDBERG , AND

DANIEL \v STEFANKOVI\v C

Abstract. We study the complexity of approximating the value of the independent set polyno-
mial ZG(\lambda ) of a graph G with maximum degree \Delta when the activity \lambda is a complex number. When
\lambda is real, the complexity picture is well understood, and is captured by two real-valued thresholds \lambda \ast 

and \lambda c, which depend on \Delta and satisfy 0 < \lambda \ast < \lambda c. It is known that if \lambda is a real number in the
interval ( - \lambda \ast , \lambda c) then there is a fully polynomial time approximation scheme (FPTAS) for approx-
imating ZG(\lambda ) on graphs G with maximum degree at most \Delta . On the other hand, if \lambda is a real
number outside of the (closed) interval, then approximation is NP-hard. The key to establishing this
picture was the interpretation of the thresholds \lambda \ast and \lambda c on the \Delta -regular tree. The ``occupation
ratio"" of a \Delta -regular tree T is the contribution to ZT (\lambda ) from independent sets containing the root
of the tree, divided by ZT (\lambda ) itself. This occupation ratio converges to a limit, as the height of
the tree grows, if and only if \lambda \in [ - \lambda \ast , \lambda c]. Unsurprisingly, the case where \lambda is complex is more
challenging. It is known that there is an FPTAS when \lambda is a complex number with norm at most \lambda \ast 

and also when \lambda is in a small strip surrounding the real interval [0, \lambda c). However, neither of these
results is believed to fully capture the truth about when approximation is possible. Peters and Regts
identified the complex values of \lambda for which the occupation ratio of the \Delta -regular tree converges.
These values carve a cardioid-shaped region \Lambda \Delta in the complex plane, whose boundary includes the
critical points  - \lambda \ast and \lambda c. Motivated by the picture in the real case, they asked whether \Lambda \Delta marks
the true approximability threshold for general complex values \lambda . Our main result shows that for
every \lambda outside of \Lambda \Delta , the problem of approximating ZG(\lambda ) on graphs G with maximum degree at
most \Delta is indeed NP-hard. In fact, when \lambda is outside of \Lambda \Delta and is not a positive real number, we
give the stronger result that approximating ZG(\lambda ) is actually \#P-hard. Further, on the negative
real axis, when \lambda <  - \lambda \ast , we show that it is \#P-hard to even decide whether ZG(\lambda ) > 0, resolving
in the affirmative a conjecture of Harvey, Srivastava, and Vondr\'ak. Our proof techniques are based
around tools from complex analysis---specifically the study of iterative multivariate rational maps.

1. Introduction. The independent set polynomial is one of the most well stud-
ied graph polynomials, arising in combinatorics and in computer science. It is also
known in statistical physics as the partition function of the hard-core model. This pa-
per studies the computational complexity of evaluating the polynomial approximately
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when a parameter, called the activity, is complex. For properties of this polynomial
in the complex plane, including connections to the Lov\'asz local lemma, see the work
of Scott and Sokal [14]. For \lambda \in \BbbC and a graph G the polynomial is defined as
ZG(\lambda ) :=

\sum 
I \lambda 

| I| , where the sum ranges over all independent sets of G. We will be
interested in the problem of approximating ZG(\lambda ) when the maximum degree of G is
bounded.

When \lambda is real, the complexity picture is well understood. For \Delta \geq 3, let \scrG \Delta be
the set of graphs with maximum degree at most \Delta . The complexity of approximating
ZG(\lambda ) for G \in \scrG \Delta is captured by two real-valued thresholds \lambda \ast and \lambda c which depend

on \Delta and satisfy 0 < \lambda \ast < \lambda c. To be precise, \lambda \ast = (\Delta  - 1)\Delta  - 1

\Delta \Delta and \lambda c =
(\Delta  - 1)\Delta  - 1

(\Delta  - 2)\Delta . The

known results are as follows.
1. If \lambda is in the interval  - \lambda \ast < \lambda < \lambda c, there is a fully polynomial time approx-

imation scheme (FPTAS) for approximating ZG(\lambda ) on graphs G \in \scrG \Delta . For
0 \leq \lambda < \lambda c, this follows from the work of Weitz [17], while for  - \lambda \ast < \lambda < 0
it follows from the works of Harvey, Srivastava, and Vondr\'ak [8] and Patel
and Regts [11].

2. If \lambda <  - \lambda \ast or \lambda > \lambda c, it is \sansN \sansP -hard to approximate | ZG(\lambda )| on graphs
G \in \scrG \Delta , even within an exponential factor. For \lambda > \lambda c, this follows from
the work of Sly and Sun [15], while for \lambda <  - \lambda \ast it follows from the work of
Galanis, Goldberg, and \v Stefankovi\v c [6].

The key to establishing this complexity characterization was the following interpre-
tation of the thresholds \lambda \ast and \lambda c. Given a \Delta -regular tree T of height h with root \rho ,

let ph denote the ``occupation ratio"" of the tree, which is given by ph =
\sum 

I;\rho \in I \lambda | I| 

ZT (\lambda ) ,

where the sum ranges over the independent sets of T that include the root \rho . It turns
out that the occupation ratio ph converges to a limit as h \rightarrow \infty if and only if the
activity \lambda lies within the interval [ - \lambda \ast , \lambda c], so it turns out that the complexity of
approximating ZG(\lambda ) for G \in \scrG \Delta depends on whether this quantity converges.

Understanding the complexity picture in the case where \lambda \in \BbbC is more chal-
lenging. If \lambda is a complex number with norm at most \lambda \ast then there is an FPTAS
for approximating ZG(\lambda ) on graphs G \in \scrG \Delta . This is due to Harvey, Srivastava and
Vondr\'ak and to Patel and Regts [8, 11]. More recently, Peters and Regts [12] showed
the existence of an FPTAS when \lambda is in a small strip surrounding the real interval
[0, \lambda c). However, neither of these results is believed to fully capture the truth about
when approximation is possible. Motivated by the real case, Peters and Regts [12]
identified the values of \lambda for which the occupation ratio of the \Delta -regular tree con-
verges (for \Delta \geq 3). These values carve a cardioid-shaped region \Lambda \Delta in the complex
plane, whose boundary includes the critical points  - \lambda \ast and \lambda c. The definition of \Lambda \Delta 

is as follows (see Figure 1):1

(1.1) \Lambda \Delta =
\Bigl\{ 
\lambda \in \BbbC 

\bigm| \bigm| \bigm| \exists z \in \BbbC : | z| \leq 1/(\Delta  - 1), \lambda =
z

(1 - z)\Delta 

\Bigr\} 
.

Peters and Regts showed that, for every \lambda in the (strict) interior of \Lambda \Delta , the occupation
ratio of the \Delta -regular tree converges, and asked whether the region \Lambda \Delta marks the true
approximability threshold for general complex values \lambda .

1Technically, the word ``cardioid"" refers to a curve which can be obtained by a point on the
perimeter of a circle which is rolling around a fixed circle of the same radius. The region (1.1) does
not formally correspond to a cardioid in this sense, but its shape closely resembles a heart for all
values of \Delta \geq 3, which justifies the (slight) abuse of terminology.
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Fig. 1. The cardioid-shaped region \Lambda \Delta in the complex plane. We show that for all \lambda \in 
\BbbC \setminus (\Lambda \Delta \cup \BbbR \geq 0), approximating ZG(\lambda ) is \#\sansP -hard. Previously, it was known that the problem is
\sansN \sansP -hard on the real line in the intervals \lambda <  - \lambda \ast and \lambda > \lambda c. Note, we have that the thresholds
 - \lambda \ast , \lambda c belong to \Lambda \Delta , by taking z = \pm 1/(\Delta  - 1) in (1).

Our main result shows that for every \lambda outside of the region \Lambda \Delta , the problem
of approximating ZG(\lambda ) on graphs G \in \scrG \Delta is indeed NP-hard, thus answering [12,
Question 1]. In fact, when \lambda is outside of \Lambda \Delta and is not a positive real number,
we establish the stronger result that approximating ZG(\lambda ) is actually \#P-hard. We
do this by showing that an approximation algorithm for ZG(\lambda ) can be converted
into a polynomial-time algorithm for exactly counting independent sets. Further, on
the negative real axis, when \lambda <  - \lambda \ast , we show that it is \#P-hard to even decide
whether ZG(\lambda ) > 0, resolving in the affirmative a conjecture of Harvey, Srivastava,
and Vondr\'ak [8, Conjecture 5.1].

We need the following notation to formally state our results. Given a complex
number x \in \BbbC , we use | x| to denote its norm and Arg(x) to denote the principal value
of its argument in the range [0, 2\pi ). We also define arg(x) = \{ Arg(x) + 2\pi j | j \in \BbbZ \} .
For y, z \in \BbbC , we use d(y, z) to denote the Ziv distance between them [18], namely,

d(y, z) = | y - z| 
max(| y| ,| z| ) . We denote by \BbbC \BbbQ the set of complex numbers whose real and

imaginary parts are rational numbers (see Definition 3.4).
We consider the problems of multiplicatively approximating the norm of ZG(\lambda ),

additively approximating the argument of ZG(\lambda ), and approximating ZG(\lambda ) by pro-

ducing a complex number \widehat Z such that the Ziv distance d
\bigl( \widehat Z,ZG(\lambda )

\bigr) 
is small. We start

with the following problem, which captures the approximation of the norm of ZG(\lambda ).

Name \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K).
Instance A bipartite graph G with maximum degree at most \Delta .
Output If | ZG(\lambda )| = 0 then the algorithm may output any rational number. Other-

wise, it must output a rational number \widehat N such that \widehat N/K \leq | ZG(\lambda )| \leq K \widehat N .

Our first theorem shows that it is \#\sansP -hard to approximate | ZG(\lambda )| on bipartite graphs
of maximum degree \Delta within a constant factor.

Theorem 1.1. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be such that \lambda \not \in (\Lambda \Delta \cup \BbbR \geq 0). Then,
\#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.01) is \#\sansP -hard.

Remark 1.2. The value ``1.01"" in the statement of Theorem 1.1 is not important.
In fact, for any fixed \epsilon > 0 we can use the theorem, together with a standard powering
argument, to show that it is \#\sansP -hard to approximate | ZG(\lambda )| within a factor of 2n

1 - \epsilon 

.
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The following problem captures the approximation of the argument of ZG(\lambda ).

Name \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ).
Instance A bipartite graph G with maximum degree at most \Delta .
Output If ZG(\lambda ) = 0 then the algorithm may output any rational number. Otherwise,

it must output a rational number \widehat A such that, for some a \in arg(ZG(\lambda )),

| \widehat A - a| \leq \rho .

Our second theorem shows that it is \#\sansP -hard to approximate arg(ZG(\lambda )) on
bipartite graphs of maximum degree \Delta within an additive constant \pi /3.

Theorem 1.3. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be such that \lambda \not \in (\Lambda \Delta \cup \BbbR \geq 0). Then,
\#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \pi /3) is \#\sansP -hard.

Theorem 1.3 also has the following immediate corollary for the case in which \lambda is
a negative real number, resolving in the affirmative [8, Conjecture 5.1].

Corollary 1.4. Let \Delta \geq 3 and \lambda \in \BbbQ be such that \lambda <  - \lambda \ast . Then, given as
input a bipartite graph G with maximum degree \Delta , it is \#\sansP -hard to decide whether
ZG(\lambda ) > 0.

Theorems 1.1 and 1.3 show as a corollary that it is \#P-hard to approximate
ZG(\lambda ) within a small Ziv distance.

Name \#\sansB \sansi \sansp \sansC \sanso \sansm \sansp \sansl \sanse \sansx \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse (\lambda ,\Delta ).
Instance A bipartite graph G with maximum degree at most \Delta . A positive integer

R, in unary.
Output If ZG(\lambda ) = 0 then the algorithm may output any complex number. Otherwise,

it must output a complex number z such that d(z, ZG(\lambda )) \leq 1/R.

Corollary 1.5. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be such that \lambda \not \in (\Lambda \Delta \cup \BbbR \geq 0). Then, the
problem \#\sansB \sansi \sansp \sansC \sanso \sansm \sansp \sansl \sanse \sansx \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse (\lambda ,\Delta ) is \#\sansP -hard.

Corollary 1.5 follows immediately from Theorem 1.1 using the fact (see [7, Lemma
2.1]) that d(z\prime , z) \leq \epsilon implies | z\prime | /| z| \leq 1/(1  - \epsilon ). This fact implies (see [7, Lemma
2.2]) that there is a polynomial Turing reduction from \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K)
to \#\sansB \sansi \sansp \sansC \sanso \sansm \sansp \sansl \sanse \sansx \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse (\lambda ,\Delta ). Similarly, Corollary 1.5 can also be proved using
Theorem 1.3. To see this, note that for \epsilon \leq 1/3, d(z\prime , z) \leq \epsilon implies that there are
a \in arg(z) and a\prime \in arg(z\prime ) such that | a  - a\prime | \leq 

\sqrt{} 
36\epsilon /11. This fact is proved in

[7, Lemma 2.1] and it implies (see [7, Lemma 2.2]) that there is a polynomial Turing
reduction from \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ) to \#\sansB \sansi \sansp \sansC \sanso \sansm \sansp \sansl \sanse \sansx \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse (\lambda ,\Delta ).

Note that our \#\sansP -hardness results for \lambda \in \BbbC \BbbQ \setminus (\Lambda \Delta \cup \BbbR \geq 0) highlight a difference
in complexity between this case and the case where \lambda is a rational satisfying \lambda > \lambda c. If
\lambda is a positive rational then ZG(\lambda ) can be efficiently approximated in polynomial time
using an NP oracle, via the bisection technique of Valiant and Vazirani [16]. Thus, in
that case approximation is NP-easy, and is unlikely to be \#\sansP -hard. The techniques
for proving hardness also differ in the two cases.

1.1. Proof approach. To prove our inapproximability results, we construct
graph gadgets which, when appended appropriately to a vertex, have the effect of
altering the activity \lambda to any complex activity \lambda \prime that we wish, perhaps with some
small error \epsilon . In fact, it is essential for our \#\sansP -hardness results to be able to make
the error \epsilon exponentially small with respect to the number of the vertices in the graph
(see the upcoming Proposition 2.2 for details).
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Interestingly, our constructions are based on using tools from complex analysis for
analyzing the iteration of rational maps. We start with the observation that (\Delta  - 1)-
ary trees of height h can be used to ``implement"" activities \lambda \prime which correspond to
the iterates of the complex rational map f : x \mapsto \rightarrow 1

1+\lambda x\Delta  - 1 . Crucially, we show that
when \lambda /\in \Lambda \Delta , all of the fixpoints of f are repelling, i.e., applying the map f at any
point close to a fixpoint \omega will push us away from the fixpoint. In the iteration of
univariate complex rational maps, repelling fixpoints belong to the so-called Julia set
of the map; a consequence of this is that iterating f in a neighborhood U of a repelling
fixpoint gives rise to a chaotic behavior: after sufficiently many iterations, one ends
up anywhere in the complex plane.

This sounds promising, but how can we get close to a repelling fixpoint of f in the
first place? In fact, we need to be able to create arbitrary points in a neighborhood
U of a repelling fixpoint and iterating f will not get us anywhere close (since the
fixpoint is repelling). The key is to use a Fibonacci-type construction which requires
analyzing a more intricate multivariate version of the map f . Surprisingly, we can
show that the iterates of the multivariate version converge to the fixpoint \omega of the
univariate f with the smallest norm. Using convergence properties of the multivariate
map around \omega (and some extra work), we obtain a family of (univariate) contracting2

maps \Phi 1, . . . ,\Phi t and a small neighborhood U around \omega such that U \subseteq \cup ti=1\Phi i(U). The
final step is to show that ``contracting maps that cover yield exponential precision.""
To do this we first show that, starting from any point in U , we can apply (some
sequence of) \Phi 1, . . . ,\Phi t at most poly(n) times to implement any point in U with
precision exp( - \Omega (n)). We then show that by iteratively applying the univariate map
f and carefully tracking the distortion introduced, we can eventually implement any
point in the complex plane with exponentially small error.

Section 2 gives a more detailed description of the proof approach, stating the
key lemmas, and explaining how they relate to each other. Section 3 gives some
preliminary definitions, which are not necessary for understanding the proof outline
in section 2, but are necessary once we start with the proofs. Section 3 also imports
some key facts from related works. Section 4 proves some key properties of the cardioid
defined by (1.1). The main technical part of the paper is contained in sections 5 and 6.
Section 5 shows how to implement activities with exponential precision. Section 6
shows how to obtain our inapproximability results, using these. Some of the technical
proofs for section 5 are deferred to section 7.

1.2. New developments. After this paper was written, Bencs and Csikv\'ari [2]
discovered a new zero-free region inside the region \Lambda \Delta . Using the algorithm of Patel
and Regts [11], this gives an FPTAS for approximating ZG(\lambda ) on graphs G \in \scrG \Delta 
within this zero-free region. In addition to this, Rivera-Letelier [13] and Buys [4]
showed the existence of zeros inside the region \Lambda \Delta , close to the boundary.

2. Proof outline. In this section, we give a more detailed outline of the proof
of our results. We focus mainly on the case where \lambda \in \BbbC \BbbQ \setminus (\Lambda \Delta \cup \BbbR ). In section 2.7 we
describe suitable modifications that will give us the ingredients needed for negative
real values \lambda \in \BbbQ \setminus \Lambda \Delta .

Let \lambda \in \BbbC and G = (V,E) be an arbitrary graph. We denote by \scrI G the set of
independent sets of G (including the empty independent set). For a vertex v \in V , we

2Let \Phi : \BbbC \rightarrow \BbbC be a complex map. We say that \Phi is contracting on a set S \subseteq \BbbC if there exists a
real number M < 1 such that for all x, y \in S it holds that | \Phi (x) - \Phi (y)| \leq M | x - y| .
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will denote
Z \sansi \sansn 
G,v(\lambda ) :=

\sum 
I\in \scrI G; v\in I

\lambda | I| , Z\sanso \sansu \sanst 
G,v(\lambda ) :=

\sum 
I\in \scrI G; v/\in I

\lambda | I| .

Thus, Z \sansi \sansn 
G,v(\lambda ) is the contribution to the partition function ZG(\lambda ) from those inde-

pendent sets I \in \scrI G such that v \in I; similarly, Z\sanso \sansu \sanst 
G,v(\lambda ) is the contribution to ZG(\lambda )

from those I \in \scrI G such that v /\in I.

Definition 2.1. Fix a complex number \lambda that is not 0. Given \lambda , the graph G is
said to implement the activity \lambda \prime \in \BbbC with accuracy \epsilon > 0 if there is a vertex v in G
such that Z\sanso \sansu \sanst 

G,v(\lambda ) \not = 0 and
1. v has degree one in G, and

2.
\bigm| \bigm| \bigm| Z \sansi \sansn 

G,v(\lambda )

Z\sanso \sansu \sanst 
G,v(\lambda )

 - \lambda \prime | \leq \epsilon .

We call v the terminal of G. If item 2 holds with \epsilon = 0, then G is said to implement
the activity \lambda \prime .

The key to obtaining our \#\sansP -hardness results is to show that, given any target
activity \lambda \prime \in \BbbC , we can construct in polynomial time a bipartite graph G that im-
plements \lambda \prime with exponentially small accuracy, as a function of the size of \lambda \prime . More
precisely, we use size(\lambda \prime , \epsilon ) to denote the number of bits needed to represent the com-
plex number \lambda \prime \in \BbbC \BbbQ and the rational \epsilon (see Definition 3.4). The implementation that
we need is captured by the following proposition.

Proposition 2.2. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be such that \lambda /\in \Lambda \Delta \cup \BbbR . There is an
algorithm which, on input \lambda \prime \in \BbbC \BbbQ and rational \epsilon > 0, outputs in poly(size(\lambda \prime , \epsilon )) time
a bipartite graph G of maximum degree at most \Delta with terminal v that implements
\lambda \prime with accuracy \epsilon . Moreover, the algorithm outputs the values Z \sansi \sansn 

G,v(\lambda ), Z
\sanso \sansu \sanst 
G,v(\lambda ).

Proposition 2.2 is extremely helpful in our reductions since it enables us to con-
struct other gadgets very easily, e.g., equality gadgets that reduce the degree of a
graph and gadgets that can turn it into a bipartite graph. The proofs of Theo-
rems 1.1 and 1.3 show how to use these gadgets to obtain \#\sansP hardness. In this proof
outline, we focus on the most difficult part which is the proof of Proposition 2.2.

To prove Proposition 2.2, we will make use of the following multivariate map:

(2.1) (x1, . . . , xd) \mapsto \rightarrow 
1

1 + \lambda x1 \cdot \cdot \cdot xd
, where d := \Delta  - 1.

If, starting from 1, there is a sequence of operations (2.1) which ends with the value
x, for the purposes of this outline, we will loosely say that ``we can generate the value
x"" (the notion is formally defined in Definition 7.1). There is a simple correspondence
between the values that we can generate and the activities that we can implement:
in Lemma 7.2, we show that if we can generate a value x, we can also implement the
activity \lambda x using a tree of maximum degree \Delta .3

To get some insight about the map (2.1), the first natural step is to look at the
univariate case x1 = \cdot \cdot \cdot = xd = x, where the map (2.1) simplifies into

f : x \mapsto \rightarrow 1

1 + \lambda xd
.

3Note the extra factor of \lambda when we pass to the implementation setting which is to ensure the
degree requirement in item 1 of Definition 2.1; while the reader should not bother at this stage with
this technical detail, the statements of our lemmas are usually about implementing activities and
therefore have this extra factor \lambda incorporated.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-401

Even analyzing the iterates of this map is a surprisingly intricate task; fortunately
there is a rich theory concerning the iteration of complex rational maps which we can
use (though much less is known in the multivariate setting!). In the next section, we
review the basic ingredients of the theory that we need; see [1, 9] for detailed accounts
on the subject.

2.1. Iteration of complex rational maps. We will use \widehat \BbbC = \BbbC \cup \{ \infty \} to
denote the Riemann sphere (complex numbers with infinity). To handle \infty , it will be

convenient to consider the chordal metric d(\cdot , \cdot ) on the Riemann sphere \widehat \BbbC , which is
given for z, w \in \BbbC by

d(z, w) =
2| z  - w| 

(1 + | z| 2)1/2(1 + | w| 2)1/2
and d(z,\infty ) = lim

w\rightarrow \infty 
d(z, w) =

2

(1 + | z| 2)1/2
.

Note that d(z, w) is bounded by an absolute constant for all z, w \in \widehat \BbbC .
Let f : \widehat \BbbC \rightarrow \widehat \BbbC be a complex rational map, i.e., f(z) = P (z)/Q(z) for some

coprime polynomials P,Q. We define f(\infty ) as the limit of f(z) when z \rightarrow \infty . The
degree of f is the maximum of the degrees of P,Q. A point p \in \BbbC is called a pole of
f if Q(p) = 0; when p =\infty , p is a pole of f if 0 is a pole of f(1/z).

Suppose that z\ast \in \BbbC is a fixpoint of f , i.e., f(z\ast ) = z\ast . The multiplier of f at
z\ast is given by q = f \prime (z\ast ). If z\ast = \infty , the multiplier of f at z\ast is given by 1/f \prime (\infty ).
Depending on the value of | q| , the fixpoint z\ast is classified as follows: (i) attracting if
| q| < 1, (ii) repelling if | q| > 1, and (iii) neutral if | q| = 1.

For a nonnegative integer n \geq 0, we will denote by fn the n-fold iterate of f (for

n = 0, we let f0 be the identity map). Given z0 \in \widehat \BbbC , the sequence of points \{ zn\} 
defined by zn = f(zn - 1) = fn(z0) is called the orbit of z0.

Given a rational map f : \widehat \BbbC \rightarrow \widehat \BbbC , we will be interested in the sensitivity of an
orbit under small perturbations of the starting point. A point z0 belongs to the Fatou
set if, for every \epsilon > 0 there exists \delta > 0 such that, for any point z\prime with d(z\prime , z0) \leq \delta , it
holds that d(fn(z\prime ), fn(z0)) \leq \epsilon for all positive integers n (in other words, z0 belongs
to the Fatou set if the family of maps \{ fn\} n\geq 1 is equicontinuous at z0 under the
chordal metric). A point z0 belongs to the Julia set if z0 does not belong to the Fatou
set (i.e., the Julia set is the complement of the Fatou set).

Lemma 2.3 (e.g., [9, Lemma 4.6]). Every repelling fixpoint belongs to the Julia
set.

For z \in \widehat \BbbC , the grand orbit [z] is the set of points z\prime whose orbit intersects the orbit
of z, i.e., for every z\prime \in [z], there exist integers m,n \geq 0 such that fm(z) = fn(z\prime ).
The exceptional set of the map f is the set of points z whose grand orbit [z] is finite.
As we shall see in the upcoming Lemma 3.7, the exceptional set of a rational map f
can have at most two points and, in our applications, it will in fact be empty.

For z0 \in \BbbC and r > 0, we use B(z0, r) to denote the open ball of radius r around
z0. A set U is a neighborhood of z0 if U contains a ball B(z0, r) for some r > 0. We
will use the following fact.

Theorem 2.4 (see, e.g., [9, Theorem 4.10]). Let f : \widehat \BbbC \rightarrow \widehat \BbbC be a complex
rational map with exceptional set Ef . Let z0 be a point in the Julia set and let U be
an arbitrary neighborhood of z0. Then, the union of the forward images of U , i.e., the
set
\bigcup 

n\geq 0 f
n(U), contains \widehat \BbbC \setminus Ef .

Peters and Regts [12] used a version of Theorem 2.4 to conclude the existence
of trees T and \lambda 's close to the boundary of \Lambda \Delta such that ZT (\lambda ) = 0. We will use
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Theorem 2.4 as a tool to get our \#\sansP -hardness results for any \lambda outside the cardioid
\Lambda \Delta .

2.2. A characterization of the cardioid. To use the tools from the previous
section, we will need to analyze the fixpoints of the map f(z) = 1

1+\lambda z\Delta  - 1 . We denote
by \vargamma \Lambda \Delta the following curve (which is actually the boundary of the region \Lambda \Delta defined
in (1.1)):4

(2.2) \vargamma \Lambda \Delta =
\Bigl\{ 
\lambda \in \BbbC 

\bigm| \bigm| \exists z \in \BbbC : | z| = 1/(\Delta  - 1), \lambda =
z

(1 - z)\Delta 

\Bigr\} 
.

The following lemma is proved in section 4.

Lemma 2.5. Let \Delta \geq 3 and consider the map f(z) = 1
1+\lambda z\Delta  - 1 for \lambda \in \BbbC . Then,

1. for all \lambda \in \Lambda \Delta \setminus \vargamma \Lambda \Delta , f has a unique attractive fixpoint; all other fixpoints are
repelling;

2. for all \lambda \in \vargamma \Lambda \Delta , f has a unique neutral fixpoint; all other fixpoints are re-
pelling;

3. for all \lambda /\in \Lambda \Delta , all of the fixpoints of f are repelling.

2.3. Applying the theory. We are now in a position to discuss in detail how
to apply the tools of section 2.1 and the result of section 2.2. Let \lambda \in \BbbC \BbbQ \setminus (\Lambda \Delta \cup \BbbR ).
By Lemma 2.5, all of the fixpoints of the map f(z) = 1

1+\lambda z\Delta  - 1 are repelling. By
Lemma 2.3, all of the repelling fixpoints belong to the Julia set of the map and,
therefore, by applying Theorem 2.4, iteratively applying f to a neighborhood U of a
repelling fixpoint gives the entire complex plane. Therefore, if we want to generate
an arbitrary complex value \lambda \prime \in \BbbC , it suffices to be able to generate values in a
neighborhood U close to a repelling fixpoint of f . Of course, in our setting we will
also need to do this efficiently, up to exponential precision. The following proposition
is therefore the next important milestone. It formalizes exactly what we need to show
in order to be able to prove Proposition 2.2.

Proposition 2.6. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the
fixpoint of f(x) = 1

1+\lambda xd with the smallest norm.5 There exists a rational \rho > 0 such
that the following holds.

There is a polynomial-time algorithm such that, on input \lambda \prime \in B(\lambda \omega , \rho ) \cap \BbbC \BbbQ 
and rational \epsilon > 0, outputs a bipartite graph G of maximum degree at most \Delta with
terminal v that implements \lambda \prime with accuracy \epsilon . Moreover, the algorithm outputs the
values Z \sansi \sansn 

G,v(\lambda ), Z
\sanso \sansu \sanst 
G,v(\lambda ).

To briefly explain why Proposition 2.2 follows from Proposition 2.6, we first show
how to use Proposition 2.6 to implement activities \lambda x\ast , where x\ast is close to a pole p of
f (i.e., a point p which satisfies 1+\lambda pd = 0). For some r > 0, let U be the ball B(\omega , r)
of radius r around \omega . Using Theorem 2.4, we find the first integer value of N > 0

4The fact that the curve \vargamma \Lambda \Delta , as defined in (2.2), is the boundary of the region \Lambda \Delta (defined in
(1.1)) follows from Lemma 4.1. Lemma 4.1 states that for every \lambda \in \Lambda \Delta , there is a unique z \in \BbbC 
such that | z| \leq 1/(\Delta  - 1) and \lambda = z

(1 - z)\Delta 
. Thus, the function g(z) = z

(1 - z)\Delta 
is holomorphic and

injective on the open disc U given by | z| < 1/(\Delta  - 1). By the open mapping theorem, we have
that g(U) is an open set. Moreover, | g(z)| \leq | z| /(1  - | z| )\Delta  - 1, so g(U) is bounded. Since g extends
injectively and continuously to the closed disc | z| \leq 1/(\Delta  - 1), the boundary of g(U) is given by the
image of the circle | z| = 1/(\Delta  - 1). (Alternatively, one can also apply the domain invariance theorem
to g.)

5Note, by Lemma 4.2, all the fixpoints of f have different norms for \lambda \in \BbbC \BbbQ \setminus \BbbR , so \omega is well-
defined.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-403

such that a pole p\ast belongs to fN (U); in fact, we can choose r (see Lemma 5.4) so
that there exists a radius r\ast > 0 such that B(p\ast , r\ast ) \subseteq fN (U). The idea of ``waiting
till we hit the pole of f"" is that, up to this point, the iterates of f satisfy Lipschitz
inequalities, i.e., it can be shown that there exists a real number L > 0 such that
| fN (x1)  - fN (x2)| \leq L| x1  - x2| for all x1, x2 \in U . Therefore, for any desired target
x\ast \in B(p\ast , r\ast ) we can find w\ast \in U such that fN (w\ast ) = x\ast . We then implement
\lambda w\ast using Proposition 2.6 with accuracy \epsilon > 0. Due to the Lipschitz inequality, this
yields an implementation of \lambda x\ast with accuracy at most \lambda L\epsilon , i.e., just a constant factor
distortion. Once we are able to create specified activities close to \lambda p\ast , where p\ast is a
pole we move from there using the recurrence f(x) = 1

1+\lambda xd and this enables us to
implement activities \lambda \prime with large norm. After that, we use the implementations that
we have to implement activities \lambda \prime with small norm and, finally, \lambda \prime with moderate
value of | \lambda \prime | as well. See the proof of Proposition 2.2 in section 5.3 for more details.

2.4. Chasing repelling fixpoints. In this section, we focus on the proof of
Proposition 2.6, whose proof (given in section 7) requires us to delve into the analysis
of the multivariate map (restating (2.1))

(x1, . . . , xd) \mapsto \rightarrow 
1

1 + \lambda x1 \cdot \cdot \cdot xd
, where d := \Delta  - 1.

Recall, in the scope of proving Proposition 2.6, our goal is to generate points close
to a repelling fixpoint of the map f : x \mapsto \rightarrow 1

1+\lambda xd . Since \lambda is outside the cardioid
region \Lambda \Delta , the fixpoints of the map f are repelling and therefore we cannot get close
to any of them by just iterating f . Can the multivariate map make it easier to get to
a fixpoint of f? The answer to the question is yes, as the following lemma asserts.

Lemma 2.7. Let \Delta \geq 3 and \lambda \in \BbbC \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the fixpoint
of f(x) = 1

1+\lambda xd with the smallest norm. For k \geq 0, let xk be the sequence defined by

(2.3) x0 = x1 = \cdot \cdot \cdot = xd - 1 = 1, xk =
1

1 + \lambda 
\prod d

i=1 xk - i

for k \geq d.

Then, the sequence xk is well-defined (i.e., the denominator of (2.3) is nonzero for
all k \geq d) and converges to the fixpoint \omega as k \rightarrow \infty . Moreover, there exist infinitely
many k such that xk \not = \omega .

Note, Lemma 2.5 gurarantees that the fixpoint \omega in Lemma 2.7 is repelling when
\lambda \in \BbbC \setminus (\Lambda \Delta \cup \BbbR ), so Lemma 2.7 indeed succeeds in getting us close to a repelling
fixpoint in this case. It is instructive at this point to note that the sequence in (2.3)
corresponds to a Fibonacci-type tree construction T0, . . . , Tk, where for k \geq d tree
Tk consists of a root r with subtrees Tk - d, . . . , Tk - 1 rooted at the children of r. The
trees Tk - d, . . . , Tk - 1 generate the values xk - d, . . . , xk - 1, respectively, and the tree Tk

generates the value xk.
A few remarks about the proof of Lemma 2.7 are in order. Analyzing the behavior

of multivariate recurrences such as the one in (2.3) is typically an extremely compli-
cated task and the theory for understanding such recurrences appears to be still under
development. Fortunately, the recurrence (2.3) can be understood in a surprisingly
simple way by using the linear recurrence Rk defined by R0 = \cdot \cdot \cdot = Rd = 1 and
Rk+1 = Rk + \lambda Rk - d for all k \geq d, and observing that xk = Rk/Rk+1 for all k. By
interpreting Rk as the independent set polynomial of a claw-free graph evaluated at
\lambda \in \BbbC \setminus \BbbR , we obtain using a result of Chudnovsky and Seymour [5] that Rk \not = 0. The
detailed proof of Lemma 2.7 can be found in section 7.1.
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2.5. Exponential precision via contracting maps that cover. Lemma 2.7
resolves the intriguing task of getting close to a repelling fixpoint \omega of the univariate
map when \lambda \in \BbbC \setminus (\Lambda \Delta \cup \BbbR ). But in the context of Proposition 2.6 we need to accom-
plish far more: we need to be able to generate any point which is in some (small) ball
U around the fixpoint \omega with exponentially small error \epsilon .

To do this, we will focus on a small ball U around \omega , i.e., U = B(\omega , \delta ) for some
sufficiently small \delta > 0, and we will examine how the multivariate map (2.1) behaves
when x1, . . . , xd \in U . In particular, we show in Lemma 7.9 that for any choice of
x1, . . . , xd \in U it holds that

(2.4)
1

1 + \lambda x1 \cdot \cdot \cdot xd
\approx \omega + z

\bigl( 
(x1 - \omega )+ \cdot \cdot \cdot +(xd - \omega )

\bigr) 
for z \in \BbbC \setminus \BbbR and 0 < | z| < 1.

To establish (2.4) we choose z = \omega  - 1 so it is important (see Lemma 7.4) that
\omega satisfies 0 < | \omega  - 1| < 1. Another important observation is that once we fix
x1, . . . , xd - 1 \in B(\omega , \delta ), the resulting map \Phi is contracting with respect to the re-
maining argument xd (in the vicinity of \omega ); see Lemma 7.11 for a more detailed
treatment of this contraction.

The observation that \Phi is contracting will form the basis of our approach to
iteratively reduce the accuracy with which we need to generate points (by going
backwards): if we need to generate a desired x \in U with error at most \epsilon it suffices to
be able to generate \Phi  - 1(x) with error at most \epsilon /| z| > \epsilon , i.e., to generate x with good
accuracy, we only need to do the easier task of generating the point \Phi  - 1(x) with less
restrictive accuracy. The only trouble is that, if we use a single map \Phi , after a few
iterations of the process the preimage \Phi  - 1(x) will eventually escape U . To address
this, note that in the construction of the map \Phi above, we had the freedom to choose
arbitrary x1, . . . , xd - 1 \in B(\omega , \delta ). We will make use of this freedom and, in particular,
we will use a family of contracting maps \Phi 1, . . . ,\Phi t (for some large constant t) instead
of a single map \Phi ; the large number of maps will allow us to guarantee that for all
x \in U , at least one of the preimages \Phi  - 1

1 (x), . . . ,\Phi  - 1
t (x) belongs in U , i.e., that the

images \Phi 1(U), . . . ,\Phi t(U) cover U . We will discuss in section 2.6 how to obtain the
maps \Phi 1, . . . ,\Phi t, but first let us formalize the above into the following lemma, which
is the basis of our technique for making the error exponentially small.

Lemma 2.8. Let z0 \in \BbbC \BbbQ , r > 0, be a rational, and U be the ball B(z0, r). Further,
suppose that \lambda \prime 

1, . . . , \lambda 
\prime 
t \in \BbbC \BbbQ are such that the complex maps \Phi i : z \mapsto \rightarrow 1

1+\lambda \prime 
iz

with

i \in [t] satisfy the following:
1. for each i \in [t], \Phi i is contracting on the ball U ;
2. U \subseteq 

\bigcup t
i=1 \Phi i(U).

There is an algorithm which, on input of (i) a starting point x0 \in U \cap \BbbC \BbbQ , (ii) a target
x \in U \cap \BbbC \BbbQ , and (iii) a rational \epsilon > 0, outputs in poly(size(x0, x, \epsilon )) time a number
\^x \in U \cap \BbbC \BbbQ and a sequence i1, i2, . . . , ik \in [t] such that

\^x = \Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) and | \^x - x| \leq \epsilon .

The proof of Lemma 2.8 can be carried out along the lines we sketched above;
see section 5.1 for details. In that section, we also pair Lemma 2.8 with a path
construction which, given the sequence of indices i1, . . . , ik, returns a path of length
k that implements \lambda \^x (cf. footnote 3 for the extra factor of \lambda ); see Lemma 5.2 for
details.

2.6. Constructing the maps. We next turn to the last missing piece, which
is to create the maps \Phi 1, . . . ,\Phi t which satisfy the hypotheses of Lemma 2.8 in a ball
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U = B(\omega , \delta ) around the fixpoint \omega for some small radius \delta > 0 (note, we are free
to make \delta as small as we wish). The following (standard) notions of ``covering"" and
``density"" will be relevant for this section.

Definition 2.9. Let U \subseteq \BbbC . A set F \subseteq U is called an \epsilon -covering of U if for
every x \in U there exists y \in F such that | x - y| \leq \epsilon . A set F \subseteq U is called dense in
U if F is an \epsilon -covering of U for every \epsilon > 0.

We have already seen in section 2.5 that, for arbitrary x1, . . . , xd \in U , we have
(restating (2.4))

1

1 + \lambda x1 \cdot \cdot \cdot xd
\approx \omega + z

\bigl( 
(x1  - \omega ) + \cdot \cdot \cdot + (xd  - \omega )

\bigr) 
for z \in \BbbC \setminus \BbbR and 0 < | z| < 1.

We also discussed that, if we fix arbitrary x1, . . . , xd - 1 \in U , the resulting map \Phi (x) =
1

1+(\lambda x1\cdot \cdot \cdot xd - 1)x
is contracting in U for all sufficently small \delta > 0, and therefore we

can easily take care of the contraction properties that we need (in the context of
Lemma 2.8). The more difficult part is to control the preimage of the map \Phi . We
show in Lemma 7.10 that for x, x1, . . . , xd - 1 \in U , it holds that

\Phi  - 1(x) =
1

\lambda x1 \cdot \cdot \cdot xd - 1

\Bigl( 1
x
 - 1
\Bigr) 
\approx \omega +

\Bigl( x - \omega 

z
 - 

d - 1\sum 
j=1

(xj  - \omega )
\Bigr) 
.

Therefore to ensure that \Phi  - 1(x) belongs to U = B(\omega , \delta ) we need to ensure that
x1, . . . xd - 1 are such that

(2.5)
\bigm| \bigm| \bigm| x - \omega 

z
 - 

d - 1\sum 
j=1

(xj  - \omega )
\bigm| \bigm| \bigm| < \delta /2.

Note that by Lemma 2.7 we can generate points arbitrarily close to \omega and hence we
can make each of x2  - \omega , . . . , xd - 1  - \omega so small that they are effectively negligible
in (2.5); then, to be able to satisfy (2.5), we need to be able to choose x1 so that
| (x  - \omega )/z  - (x1  - \omega )| is small, say less than \delta /4. Since | (x  - \omega )/z| \leq \delta /| z| , the key
will therefore be to produce a (\delta /4)-covering of the slightly enlarged ball B(\omega , \delta /| z| ).
Then, we can take x1 to be one of the points in the (\delta /4)-covering.

We will in fact show the following slightly more general lemma, which guarantees
that we can indeed generate the required points around \omega for any desired precision
\epsilon > 0 provided that we choose \delta small enough (and can therefore implement ac-
tivities around \lambda \omega ). Note that the lemma can be viewed as a ``relaxed"" version of
Proposition 2.6 with much weaker guarantees.

Lemma 2.10. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the
fixpoint of f(x) = 1

1+\lambda xd with the smallest norm. For any \epsilon , \kappa > 0 there exists a
radius \rho \in (0, \kappa ) such that the following holds. For every \lambda \prime \in B(\lambda \omega , \rho ), there exists
a tree G of maximum degree at most \Delta that implements \lambda \prime with accuracy \rho \epsilon .

But how can we ``populate"" the vicinity of \omega , i.e., generate a covering of a ball
U = B(\omega , \delta )? Lemma 2.7 only shows that we can generate points arbitrarily close to
\omega . The key once again is to use the multivariate map around \omega and, in particular,
the perturbation estimate in the right-hand side (r.h.s.) of (2.4). To focus on the
displacement from \omega , we will use the transformation ai = xi - \omega so that (2.4) translates
into the following operation

(a1, . . . , ad) \mapsto \rightarrow z(a1 + \cdot \cdot \cdot + ad),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STOC18-406 BEZ\'AKOV\'A, GALANIS, GOLDBERG, AND \v STEFANKOVI\v C

i.e., if we have generated points which are displaced by a1, . . . , ad from \omega , we can also
generate a point which is roughly displaced by z(a1+\cdot \cdot \cdot +ad) from \omega ; we will only need
to apply the operation a finite number of times, so the error coming from (2.4) will
not matter critically and can be ignored in the following. We show in Lemma 7.8 that,
using a sequence of such operations, we can generate points of the form \omega +zN(p)p(z),
where p is an arbitrary polynomial with nonnegative integer coefficients and N(p) is
a positive integer which is determined by the number of operations we used to create
p. We further show in Lemma 7.5, that for all z \in \BbbC \setminus \BbbR with | z| < 1, the values p(z),
as p ranges over all polynomials with nonnegative integer coefficients, form a dense
set of \BbbC . Therefore, to obtain Lemma 2.10, we can choose an \epsilon -covering F of the unit
disc using a finite set of values p(z) and set \delta = zN , where N = maxp\in F N(p); then,
we can generate the points \omega + \delta p(z) for every p \in F , which form an (\epsilon \delta )-covering of
the ball U = B(\omega , \delta ), yielding Lemma 2.10. The full proof is in section 7.2.

2.7. Fitting the pieces together and proof for the real case. We briefly
summarize the proof of Proposition 2.6. First, we get points close to a repelling
fixpoint by showing Lemma 2.7 (discussed in section 2.4 and proved in section 7.1).
Then, we bootstrap this into a moderately dense set of points around the fixpoint,
yielding Lemma 2.10 (discussed in section 2.6 and proved in section 7.2). Further, we
bootstrap this into exponential precision around the fixpoint using Lemma 2.8 (dis-
cussed in section 2.5 and proved in section 7.3). Finally, we propagate this exponential
precision to the whole complex plane, therefore yielding Proposition 2.6 (discussed in
section 2.3 and proved in section 5.3).

Finally, we mention the modifications needed for the real case when \lambda <  - \lambda \ast . The
following proposition is the analogue of Proposition 2.2 and allows us to implement
real activities with exponential precision.

Proposition 2.11. Let \Delta \geq 3 and \lambda \in \BbbQ be such that \lambda <  - \lambda \ast . There is an
algorithm which, on input \lambda \prime , \epsilon \in \BbbQ with \epsilon > 0, outputs in poly(size(\lambda \prime , \epsilon )) time a
bipartite graph G of maximum degree at most \Delta with terminal v that implements \lambda \prime 

with accuracy \epsilon . Moreover, the algorithm outputs the values Z \sansi \sansn 
G,v(\lambda ), Z

\sanso \sansu \sanst 
G,v(\lambda ).

As in the complex case, we will need a moderately dense set of activities to get
started, i.e., an analogue of Lemma 2.10; here, our job is somewhat simplified (relative
to the case where \lambda \in \BbbC \setminus \BbbR ) since we can use the following result of [6] .

Lemma 2.12 (see [6, Lemma 4]). Let \Delta \geq 3 and \lambda <  - \lambda \ast . Then, for every
\lambda \prime \in \BbbR , for every \epsilon > 0, there exists a bipartite graph G of maximum degree at most
\Delta that implements \lambda \prime with accuracy \epsilon .

Note that Lemma 2.12 does not control the size of the graph G with respect to
the accuracy \epsilon , so it does not suffice to prove Proposition 2.11 on its own. In order
to do this, we use the ``contracting maps that cover"" technique to get the exponential
precision, i.e., the analogue of Lemma 2.8 restricted to the reals (see Lemma 5.1).
The proof of Proposition 2.11 is completed in section 5.2.

Once the proofs of Propositions 2.2 and 2.11 are in place, we give the proofs of
our \#\sansP -hardness results in section 6.

2.8. Dependencies between lemmas. The proofs of some theorems, propo-
sitions, and lemmas depend directly upon other theorems, propositions, and lemmas
that are proved in this paper. To help the reader keep track of this, we provide
Table 1. Note that Theorems 1.1 and 1.3 follow directly from Theorems 6.6 and 6.8.
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Table 1
Dependencies between lemmas, etc.

Result Depends directly on

Proposition 2.2 Proposition 2.6, Lemma 5.4
Lemma 2.5 Lemma 4.1
Proposition 2.6 Lemmas 2.8, 5.2, 7.12
Lemma 2.7 Lemmas 4.2, 7.3
Lemma 2.10 Lemmas 2.7, 7.2, 7.4, 7.5, 7.8, 7.9
Proposition 2.11 Lemmas 5.1, 5.2, 5.3
Lemma 5.4 Lemma 2.5
Lemma 6.3 Lemmas 6.1, 6.2
Theorem 6.4 Propositions 2.2, 2.11, Lemma 6.3
Theorem 6.6 Theorem 6.4
Theorem 6.8 Propositions 2.2, 2.11, Lemma 6.7
Lemma 7.4 Lemma 4.2
Lemma 7.11 Lemmas 7.4, 7.9
Lemma 7.12 Lemmas 2.10, 7.4, 7.9, 7.10, 7.11

3. Preliminaries.

3.1. Implementing activities. We recall the following definitions from [6],
which we modify (slightly) here to account for complex activities.

Definition 3.1. Let \Delta \geq 2 be an integer and \lambda \in \BbbC \not =0. We say that (\Delta , \lambda )
implements the activity \lambda \prime \in \BbbC if there is a bipartite graph G of maximum degree
at most \Delta which implements the activity \lambda \prime . More generally, we say that (\Delta , \lambda )
implements a set of activities S \subseteq \BbbC if for every \lambda \prime \in S it holds that (\Delta , \lambda ) implements
\lambda \prime .

Implementing activities allows us to modify the activity at a particular vertex v.
As in [6], it will therefore be useful to consider the hard-core model with nonuniform
activities. Let G = (V,E) be a graph and \bfitlambda = \{ \lambda v\} v\in V be a complex vector, so that
\lambda v is the activity of the vertex v \in V . The hard-core partition function with activity
vector \bfitlambda is defined as

ZG(\bfitlambda ) =
\sum 
I\in \scrI G

\prod 
v\in I

\lambda v.

Note that by setting all vertex activities equal to \lambda we obtain the standard hard-core
model with activity \lambda . For a vertex v \in V , we define Z \sansi \sansn 

G(\bfitlambda ) and Z\sanso \sansu \sanst 
G (\bfitlambda ) for the non-

uniform model analogously to Z \sansi \sansn 
G(\lambda ) and Z\sanso \sansu \sanst 

G (\lambda ) for the uniform model, respectively.
The following lemma is proved in [6] for real values but the proof holds verbatim

in the complex setting as well. The lemma connects the partition function ZG(\bfitlambda ) of a
graph G with nonuniform activities to the partition function ZG\prime (\lambda ) of an augmented
graph G\prime with uniform activity \lambda (the augmented graph G\prime is obtained by sticking on
each vertex v of G a graph Gv which implements the activity \lambda v).

Lemma 3.2 (see [6, Lemma 5]). Let \lambda \in \BbbC \not =0, let t \geq 1 be an arbitrary integer,
and let \lambda \prime 

1, . . . , \lambda 
\prime 
t \in \BbbC . Suppose that, for j \in [t], the graph Gj with terminal vj im-

plements the activity \lambda \prime 
j, and let Cj := Z\sanso \sansu \sanst 

Gj ,vj
(\lambda ). Then, the following holds for every

graph G = (V,E) and every activity vector \bfitlambda = \{ \lambda v\} v\in V such that \lambda v \in \{ \lambda , \lambda \prime 
1, . . . , \lambda 

\prime 
t\} 

for every v \in V .
For j \in [t], let Vj := \{ v \in V | \lambda v = \lambda \prime 

j\} . Consider the graph G\prime obtained from G
by attaching, for every j \in [t] and every vertex v \in Vj, a copy of the graph Gj to the

vertex v and identifying the terminal vj with the vertex v. Then, for C :=
\prod t

j=1 C
| Vj | 
j ,
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it holds that

ZG\prime (\lambda ) = C \cdot ZG(\bfitlambda ),(3.1)

\forall v \in V : Z \sansi \sansn 
G\prime ,v(\lambda ) = C \cdot Z \sansi \sansn 

G,v(\bfitlambda ), Z\sanso \sansu \sanst 
G\prime ,v(\lambda ) = C \cdot Z\sanso \sansu \sanst 

G,v(\bfitlambda ).(3.2)

Remark 3.3. As noted in [6, Remark 6], the construction of G\prime in Lemma 3.2
ensures that the degree of every vertex v in G with \lambda v = \lambda maintains its degree, while
the degree of every other vertex v in G gets increased by one. Also, if the graph G is
bipartite and the graphs Gj are bipartite for all j = 1, . . . , t, then G\prime is bipartite as
well.

These observations will ensure in later applications of Lemma 3.2 that we do not
blow up the degree and that we preserve the bipartiteness of the underlying graph G.

3.2. Finding roots of polynomials. To prove our \#\sansP -hardness results, we
will sometimes need in our reductions to compute with accuracy \epsilon roots of polynomial
equations with coefficients in \BbbC \BbbQ . We will therefore need some basic results that these
procedures can be carried out in polynomial time. To formalize the running time, we
will use the following definition for the size of a number in \BbbC \BbbQ .

Definition 3.4. Let \BbbC \BbbQ be the set of complex numbers whose real and imaginary
parts are rationals. Let \alpha \in \BbbC \BbbQ and write \alpha = a

b +i cd , where a, b, c, d are integers such
that gcd(a, b) = 1, gcd(c, d) = 1. Then, the size of \alpha , denoted by size(\alpha ), is given by
1 + log(| a| + | b| + | c| + | d| ).

For \alpha 1, . . . , \alpha t \in \BbbC \BbbQ , size(\alpha 1, . . . , \alpha t) denotes the total of the sizes of \alpha 1, . . . , \alpha t.

We will need the following fact for finding roots of polynomials with complex
coefficients.

Lemma 3.5 (see, e.g., [10]). There is an algorithm which, on input of a co-
efficient list c0, . . . , cn \in \BbbC \BbbQ with cn \not = 0 and a rational \epsilon > 0, outputs in time
poly(n, size(c0, . . . , cn, \epsilon )) numbers \^\rho 1, . . . , \^\rho n \in \BbbC \BbbQ such that

| \rho 1  - \^\rho 1| , . . . , | \rho n  - \^\rho n| \leq \epsilon ,

where \rho 1, . . . , \rho n are the roots of the polynomial P (x) =
\sum n

i=0 cix
i.

3.3. Lower bounds on polynomials evaluated at algebraic numbers. Let
P (x) =

\sum n
i=0 aix

i be a polynomial with complex coefficients. The (naive) height of
P (x) is defined as H(P ) = maxi\{ | ai| \} . In transcendental number theory, the height
of a polynomial in x is used to give a lower bound on its value when x is an algebraic
number. The simple version of the lower bound that we use (Lemma 3.6 below) is
from [7, Lemma 6.3] but the proof is entirely standard, and the proof given in [7] is
taken from the proof of Theorem A.1 of Bugeaud's book [3].

Recall, that the minimal polynomial for an algebraic number is the monic poly-
nomial of minimum degree and rational coefficients which has \alpha as a root; the degree
of an algebraic number is the degree of its minimal polynomial.

Lemma 3.6 (Liouville's inequality). Let P (x) be an integer polynomial of degree n
and y \in \BbbC be an algebraic number of degree d. Then either p(y) = 0 or | P (y)| \geq 
c - n
y (n+ 1)H(P )

 - d+1
, where cy > 1 is an effectively computable constant that only

depends on y.

3.4. Characterizing the exceptional set. We conclude this section with the
following characterization of the exceptional set (cf. Theorem 2.4).
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Lemma 3.7 (see [9, Lemma 4.9] and [1, Theorem 4.1.2]). Let f : \widehat \BbbC \rightarrow \widehat \BbbC be
a complex rational map of degree \geq 2 and let Ef denote its exceptional set. Then,
| Ef | \leq 2. Moreover,

\bullet if Ef = \{ \zeta \} , then \zeta is a fixpoint of f with multiplier 0.
\bullet if Ef = \{ \zeta 1, \zeta 2\} , then \zeta 1, \zeta 2 are fixpoints of f2 with multiplier 0.

4. Proving the properties of the cardioid. In this section, we will prove
Lemma 2.5 which classifies the fixpoints of the map f(z) = 1

1+\lambda z\Delta  - 1 depending on
the value of \lambda .

We start by proving the following property of the region \Lambda \Delta defined in (1.1).

Lemma 4.1. Let \Delta \geq 3 be an integer. Then, for every \lambda \in \Lambda \Delta , there is a unique
z \in \BbbC such that | z| \leq 1/(\Delta  - 1) and \lambda = z

(1 - z)\Delta .

Proof. Existence of z \in \BbbC with the required properties is immediate by the defi-
nition of \Lambda \Delta .

To show uniqueness, set d := \Delta  - 1, and assume for the sake of contradiction that
there exist x, y \in \BbbC with x \not = y such that | x| , | y| \leq 1/d and \lambda = x

(1 - x)d+1 = y
(1 - y)d+1 .

This gives
x(1 - y)d+1  - y(1 - x)d+1 = 0.

By expanding terms we obtain that

x(1 - y)d+1  - y(1 - x)d+1 = (x - y) - 
d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
( - 1)kxy(xk - 1  - yk - 1).

Since x \not = y and x(1  - y)d+1  - y(1  - x)d+1 = 0, we can factor out (x  - y) to obtain
that

M = 1, where M :=

d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
( - 1)kxy

k - 2\sum 
j=0

xjy(k - 2) - j .

We will first show that | M | = 1 only if x, y are conjugate complex numbers satisfying
| x| = | y| = 1/d. Then, we will bootstrap the argument to show that | M | = 1 further
implies that x, y \in \BbbR . Thus, we will get that x = y, contradicting that x \not = y.

The main observation is that since | x| , | y| \leq 1/d, by the triangle inequality we
have that

1 = | M | =
\bigm| \bigm| \bigm| \bigm| d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
( - 1)kxy

k - 2\sum 
j=0

xjy(k - 2) - j

\bigm| \bigm| \bigm| \bigm| \leq d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
| x| | y| 

k - 2\sum 
j=0

| x| j | y| k - 2 - j

\leq 
d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
k  - 1

dk
= 1,(4.1)

where the last equality follows from subtracting the equalities

d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
k

dk
=

d+1\sum 
k=2

\biggl( 
d

k  - 1

\biggr) 
d+ 1

dk
=

d+ 1

d

d\sum 
k=1

\biggl( 
d

k

\biggr) 
1

dk
=
\Bigl( 
1 +

1

d

\Bigr) d+1

 - 
\Bigl( 
1 +

1

d

\Bigr) 
,

d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
1

dk
=
\Bigl( d+ 1

d

\Bigr) d+1

 - 1 - d+ 1

d
.

It follows that the inequality in (4.1) must hold at equality, from where we obtain that
| x| = | y| = 1/d. Further, since x

(1 - x)d+1 = y
(1 - y)d+1 , we obtain that | 1 - x| = | 1 - y| .
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Now, since x \not = y, from | x| = | y| = 1/d and | 1 - x| = | 1 - y| , we obtain that x and y
are conjugate complex numbers with | x| = | y| = 1/d.

Since x \not = y and x, y are conjugates, the imaginary parts of both x and y must be
nonzero. Without loss of generality (w.l.o.g.), we may assume that the imaginary part
of x is positive, so we can set x = 1

de
i\theta and y = 1

de
 - i\theta for some \theta \in (0, \pi ). For each

k = 2, . . . , d + 1, let Mk := xy
\sum k - 2

j=0 x
jy(k - 2) - j . Observe that Mk is a real number

(since it equals its conjugate) satisfying | Mk| \leq (k  - 1)/dk. In fact, we have that

Mk = xy
xk - 1  - yk - 1

x - y
=

sin((k  - 1)\theta )

dk sin \theta 

for each k = 2, . . . , d + 1 and in particular M2 = 1/d2. Using the triangle inequality
again, we have that

1 = | M | =

\bigm| \bigm| \bigm| \bigm| \bigm| 
d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
( - 1)kMk

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
d+1\sum 
k=2

\biggl( 
d+ 1

k

\biggr) 
k  - 1

dk
= 1,

so the inequality must hold at equality. For this to happen, and since the Mk's
are real numbers, it must be the case that there exists s \in \{ 0, 1\} so that Mk =
( - 1)k+s(k  - 1)/dk for each k = 2, . . . , d+ 1. From M2 = 1/d2, we obtain that s = 0.
Note that d \geq 2, so M3 =  - 2/d3 yields that sin(2\theta ) =  - 2 sin(\theta ). By the identity
sin(2\theta ) = 2 sin \theta cos \theta , we obtain that at least one of sin \theta = 0 or cos \theta =  - 1 must
hold, which contradicts that \theta \in (0, \pi ).

Thus, it must be the case that x = y, concluding the proof of Lemma 4.1.

We are now ready to prove Lemma 2.5, which we restate here for convenience.

Lemma 2.5. Let \Delta \geq 3 and consider the map f(z) = 1
1+\lambda z\Delta  - 1 for \lambda \in \BbbC . Then,

1. for all \lambda \in \Lambda \Delta \setminus \vargamma \Lambda \Delta , f has a unique attractive fixpoint; all other fixpoints are
repelling;

2. for all \lambda \in \vargamma \Lambda \Delta , f has a unique neutral fixpoint; all other fixpoints are re-
pelling;

3. for all \lambda /\in \Lambda \Delta , all of the fixpoints of f are repelling.

Proof. Let \omega \in \BbbC be an arbitrary fixpoint of f so that

(4.2) \omega =
1

1 + \lambda \omega \Delta  - 1
or, equivalently, \lambda \omega \Delta = 1 - \omega .

Let q := f \prime (\omega ) be the multiplier of f at z = \omega . We have that

(4.3) q = f \prime (\omega ) =  - (\Delta  - 1)\lambda \omega \Delta  - 2

(1 + \lambda \omega \Delta  - 1)2
=  - (\Delta  - 1)\lambda \omega \Delta =  - (\Delta  - 1)(1 - \omega ),

where in the latter two equalities we used (4.2). Let \widehat \omega := 1 - \omega . Then, (4.2) and (4.3)
give

(4.4) \lambda =
\widehat \omega 

(1 - \widehat \omega )\Delta , | q| = (\Delta  - 1) | \widehat \omega | .
We are now ready to prove the lemma. Let \omega 1, . . . , \omega t denote the distinct fixpoints of
f (note that 1 \leq t \leq \Delta ) and for i \in [t], let qi be the multiplier of f at \omega i. Further,
let \widehat \omega i = 1 - \omega i. Then, (4.4) gives that for all i \in [t] it holds that

(4.5) \lambda =
\widehat \omega i

(1 - \widehat \omega i)\Delta 
, | qi| = (\Delta  - 1) | \widehat \omega i| .
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For \lambda \in \Lambda \Delta \setminus \vargamma \Lambda \Delta , there exists j \in [t] such that | \widehat \omega j | < 1/(\Delta  - 1) (by the definition
of the regions \Lambda \Delta and \vargamma \Lambda \Delta ) and hence | qj | < 1. By Lemma 4.1, for all i \in [t] with
i \not = j it holds that | \widehat \omega i| > 1/(\Delta  - 1) and hence | qi| > 1. This proves item 1.

For \lambda \in \vargamma \Lambda \Delta , there exists j \in [t] such that | \widehat \omega j | = 1/(\Delta  - 1) (by the definition of
the region \vargamma \Lambda \Delta ) and hence | qj | = 1. Again, by Lemma 4.1, for all i \in [t] with i \not = j
it holds that | \widehat \omega i| > 1/(\Delta  - 1) and hence | qi| > 1. This proves item 2.

For \lambda /\in \Lambda \Delta , we have that every \widehat \omega i satisfies | \widehat \omega i| > 1/(\Delta  - 1) (by the definition of
the region \Lambda \Delta ) and hence | qi| > 1. This proves item 3.

This concludes the proof of Lemma 2.5.

We close this section with the following lemma that applies to all \lambda \in \BbbC \setminus \BbbR .
Lemma 4.2. Let \lambda \in \BbbC \setminus \BbbR and \Delta \geq 3. Then, the fixpoints of the map f(z) =
1

1+\lambda z\Delta  - 1 have (pairwise) distinct norms.

Proof. For convenience, let d := \Delta  - 1. The fixpoints are roots of \lambda zd+1+z - 1. It
will be convenient to reparameterize z = 1/y and consider the roots of \lambda + zd - zd+1.
(Note that for y1 = 1/z1, y2 = 1/z2, we have | z1| = | z2| if and only if | y1| = | y2| .)

For the sake of contradiction, suppose that \lambda = yd+1  - yd has two roots y1, y2 of
the same norm, that is | y1| = | y2| . We have

| \lambda | = | y1| d(| y1  - 1| ) = | y2| d(| y2  - 1| ),

and since | y1| = | y2| we conclude | y1  - 1| = | y2  - 1| . Note that this means that
y1, y2 lie on the intersection of two circles---one centered at 0 and one centered at 1.
This means that y1 and y2 are conjugate (since the centers lie on the real line and
if two circles intersect in 2 points then the points are symmetric about the segment
connecting the centers) and thus

\lambda = y1
d+1  - y1

d = yd+1
2  - yd2 = \lambda ,

that is, \lambda \in \BbbR .

5. Impementing activities with exponential precision. In this section, we
prove our main implementation results, Propositions 2.2 and 2.11. We start in sec-
tion 5.1 by proving Lemma 2.8 and its analogue for the real case that will help us
obtain the exponential precision; we also give a path construction that will give us the
desired implementations. Then, in section 5.2, we give the proof of Proposition 2.11
for the real case and, in section 5.3, the proof of Proposition 2.2 for the complex case.

5.1. Contracting maps that cover yield exponential precision. We first
restate here Lemma 2.8 for convenience.

Lemma 2.8. Let z0 \in \BbbC \BbbQ , r > 0, be a rational, and U be the ball B(z0, r). Further,
suppose that \lambda \prime 

1, . . . , \lambda 
\prime 
t \in \BbbC \BbbQ are such that the complex maps \Phi i : z \mapsto \rightarrow 1

1+\lambda \prime 
iz

with

i \in [t] satisfy the following:
1. for each i \in [t], \Phi i is contracting on the ball U ;
2. U \subseteq 

\bigcup t
i=1 \Phi i(U).

There is an algorithm which, on input of (i) a starting point x0 \in U \cap \BbbC \BbbQ , (ii) a target
x \in U \cap \BbbC \BbbQ , and (iii) a rational \epsilon > 0, outputs in poly(size(x0, x, \epsilon )) time a number
\^x \in U \cap \BbbC \BbbQ and a sequence i1, i2, . . . , ik \in [t] such that

\^x = \Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) and | \^x - x| \leq \epsilon .

The following is the exact analogue of Lemma 2.8 for the real case. For z \in \BbbR 
and r > 0, we use I(z, r) to denote the interval of length 2r centered at z.
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Lemma 5.1. Let z0 \in \BbbQ and r > 0, be a rational. Suppose further that \lambda \prime 
1, . . . , \lambda 

\prime 
t \in 

\BbbQ are such that the real maps \Phi i : z \mapsto \rightarrow 1
1+\lambda \prime 

iz
with i \in [t] satisfy the following:

1. for each i \in [t], \Phi i is contracting on the interval I(z0, r);
2. I(z0, r) \subseteq 

\bigcup t
i=1 \Phi i(I(z0, r)).

There is an algorithm which, on input of (i) a starting point x0 \in I(z0, r) \cap \BbbQ ,
(ii) a target x \in I(z0, r) \cap \BbbQ , and (iii) a rational \epsilon > 0, outputs in poly(size(x0, x, \epsilon ))
time a number \^x \in I(z0, r) \cap \BbbQ and a sequence i1, i2, . . . , ik \in [t] such that

\^x = \Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) and | \^x - x| \leq \epsilon .

Proof of Lemmas 2.8 and 5.1. We focus on proving Lemma 2.8, since the proof
of Lemma 5.1 is almost identical; one only needs to replace the ball B(z0, r) with the
interval I(z0, r) in the following argument.

Since the maps \Phi i are contracting on the ball B(z0, r) for all i \in [t], there exists
a real number M < 1 such that for all i \in [t] and all x, y \in B(z0, r), it holds that

(5.1) | \Phi i(x) - \Phi i(y)| \leq M | x - y| .

W.l.o.g., we assume that M \in \BbbQ .
Let x0, x \in B(z0, r)\cap \BbbC \BbbQ and \epsilon \in (0, 1). We are now going to describe a procedure

that produces a point that is at distance at most \epsilon from x in time polynomial in
size(x0, x, \epsilon ).

GetPoint(x, \epsilon )
if \epsilon \geq | x - x0| , then return x0

else
let i \in [t] be such that x \in \Phi i(B(z0, r))
y \leftarrow GetPoint(\Phi  - 1

i (x), \epsilon /M)
return \^x = \Phi i(y)

Note that, in each recursive call of the procedure GetPoint(\cdot , \cdot ), the second parameter
increases by a factor 1/M and hence the number N of recursive calls is bounded by
1+log1/M (2r/\epsilon ) = O(size(\epsilon )). Moreover, we can find i \in [t] such that x \in \Phi i(B(z0, r))

in time polynomial in size(x, \epsilon ) (since we can compute \Phi  - 1
i (x) for each i \in [t] and check

whether | \Phi  - 1
i (x) - z0| \leq r). Finally, note that, in each recursive call of the procedure

GetPoint(\cdot , \cdot ), the first parameter is always from B(z0, r) since x \in \Phi i(B(z0, r)).
The correctness of the algorithm is proved by induction on the number N of

recursive calls. In the base case N = 0, we have \epsilon \geq | x  - x0| and the procedure
returns x0 which is at distance at most \epsilon from x. For the inductive step we have
| y  - \Phi  - 1

i (x)| \leq \epsilon /M and hence by (5.1)

| \Phi i(y) - x| \leq M | y  - \Phi  - 1
i (x)| \leq \epsilon .

It remains to observe that we can modify the procedure GetPoint(x, \epsilon ) so that it also
returns the desired sequence i1, i2, . . . , ik.

We will pair our applications of Lemmas 2.8 and 5.1 with the following path
construction.

Lemma 5.2. Fix \lambda \in \BbbC \BbbQ . Let x0, \lambda 
\prime 
1, . . . , \lambda 

\prime 
t \in \BbbC \BbbQ \setminus \{ 0\} and, for i \in [t], consider

the maps \Phi i(z) =
1

1+\lambda \prime 
iz

for z \not =  - 1
\lambda \prime 
i
. Let i1, i2, . . . , ik \in [t] be a sequence such that

\Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) = \^x for some \^x \in \BbbC .

Let P be a path of length k + 1 whose vertices are labeled as v0, v1, . . . , vk, vk+1.
Let \bfitlambda be the activity vector on P given by

\lambda v0 = (1 - x0)/x0, \lambda vj = \lambda \prime 
ij for j \in [k], \lambda vk+1

= \lambda .
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Then, it holds that Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) \not = 0 and
Z \sansi \sansn 

P,vk+1
(\bfitlambda )

Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) = \lambda \^x. Moreover, there is an

algorithm that, on input x0, \lambda 
\prime 
1, . . . , \lambda 

\prime 
t, k, computes the quantities Z \sansi \sansn 

P,vk+1
(\bfitlambda ) and

Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) in time polynomial in k and size(x0, \lambda 
\prime 
1, . . . , \lambda 

\prime 
t).

Proof. For j = 0, 1, . . . , k, denote by Pj the path of length j induced by the
vertices v0, v1, . . . , vj ; the activity of a vertex vi in Pj is equal to the activity of the
vertex vi in P . To simplify notation, we will drop the activity vector \bfitlambda from notation,
i.e., we will write Z \sansi \sansn 

Pj ,vj
, Z\sanso \sansu \sanst 

Pj ,vj
, ZPj

instead of Z \sansi \sansn 
Pj ,vj

(\bfitlambda ), Z\sanso \sansu \sanst 
Pj ,vj

(\bfitlambda ), ZPj
(\bfitlambda ).

We will show by induction on j that

(5.2)
Z\sanso \sansu \sanst 
Pj ,vj

ZPj

= xj , where xj = \Phi ij (\Phi ij - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )).

For j = 0, we have

(5.3) Z\sanso \sansu \sanst 
P0,v0 = 1, ZP0

= 1 + \lambda 0 = 1/x0,

and therefore (5.2) holds. Assuming that (5.2) holds for some j in 0, . . . , k  - 1, we
show that it holds for j + 1 as well. Note that xj+1 = \Phi ij+1

(xj) and therefore
xj \not =  - 1/\lambda \prime 

vj+1
, i.e., Z\sanso \sansu \sanst 

Pj ,vj
/ZPj

\not =  - 1/\lambda \prime 
vj+1

. We have

(5.4)
Z\sanso \sansu \sanst 
Pj+1,vj+1

= ZPj
,

ZPj+1 = Z \sansi \sansn 
Pj+1,vj+1

+ Z\sanso \sansu \sanst 
Pj+1,vj+1

= \lambda vj+1Z
\sanso \sansu \sanst 
Pj ,vj

+ ZPj \not = 0

and therefore

Z\sanso \sansu \sanst 
Pj+1,vj+1

ZPj+1

=
1

1 + \lambda vj+1

Z\sanso \sansu \sanst 
Pj,vj

ZPj

= \Phi ij+1
(xj) = xj+1.

This finishes the proof of (5.2) for all j = 0, 1, . . . , k. To conclude the proof, note that

(5.5)
Z \sansi \sansn 
P,vk+1

= \lambda vk+1
Z\sanso \sansu \sanst 
Pk,vk

= \lambda Z\sanso \sansu \sanst 
Pk,vk

,

Z\sanso \sansu \sanst 
P,vk+1

= ZPk
\not = 0,

so that
Z \sansi \sansn 

P,vk+1

Z\sanso \sansu \sanst 
P,vk+1

= \lambda \^x. Finally, note that using (5.3), (5.4), (5.5), we can also compute

Z \sansi \sansn 
P,vk+1

(\bfitlambda ) and Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) in time polynomial in k and size(x0, \lambda 
\prime 
1, . . . , \lambda 

\prime 
t). This

completes the proof of Lemma 5.2.

5.2. Proof of Proposition 2.11 (real case). To prove Proposition 2.11, we
will bootstrap Lemma 2.12 to obtain implementations that control logarithmically
the size of G in terms of the desired accuracy \epsilon . The following technical lemma will
allow us to use Lemma 5.1.

Lemma 5.3. Let \lambda \ast 
1 =  - 1/4, \lambda \ast 

2 =  - 6/25, and I be the interval [7/4, 11/6]. Let
\eta = 10 - 10, then the following holds for all \lambda \prime 

1 \in [\lambda \ast 
1 - \eta , \lambda \ast 

1+\eta ] and \lambda \prime 
2 \in [\lambda \ast 

2 - \eta , \lambda \ast 
2+\eta ].

The maps \Phi 1(x) = 1
1+\lambda \prime 

1x
and \Phi 2(x) = 1

1+\lambda \prime 
2x

are contracting on the interval I

and, moreover, I \subseteq \Phi 1(I) \cup \Phi 2(I).
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Proof. For all \lambda \prime 
1 \in [\lambda \ast 

1  - \eta , \lambda \ast 
1 + \eta ] and \lambda \prime 

2 \in [\lambda \ast 
2  - \eta , \lambda \ast 

2 + \eta ], we have that \Phi 1,\Phi 2

are increasing, while \Phi \prime 
1,\Phi 

\prime 
2 are decreasing. Therefore

\Phi 1(I) = [\Phi 1(7/4),\Phi 1(11/6)], \Phi 2(I) = [\Phi 2(7/4),\Phi 2(11/6)],

\Phi \prime 
1(I) = [\Phi \prime 

1(11/6),\Phi 
\prime 
1(7/4)], \Phi \prime 

2(I) = [\Phi \prime 
2(11/6),\Phi 

\prime 
2(7/4)].

By calculating the relevant function values, we obtain that

[1.78, 1.84] \subseteq \Phi 1(I), [1.73, 1.78] \subseteq \Phi 2(I), max
x\in I

\bigl\{ 
| \Phi \prime 

1(x)| , | \Phi \prime 
2(x)| 

\bigr\} 
\leq 9/10,

and the lemma follows.

We are now ready to give the proof of Proposition 2.11, which we restate here for
convenience.

Proposition 2.11. Let \Delta \geq 3 and \lambda \in \BbbQ be such that \lambda <  - \lambda \ast . There is an
algorithm which, on input \lambda \prime , \epsilon \in \BbbQ with \epsilon > 0, outputs in poly(size(\lambda \prime , \epsilon )) time a
bipartite graph G of maximum degree at most \Delta with terminal v that implements \lambda \prime 

with accuracy \epsilon . Moreover, the algorithm outputs the values Z \sansi \sansn 
G,v(\lambda ), Z

\sanso \sansu \sanst 
G,v(\lambda ).

Proof of Proposition 2.11. Let I = [7/4, 11/6] be the interval of Lemma 5.3. The
main idea of the proof is to use the maps in Lemma 5.3 in combination with Lemma 5.1
to get a subinterval of I where we can get exponentially accurate implementations.
Then, we will propagate this exponential accuracy to the whole real line by using
implementations from Lemma 2.12.

We next specify the activities that we will need to implement with constant
precision via Lemma 5.3 (later, these activities will be combined with Lemma 5.1 to
get the exponential precision). Let \lambda \ast 

1, \lambda 
\ast 
2, \eta , I be as in Lemma 5.3. Moreover, let x\ast 

0

be the midpoint of the interval I and let \lambda \ast 
0 = (1 - x\ast 

0)/x
\ast 
0, \lambda 

\ast 
3 =  - 1/x\ast 

0. Finally, let
\lambda \ast 
4 = max\{ 1012, 1012| \lambda | \} . (Note that all of these are rationals.)

By Lemma 2.12, for i = 0, 1, . . . , 4, there exists a bipartite graph Gi of maximum
degree \Delta which implements \lambda \ast 

i with accuracy \eta . Let vi be the terminal of Gi and

set \lambda \prime 
i =

Z \sansi \sansn 
Gi,vi

(\lambda )

Z\sanso \sansu \sanst 
Gi,vi

(\lambda ) ; we have that \lambda \prime 
i \in [\lambda \ast 

i  - \eta , \lambda \ast 
i + \eta ]. Moreover, let x0 = 1/(1 + \lambda \prime 

0)

and note that | x0  - x\ast 
0| \leq 10 - 5, so that x0 \in I. Also, let x3 =  - 1/\lambda \prime 

3 and note that
| x3  - x\ast 

0| \leq 10 - 5, so that the interval I\ast = [x3  - 10 - 3, x3 + 10 - 3] is a subinterval of
I. Finally, we have that

(5.6) | \lambda \prime 
4| \geq | \lambda \ast 

4|  - \eta \geq | \lambda \ast 
4|  - | \lambda \ast 

4| /2 \geq max\{ 1011, 1011| \lambda | \} .

Suppose that we are given inputs \lambda \prime , \epsilon \in \BbbQ with \epsilon > 0 and we want to output
in poly(size(\lambda \prime , \epsilon )) time a bipartite graph of maximum degree \Delta that implements \lambda \prime 

with accuracy \epsilon . Clearly, we may assume that \epsilon \in (0, 1). The algorithm has three
cases depending on the value of | \lambda \prime | .

Case I (large | \lambda \prime | ): | \lambda \prime | \geq max\{ 104| \lambda | , 1\} . Let x\ast be a rational such that

(5.7)
\lambda 

1 + \lambda \prime 
3x

\ast = \lambda \prime , so that x\ast =
1

\lambda \prime 
3

\Bigl( \lambda 

\lambda \prime  - 1
\Bigr) 
.

Recall that x3 =  - 1/\lambda \prime 
3, so using the assumption | \lambda \prime | \geq 104| \lambda | and that | \lambda \prime 

3| \geq 
| \lambda \ast 

3|  - \eta \geq 1/10, we have that

| x\ast  - x3| =
| \lambda | 
| \lambda \prime \lambda \prime 

3| 
\leq 10 - 3.

It follows that x\ast belongs to the interval I.
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Note that Lemma 5.3 guarantees that the maps \Phi 1(x) = 1
1+\lambda \prime 

1x
and \Phi 2(x) =

1
1+\lambda \prime 

2x
satisfy the hypotheses of Lemma 5.1 with z0 = x\ast 

0 and r equal to half the

length of the interval I. Therefore, using the algorithm of Lemma 5.1, on input

x0, x
\ast and \epsilon \prime = \epsilon \cdot min

\bigl\{ | \lambda | 
2| \lambda \prime \lambda \prime 

3| 
, | \lambda | 
2| (\lambda \prime )2\lambda \prime 

3| 
, 1
\bigr\} 
, we obtain in time poly(size(x0, x

\ast , \epsilon \prime )) =

poly(size(\lambda \prime , \epsilon )) a number \^x and a sequence i1, . . . , ik \in \{ 1, 2\} such that

(5.8) \^x = \Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) and | \^x - x\ast | \leq \epsilon \prime .

Using (5.7) and (5.8), we have by the triangle inequality that

(5.9) | 1 + \lambda \prime 
3\^x| \geq | 1 + \lambda \prime 

3x
\ast |  - | \lambda \prime 

3(\^x - x\ast )| \geq | \lambda | 
| \lambda \prime | 
 - | \lambda \prime 

3\epsilon 
\prime | \geq | \lambda | 

2| \lambda \prime | 

and, therefore,

(5.10)

\bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
3\^x
 - \lambda \prime 

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
3\^x
 - \lambda 

1 + \lambda \prime 
3x

\ast 

\bigm| \bigm| \bigm| = | \lambda | | \lambda \prime 
3| | \^x - x\ast | 

| 1 + \lambda \prime 
3x

\ast | \cdot | 1 + \lambda \prime 
3\^x| 

=
| \lambda \prime \lambda \prime 

3| | \^x - x\ast | 
| 1 + \lambda \prime 

3\^x| 
\leq 2| (\lambda \prime )2\lambda \prime 

3| 
| \lambda | 

| \^x - x\ast | \leq \epsilon ,

where in the last equality we used (5.7), in the second to last inequality we used (5.9),
and in the last inequality we used (5.8) and the choice of \epsilon \prime .

Now, let P be a path of length k + 2 with vertices labeled v0, v1, . . . , vk+1, vk+2.
Let \bfitlambda be the activity vector on P given by

\lambda v0 = \lambda \prime 
0, \lambda vj = \lambda \prime 

ij for j \in [k], \lambda vk+1
= \lambda \prime 

3, \lambda vk+2
= \lambda .

Then, by Lemma 5.2, it holds that Z\sanso \sansu \sanst 
P,vk+2

(\bfitlambda ) \not = 0 and
Z \sansi \sansn 

P,vk+2
(\bfitlambda )

Z\sanso \sansu \sanst 
P,vk+2

(\bfitlambda ) =
\lambda 

1+\lambda \prime 
3\^x
; moreover,

we can compute the values Z \sansi \sansn 
P,vk+2

(\bfitlambda ), Z\sanso \sansu \sanst 
P,vk+2

(\bfitlambda ) in time poly(k, size(\lambda \prime 
0, \lambda 

\prime 
1, \lambda 

\prime 
2)) =

poly(size(\lambda \prime , \epsilon )). Since the bipartite graphs G0, G1, G2, G3 implement the activities
\lambda \prime 
0, \lambda 

\prime 
1, \lambda 

\prime 
2, \lambda 

\prime 
3, respectively, we obtain by applying Lemma 3.2 (to the path P with

activity vector \bfitlambda ) a bipartite graph G\prime with maximum degree \Delta and terminal vk+2

such that

(5.11) Z \sansi \sansn 
G\prime ,vk+2

(\lambda ) = C \cdot Z \sansi \sansn 
P,vk+2

(\bfitlambda ), Z\sanso \sansu \sanst 
G\prime ,vk+2

(\lambda ) = C \cdot Z\sanso \sansu \sanst 
P,vk+2

(\bfitlambda ),

where C =
\prod 3

i=1

\bigl( 
Z\sanso \sansu \sanst 
Gi,vi

(\lambda )
\bigr) | \{ j\in \{ 0,...,k+2\} | \lambda vj

=\lambda \prime 
i\} . We conclude that

Z \sansi \sansn 
G\prime ,vk+2

(\lambda )

Z\sanso \sansu \sanst 
G\prime ,vk+2

(\lambda )
=

Z \sansi \sansn 
P,vk+2

(\bfitlambda )

Z\sanso \sansu \sanst 
P,vk+2

(\bfitlambda )
=

\lambda 

1 + \lambda \prime 
3x

\ast .

Combining this with (5.10), we obtain that G\prime with terminal vk+2 is a bipartite graph
of maximum degree \Delta which implements \lambda \prime with accuracy \epsilon . Moreover, using (5.11),
we can also compute the values Z \sansi \sansn 

G\prime ,vk+2
(\lambda ), Z\sanso \sansu \sanst 

G\prime ,vk+2
(\lambda ).

Case II (small | \lambda \prime | ): | \lambda \prime | \leq min\{ 10 - 5, 10 - 5| \lambda | \} . We first assume that \lambda \prime \not = 0.

Let \^\lambda be such that

(5.12)
\lambda 

1 + \^\lambda 
= \lambda \prime so that \^\lambda =

\lambda 

\lambda \prime  - 1.
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Using the assumption | \lambda \prime | \leq min\{ 10 - 5, 10 - 5| \lambda | \} and the triangle inequality, we have
that

| \^\lambda | \geq | \lambda | 
| \lambda \prime | 
 - 1 \geq | \lambda | 

2| \lambda \prime | 
\geq max\{ 104| \lambda | , 1\} .

Therefore, by Case I, we can construct a bipartite graph G with terminal v that

implements \^\lambda with accuracy \epsilon \prime = \epsilon \cdot min
\bigl\{ | \lambda | 

2| \lambda \prime | ,
| \lambda | 

4| \lambda \prime | 2 , 1
\bigr\} 

in time poly(size(\^\lambda , \epsilon \prime )) =

poly(size(\lambda \prime , \epsilon )). Moreover, we can compute the values Z \sansi \sansn 
G,v(\lambda ) and Z\sanso \sansu \sanst 

G,v(\lambda ) at the

same time. Let \lambda \prime \prime =
Z \sansi \sansn 

G,v(\lambda )

Z\sanso \sansu \sanst 
G,v(\lambda )

so that | \lambda \prime \prime  - \^\lambda | \leq \epsilon \prime . Using this and (5.12), we have

(5.13) | 1 + \lambda \prime \prime | \geq | 1 + \^\lambda |  - | (\lambda \prime \prime  - \^\lambda )| \geq | \lambda | 
| \lambda \prime | 
 - \epsilon \prime \geq | \lambda | 

2| \lambda \prime | 

and, therefore,

(5.14)

\bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime \prime  - \lambda \prime 
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime \prime  - 
\lambda 

1 + \^\lambda 

\bigm| \bigm| \bigm| = | \lambda | | \lambda \prime \prime  - \^\lambda | 
| 1 + \^\lambda | \cdot | 1 + \lambda \prime \prime | 

=
| \lambda \prime | | \lambda \prime \prime  - \^\lambda | 
| 1 + \lambda \prime \prime | 

\leq 2| \lambda \prime | 2

| \lambda | 
| \lambda \prime \prime  - \^\lambda | \leq \epsilon ,

where in the last equality we used (5.12), in the second to last inequality we used

(5.13), and in the last inequality we used | \lambda \prime \prime  - \^\lambda | \leq \epsilon \prime and the choice of \epsilon \prime .
Now, let G\prime be the bipartite graph obtained from G by adding a new vertex u

whose single neighbor is the terminal v of G. Then, we have that

(5.15) Z \sansi \sansn 
G\prime ,u(\lambda ) = \lambda Z\sanso \sansu \sanst 

G,v(\lambda ), Z\sanso \sansu \sanst 
G\prime ,u(\lambda ) = ZG(\lambda ) = Z \sansi \sansn 

G,v(\lambda ) + Z\sanso \sansu \sanst 
G,v(\lambda ).

We conclude that

Z \sansi \sansn 
G\prime ,u(\lambda )

Z\sanso \sansu \sanst 
G\prime ,u(\lambda )

=
\lambda Z\sanso \sansu \sanst 

G,v(\lambda )

Z \sansi \sansn 
G,v(\lambda ) + Z\sanso \sansu \sanst 

G,v(\lambda )
=

\lambda 

1 + \lambda \prime \prime .

Combining this with (5.14), we obtain that G\prime with terminal u is a bipartite graph
of maximum degree \Delta which implements \lambda \prime with accuracy \epsilon . Moreover, using (5.15),
we can also compute the values Z \sansi \sansn 

G\prime ,u(\lambda ), Z
\sanso \sansu \sanst 
G\prime ,u(\lambda ).

To finish this case, it remains to argue for \lambda \prime = 0. In this case, for \epsilon \prime \prime =
min\{ \epsilon , 10 - 5, 10 - 5| \lambda | \} , we can use the preceding method to implement the activity
\epsilon \prime \prime /2 \not = 0 with accuracy \epsilon \prime \prime /2 in time poly(size(\epsilon \prime \prime )) = poly(size(\epsilon )). The implemented
activity \lambda \prime \prime satisfies by the triangle inequality | \lambda \prime \prime | \leq \epsilon ; hence, we have implemented
the desired activity \lambda \prime = 0 with accuracy \epsilon .

Case III (moderate h| \lambda \prime | ): min\{ 10 - 5, 10 - 5| \lambda | \} < | \lambda \prime | < max\{ 104| \lambda | , 1\} . Let x\ast 

be a rational such that

(5.16)
\lambda 

1 + \lambda \prime 
4x

\ast = \lambda \prime so that x\ast =
1

\lambda \prime 
4

\Bigl( \lambda 

\lambda \prime  - 1
\Bigr) 
.

Using the assumption 10 - 5| \lambda | < | \lambda \prime | and | \lambda \prime 
4| \geq max\{ 1011, 1011| \lambda | \} (cf. (5.6)), we

have that | x\ast | \leq min\{ 10 - 5/| \lambda | , 10 - 5\} . Let \epsilon \prime = \epsilon \cdot min
\bigl\{ 

1
1010| \lambda \prime 

4| 
, | \lambda | 
1010| \lambda \prime 

4| 
\bigr\} 
. Then, by

the algorithm for Case II, we can implement the activity \lambda x\ast with precision \epsilon \prime in time
poly(size(\lambda x\ast , \epsilon \prime )) = poly(size(\lambda \prime , \epsilon )). That is, we can construct a bipartite graph G
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of maximum degree at most \Delta with terminal v such that, for \lambda \prime \prime := Z \sansi \sansn 
G,v(\lambda )/Z

\sanso \sansu \sanst 
G,v(\lambda ),

it holds that

(5.17)
\bigm| \bigm| \lambda \prime \prime  - \lambda x\ast \bigm| \bigm| \leq \epsilon \prime .

Now, using (5.16) and (5.17), we have by the triangle inequality that

(5.18) | 1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )| \geq | 1 + \lambda \prime 
4x

\ast |  - | \lambda \prime 
4(x

\ast  - \lambda \prime \prime /\lambda )| \geq 1

104
 - 1

1010
\geq 1

105

and, therefore,
(5.19)\bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )
 - \lambda \prime 

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )
 - \lambda 

1 + \lambda \prime 
4x

\ast 

\bigm| \bigm| \bigm| = | \lambda | | \lambda \prime 
4| | x\ast  - (\lambda \prime \prime /\lambda )| 

| 1 + \lambda \prime 
4x

\ast | \cdot | 1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )| 

=
| \lambda \prime | | \lambda \prime 

4| | x\ast  - (\lambda \prime \prime /\lambda )| 
| 1 + \lambda \prime 

4(\lambda 
\prime \prime /\lambda )| 

\leq 109| \lambda \prime 
4| | \lambda x\ast  - \lambda \prime \prime | \leq \epsilon ,

where in the last equality we used (5.16), in the second to last inequality we used
(5.18) and | \lambda \prime | /| \lambda | \leq 104, and in the last inequality we used (5.17) and the choice of
\epsilon \prime .

Recall that G4 is a bipartite graph of maximum degree \Delta , with terminal v4, which
implements the activity \lambda \prime 

4. Let G
\prime be the bipartite graph obtained by taking a copy

of G4 and G and identifying the terminals v4, v into a single vertex which we label u\prime 

(note that G\prime has maximum degree \Delta as well since v4 and v have degree one in G4

and G, respectively). Then,

(5.20) Z \sansi \sansn 
G\prime ,u\prime (\lambda ) =

1

\lambda 
Z \sansi \sansn 
G4,v4

(\lambda )Z \sansi \sansn 
G,u(\lambda ), Z\sanso \sansu \sanst 

G\prime ,u\prime (\lambda ) = Z\sanso \sansu \sanst 
G4,v4(\lambda )Z

\sanso \sansu \sanst 
G,v(\lambda ).

Consider the graph G\prime \prime obtained from G\prime by adding a new vertex u\prime \prime whose single
neighbor is the vertex u\prime . Then, we have that

(5.21) Z \sansi \sansn 
G\prime \prime ,u\prime \prime (\lambda ) = \lambda Z\sanso \sansu \sanst 

G\prime ,u\prime (\lambda ), Z\sanso \sansu \sanst 
G\prime \prime ,u\prime \prime (\lambda ) = ZG\prime (\lambda ) = Z \sansi \sansn 

G\prime ,u\prime (\lambda ) + Z\sanso \sansu \sanst 
G\prime ,u\prime (\lambda ).

Using this in conjuction with (5.20), we conclude that

Z \sansi \sansn 
G\prime \prime ,u\prime \prime (\lambda )

Z\sanso \sansu \sanst 
G\prime \prime ,u\prime \prime (\lambda )

=
\lambda Z\sanso \sansu \sanst 

G\prime ,u\prime (\lambda )

Z \sansi \sansn 
G\prime ,u\prime (\lambda ) + Z\sanso \sansu \sanst 

G\prime ,u\prime (\lambda )
=

\lambda 

1 +
Z \sansi \sansn 

G\prime ,u(\lambda )

Z\sanso \sansu \sanst 
G\prime ,u(\lambda )

=
\lambda 

1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )
.

Combining this with (5.19), we obtain that G\prime \prime is a bipartite graph of maximum degree
at most \Delta with terminal u\prime \prime which implements \lambda \prime with accuracy \epsilon . Moreover, using
(5.20) and (5.21), we can also compute the values Z \sansi \sansn 

G\prime \prime ,u\prime \prime (\lambda ), Z\sanso \sansu \sanst 
G\prime \prime ,u\prime \prime (\lambda ).

This completes the three different cases of the algorithm, thus completing the
proof of Proposition 2.11.

5.3. Proof of Proposition 2.2 (complex case). In this section, we prove
Proposition 2.2 assuming Proposition 2.6 (the proof of the latter is given in section 7).
Note that Proposition 2.6 applies for all \lambda \in \BbbC \BbbQ \setminus \BbbR . By restricting our attention to
\lambda /\in \Lambda \Delta \cup \BbbR and using the theory of section 2.1, we obtain the following.

Lemma 5.4. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR be such that \lambda /\in \Lambda \Delta , and set d := \Delta  - 1.
Let \omega be the fixpoint of f(z) = 1

1+\lambda zd with the smallest norm, and p1, . . . , pd be the
poles of f . Then, for any real number \eta > 0, there exist

(i) N \in \BbbZ \geq 1, (ii) a pole p\ast \in \{ p1, . . . , pd\} , (iii) rationals L > 0 and r, r\prime , r\ast \in (0, \eta )

such that r\prime < r and all of the following hold:
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1. B(p\ast , r\ast ) \subseteq fN (B(\omega , r\prime ));

2. p1, . . . , pd /\in 
\bigcup N - 1

n=0 fn
\bigl( 
B(\omega , r)

\bigr) 
; and

3. for all x1, x2 \in B(\omega , r), it holds that | fN (x1) - fN (x2)| \leq L| x1  - x2| .
Proof. Consider an arbitrary \eta > 0. Note that \omega \not = p1, . . . , pd, so there is no loss

of generality in assuming that \eta \leq | \omega  - p1| , . . . , | \omega  - pd| . Let U \prime be the open ball
B(\omega , \eta /10) and note that our assumption on \eta ensures that p1, . . . , pd /\in U \prime .

Since \lambda /\in \Lambda \Delta \cup \BbbR , we have by Lemma 2.5 that \omega is a repelling fixpoint of f and
therefore \omega belongs to the Julia set of f (by Lemma 2.3). Moreover, using Lemma 3.7,
we have that the exceptional set of f is empty.6 Therefore, by Theorem 2.4, it holds
that

\bigcup \infty 
n=0 f

n(U \prime ) = \widehat \BbbC . Let N \prime be the smallest integer such that one of the poles

p1, . . . , pd belongs to fN \prime 
(U \prime ), i.e., N \prime satisfies

(5.22) \{ p1, . . . , pd\} \cap 
\Bigl( N \prime  - 1\bigcup 

n=0

fn(U \prime )
\Bigr) 
= \emptyset and \{ p1, . . . , pd\} \cap fN \prime 

(U \prime ) \not = \emptyset .

Note that N \prime \geq 1 since p1, . . . , pd \not \in U \prime .
To prove the lemma, it will be important to ensure that the pole of f which belongs

to fN \prime 
(U \prime ) does not sit on the boundary of any of the sets f0(U \prime ), f1(U \prime ), . . . , fN \prime 

(U \prime ).
To achieve this, we will enlarge a little bit the ball U \prime as follows. Let \scrP be the union
of the poles of the functions f1, . . . , fN \prime 

. Note that \scrP is a finite set, therefore, we can
specify a radius r \in (\eta /10, \eta ) so that the boundary \partial U of the open ball U = B(\omega , r)
is disjoint from \scrP (i.e., \partial U \cap \scrP = \emptyset ). Since U \prime \subseteq U and p1, . . . , pd \not \in U , we conclude
from (5.22) that there exists a positive integer N \leq N \prime such that

(5.23) \{ p1, . . . , pd\} \cap 
\Bigl( N - 1\bigcup 

n=0

fn(U)
\Bigr) 
= \emptyset and \{ p1, . . . , pd\} \cap fN (U) \not = \emptyset ,

i.e., N \leq N \prime is the first integer such that a pole of f belongs to fN (U). Let p\ast \in 
\{ p1, . . . , pd\} be an arbitrary pole of f such that p\ast \in fN (U). We claim that

(5.24) for all n \in \{ 0, . . . , N\} , p\ast does not lie on the boundary of fn(U).

Indeed, observe that U is open and fn is holomorphic on U for all n = 0, . . . , N since
fn - 1(U) does not contain any pole of f . Therefore, by the open mapping theorem,
we have that

(5.25) fn(U) is an open set for all n = 0, . . . , N.

Since p\ast \in fN (U), this already shows that p\ast does not lie on the boundary of fN (U).
For n = 0, . . . , N  - 1, we obtain from (5.25) and the open mapping theorem that p\ast 

lies on the boundary of fn(U) only if p\ast lies on the boundary of fn(\partial U), i.e., fn(\partial U)
contains a pole of f and so \partial U contains a pole of fn+1. In turn, this would imply
that \partial U \cap \scrP \not = \emptyset , which is excluded by the choice of the radius r of U . This proves
(5.24).

6To see this, let Ef denote the exceptional set of f . By Lemma 3.7, we have that a necessary
condition for a point x \in \BbbC to be in Ef is that either f \prime (x) = 0 or f \prime (f(x))f \prime (x) = 0, which gives
x = 0 as the only possible point. However, since f(0) = 1, we have that x = 0 cannot be a fixpoint
of either f or f2 and therefore, by Lemma 3.7, there is no point x \in \BbbC that belongs to Ef . Similarly,
we have that \infty /\in Ef since x = \infty is not a fixpoint of either f or f2 (by f(\infty ) = 0 and f(0) = 1),
proving that Ef is empty.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-419

We are now ready to prove items 1 and 2 of the lemma. Namely, from (5.23), we

have that p1, . . . , pd /\in 
\bigcup N - 1

n=0 fn(B(\omega , r)), which proves item 2. For item 1, note that
from p\ast \in fN (U) we obtain that there exists x\ast \in U = B(\omega , r) such that fN (x\ast ) = p\ast .
Since U is an open ball, let r\prime be a rational such that | x\ast  - \omega | < r\prime < r and consider the
open ball B(\omega , r\prime ). Then, we have that p\ast \in fN (B(\omega , r\prime )) (since x\ast \in B(\omega , r\prime )). We
also have by the open mapping theorem that fN (B(\omega , r\prime )) is open, therefore, there
exists rational r\ast \in (0, \eta ) such that B(p\ast , r\ast ) \subseteq fN (B(\omega , r\prime )), thus proving item 1.

It remains to prove item 3, which essentially follows from the fact
\bigcup N - 1

n=0 fn(U)
does not contain any poles of f and (crude) Lipschitz arguments. In particular, note
that, by (5.23) and (5.25), there exists a rational \delta > 0 such that

(5.26) | x - p1| , . . . , | x - pd| \geq \delta for all x \in 
N - 1\bigcup 
n=0

fn(U).

Let L0 = 1 and define Ln+1 = Ln
d(| \omega | +Lnr)

d - 1

| \lambda | \delta 2d for n = 1, . . . , N - 1. For n = 0, . . . , N ,

we will show by induction that

for all x1, x2 \in U it holds that | fn(x1) - fn(x2)| \leq Ln| x1  - x2| ,(5.27)

which clearly proves item 3 by taking L to be any rational > LN . The base case n = 0
is trivial, so assume that (5.27) holds for some nonnegative integer n \leq N  - 1. Then,
since \omega is a fixpoint of f , we have that fn(\omega ) = \omega and therefore fn(U) \subseteq B(\omega ,Lnr),
i.e.,

(5.28) | x| \leq | \omega | + Lnr for all x \in fn(U).

Moreover, since n \leq N  - 1, we have by (5.26) that | x - p1| , . . . , | x - pd| \geq \delta and hence
by factoring 1 + \lambda xd = \lambda (x - p1) \cdot \cdot \cdot (x - pd), we obtain

(5.29)
\bigm| \bigm| 1 + \lambda xd

\bigm| \bigm| = | \lambda (x - p1) \cdot \cdot \cdot (x - pd)| \geq | \lambda | \delta d for all x \in fn(U).

Let x1, x2 \in U and set z1 = fn(x1), z2 = fn(x2), so that the inductive hypothesis
translates into

(5.30) | z1  - z2| \leq Ln| x1  - x2| .

We then obtain that

| fn+1(x1) - fn+1(x2)| = | f(z1) - f(z2)| =
\bigm| \bigm| \lambda \bigl( zd1  - zd2

\bigr) \bigm| \bigm| \bigm| \bigm| \bigl( 1 + \lambda zd1
\bigr) \bigl( 
1 + \lambda zd2

\bigr) \bigm| \bigm| 
= | z1  - z2| \cdot 

| \lambda | \cdot 
\bigm| \bigm| zd - 1

1 + zd - 2
1 z2 + \cdot \cdot \cdot + zd - 1

2

\bigm| \bigm| \bigm| \bigm| \bigl( 1 + \lambda zd1
\bigr) \bigl( 
1 + \lambda zd2

\bigr) \bigm| \bigm| 
\leq Ln+1| x1  - x2| ,

where in the last inequality we used (5.28), (5.29), and (5.30). This finishes the proof
of (5.27) and, therefore, the proof of item 3. This concludes the proof of Lemma 5.4.

We are now ready to prove Proposition 2.2, which we restate here for convenience.

Proposition 2.2. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be such that \lambda /\in \Lambda \Delta \cup \BbbR . There is an
algorithm which, on input \lambda \prime \in \BbbC \BbbQ and rational \epsilon > 0, outputs in poly(size(\lambda \prime , \epsilon )) time
a bipartite graph G of maximum degree at most \Delta with terminal v that implements
\lambda \prime with accuracy \epsilon . Moreover, the algorithm outputs the values Z \sansi \sansn 

G,v(\lambda ), Z
\sanso \sansu \sanst 
G,v(\lambda ).
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Proof. For convenience, set d := \Delta  - 1. Let \omega be the fixpoint of f(x) = 1
1+\lambda xd

with the smallest norm, and p1, . . . , pd be the poles of f . Let \rho > 0 be the constant
in Proposition 2.6. Then, by Lemma 5.4 (applied with \eta = \rho /| \lambda | ), there exist a
positive integer N , rationals L > 0, and r, r\prime , r\ast \in (0, \eta ) with r\prime < r, and a pole
p\ast \in \{ p1, . . . , pd\} such that

B(p\ast , r\ast ) \subseteq fN (B(\omega , r\prime )), p1, . . . , pd /\in 
\bigcup N - 1

n=0 fn(B(\omega , r))(5.31)

for all x1, x2 \in B(\omega , r), it holds that | fN (x1) - fN (x2)| \leq L| x1  - x2| .(5.32)

We may assume that r\ast is sufficiently small so that, for all poles p \in \{ p1, . . . , pd\} 
which are different than p\ast it holds that

(5.33) | x - p| \geq \delta for all x \in B(p\ast , r\ast ),

where \delta > 0 is a sufficiently small constant. Moreover, since p\ast is a pole of f , we
have that 1+ \lambda (p\ast )d = 0, so there exists a unique integer k \in \{ 0, 1, . . . , d - 1\} so that
p\ast = 1

| \lambda | 1/d e
i\theta +2\pi i(k/d), where \theta = 1

d (\pi  - Arg(\lambda )). Since k is an integer depending on

\lambda but not on the inputs \lambda \prime or \epsilon , the value of k which specifies p\ast among the poles of
f may be used by the algorithm.

Now, suppose that we are given inputs \lambda \prime \in \BbbC \BbbQ and rational \epsilon > 0. We want to
output in time poly(size(\lambda \prime , \epsilon )) a bipartite graph of maximum degree \Delta that imple-
ments \lambda \prime with accuracy \epsilon . Clearly, we may assume that \epsilon \in (0, 1). Let M > 0 be a
rational so that M > 2/(r\ast \delta d). The algorithm has three cases depending on the value
of | \lambda \prime | , namely,

Case I: | \lambda \prime | \geq M, Case II: | \lambda \prime | \leq | \lambda | /(M + 1), Case III: \lambda /(M + 1) < | \lambda \prime | < M.

Note that since \lambda , \lambda \prime \in \BbbC \BbbQ and M \in \BbbQ , the algorithm can distinguish in time
poly(size(\lambda , \lambda \prime ,M)) = poly(size(\lambda \prime )) which of the three cases applies.7

Case I (large | \lambda \prime | ): | \lambda \prime | \geq M . The rough outline of the proof is to first specify
and implement an activity \lambda w for some appropriate w whose main property is that
\lambda /(1 + \lambda (fN (w))d) is \epsilon -close to \lambda \prime ; then, we will show how to implement the activity
\lambda /(1 + \lambda (fN (w))d) by using an appropriate tree construction.

We begin by specifying w. We first claim that there exists a unique x\ast \in 
B(p\ast , r\ast /2) such that

(5.34)
\lambda 

1 + \lambda (x\ast )d
= \lambda \prime .

Indeed, for all x such that | x  - p\ast | = r\ast /2 it holds that (using (5.33) and the choice
of M)

(5.35) | 1 + \lambda xd| = | \lambda | \cdot | x - p1| \cdot \cdot \cdot | x - pd| \geq | \lambda | r\ast \delta d/2 > | \lambda | /| \lambda \prime | ,

so by Rouch\'e's theorem8 we have that the polynomial 1 + \lambda xd  - \lambda 
\lambda \prime has the same

number of roots as the polynomial 1 + \lambda xd in the ball B(p\ast , r\ast /2); the roots of the

7E.g., by squaring the inequalities, the radical of the norm goes away and the algorithm has just
to compare rational numbers.

8Rouch\'e's theorem says that for any functions f and g that are holomorphic inside a region B
surrounded by a simple closed contour \partial B, if | g(x)| < | f(x)| on \partial B, then f and f + g have the same
number of roots inside B.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-421

latter polynomial are precisely the poles p1, . . . , pd and therefore, by (5.33), exactly
one of those lies in the ball B(p\ast , r\ast /2) (namely, p\ast ). This establishes the existence
and uniqueness of x\ast \in B(p\ast , r\ast /2) satisfying (5.34).

By the first part of (5.31), we obtain that there exists w\ast \in B(\omega , r\prime ) such that
fN (w\ast ) = x\ast , i.e.,

(5.36)
\lambda 

1 + \lambda 
\bigl( 
fN (w\ast )

\bigr) d = \lambda \prime .

A fact we will use later is that
(5.37)
| fN (w\ast ) - p\ast | = | x\ast  - p\ast | > \tau , where \tau > 0 is such that d\tau (| p\ast | + \tau )d - 1 < 1/| \lambda \prime | .

To see this, note that for all x such that | x - p\ast | \leq \tau we have

| 1 + \lambda xd| \leq | 1 + \lambda (p\ast )d| + | \lambda | \cdot | xd  - (p\ast )d| = | \lambda | \cdot 
\bigm| \bigm| xd  - (p\ast )d

\bigm| \bigm| 
\leq | \lambda | \cdot | x - p\ast | \cdot 

\bigm| \bigm| \bigm| d - 1\sum 
j=0

xj(p\ast )d - 1 - j
\bigm| \bigm| \bigm| \leq d| \lambda | \tau (| p\ast | + \tau )d - 1 < | \lambda | /| \lambda \prime | 

and, therefore, by (5.34), it must be the case that | x\ast  - p\ast | > \tau , thus proving (5.37).
Note, we can compute \tau \in \BbbQ satisfying (5.37) in time poly(size(\lambda \prime )). Let

\^\epsilon := min
\Bigl\{ r  - r\prime 

3
,
r\ast 

4L
,
\tau 

4L
,

1

4dL| \lambda \prime | (| p\ast | + r\ast )d - 1
,

\epsilon 

4dL| (\lambda \prime )2| (| p\ast | + r\ast )d - 1
, 1
\Bigr\} 
,

and let \epsilon \prime \in (0, \^\epsilon ) be a rational with size(\epsilon \prime ) = poly(size(\lambda \prime , \epsilon )).
Note that fN (z) is a rational function of degree dN and, in fact, we can write it as

fN (z) = P (z)
Q(z) , where P (z), Q(z) are polynomials with coefficients in \BbbC \BbbQ . Therefore,

we can rewrite (5.36) as a polynomial equation in terms of w\ast , whose degree is at most
dN (note that this is independent of \lambda \prime and \epsilon ) and whose coefficients have polynomial
size in terms of size(\lambda \prime ). Let w1, . . . , wt denote the roots of the polynomial. Using
Lemma 3.5, we can compute \^w1, . . . , \^wt \in \BbbC \BbbQ such that | wi  - \^wi| \leq \epsilon \prime /2 for all
i \in [t]. In particular, there exists j \in [t] such that | \^wj  - w\ast | \leq \epsilon \prime /2 and therefore
\^wj \in B(\omega , r\prime + \epsilon \prime /2). Moreover, by applying (5.32) for x1 = \^wj and x2 = w\ast , we have\bigm| \bigm| fN ( \^wj) - x\ast \bigm| \bigm| = \bigm| \bigm| fN ( \^wj) - fN (w\ast )

\bigm| \bigm| \leq L| \^wj  - w\ast | \leq L\epsilon \prime /2.

Therefore, by trying9 all of \^w1, . . . , \^wt, we can specify \^w \in \{ \^w1, . . . , \^wt\} in time
poly(size(\lambda \prime , \epsilon )) such that

(5.38) \^w \in B(\omega , r\prime + \epsilon \prime ),
\bigm| \bigm| fN ( \^w) - x\ast \bigm| \bigm| \leq L\epsilon \prime .

Since \epsilon \prime \leq (r  - r\prime )/3 we have that \^w \in B(\omega , r). Recall that r < \rho /| \lambda | , so by the
algorithm of Proposition 2.6, we can construct a bipartite graph G of maximum degree
\Delta with terminal v that implements \lambda \^w with accuracy \lambda \epsilon \prime in time poly(size(\lambda \^w, \lambda \epsilon \prime )) =

9Note that \omega is the root of the polynomial x+ \lambda xd+1  - 1 with the smallest norm and therefore,
using Lemma 3.5, we can compute \^\omega \in \BbbC \BbbQ such that | \^\omega  - \omega | \leq \epsilon \prime /6 in time poly(size(\epsilon \prime )). Similarly,

x\ast is the unique root of the polynomial 1 + \lambda xd  - \lambda 
\lambda \prime in the ball B(p\ast , r\ast /2) and therefore we can

compute \^x\ast \in \BbbC \BbbQ such that | \^x\ast  - x\ast | \leq L\epsilon \prime /6 in time poly(size(\lambda \prime , \epsilon \prime )). Then, for i \in [t], we
check whether | \^wi  - \^\omega | \leq 2\epsilon \prime /3 and | fN ( \^wi)  - \^x\ast | \leq 2L\epsilon \prime /3; the check must pass for at least one
\^w \in \{ \^w1, . . . , \^wt\} , and using the triangle inequality we obtain that \^w satisfies (5.38).
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poly(size(\lambda \prime , \epsilon )). Moreover, we can compute the values Z \sansi \sansn 
G,v(\lambda ) and Z\sanso \sansu \sanst 

G,v(\lambda ) at the
same time.

Let w be such that \lambda w =
Z \sansi \sansn 

G,v(\lambda )

Z\sanso \sansu \sanst 
G,v(\lambda )

, so that | w  - \^w| \leq \epsilon \prime . Since r\prime + 2\epsilon \prime < r, we

obtain using (5.38) that w \in B(\omega , r). Further, by applying (5.32) for x1 = w and
x2 = \^w, we get that

\bigm| \bigm| fN (w) - fN ( \^w)
\bigm| \bigm| \leq L\epsilon \prime and therefore by the triangle inequality

and (5.38) we have

(5.39)
\bigm| \bigm| fN (w) - fN (w\ast )

\bigm| \bigm| \leq 2L\epsilon \prime .

We will next show that

(5.40)
\bigm| \bigm| \bigm| \lambda 

1 + \lambda 
\bigl( 
fN (w)

\bigr) d  - \lambda \prime 
\bigm| \bigm| \bigm| \leq \epsilon .

Since fN (w\ast ) = x\ast and | x\ast | \leq | p\ast | + r\ast /2, we can conclude (using (5.39)) that\bigm| \bigm| fN (w\ast )
\bigm| \bigm| , \bigm| \bigm| fN (w)

\bigm| \bigm| \leq | p\ast | + r\ast . In turn, this gives
(5.41)\bigm| \bigm| \bigl( fN (w)

\bigr) d  - \bigl( fN (w\ast )
\bigr) d\bigm| \bigm| = \bigm| \bigm| fN (w) - fN (w\ast )

\bigm| \bigm| \cdot \bigm| \bigm| \bigm| d - 1\sum 
j=0

\bigl( 
fN (w)

\bigr) j \bigl( 
fN (w\ast )

\bigr) d - 1 - j
\bigm| \bigm| \bigm| 

\leq 2dL(| p\ast | + r\ast )d - 1\epsilon \prime \leq 1/(2| \lambda \prime | ),

where in the last inequality we used that \epsilon \prime \leq 1
4dL| \lambda \prime | (| p\ast | +r\ast )d - 1 . From (5.36), (5.41),

and the triangle inequality, we obtain that
(5.42)\bigm| \bigm| \bigm| 1 + \lambda 

\bigl( 
fN (w)

\bigr) d\bigm| \bigm| \bigm| \geq \bigm| \bigm| \bigm| 1 + \lambda 
\bigl( 
fN (w\ast )

\bigr) d\bigm| \bigm| \bigm|  - \bigm| \bigm| \bigm| \lambda \bigl( fN (w)
\bigr) d  - \lambda 

\bigl( 
fN (w\ast )

\bigr) d\bigm| \bigm| \bigm| \geq | \lambda | 
2| \lambda \prime | 

and, therefore,\bigm| \bigm| \bigm| \bigm| \lambda 

1 + \lambda 
\bigl( 
fN (w)

\bigr) d  - \lambda \prime 
\bigm| \bigm| \bigm| \bigm| = | \lambda | 2 \cdot 

\bigm| \bigm| \bigl( fN (w)
\bigr) d  - \bigl( fN (w\ast )

\bigr) d\bigm| \bigm| \bigm| \bigm| 1 + \lambda 
\bigl( 
fN (w)

\bigr) d\bigm| \bigm| \cdot \bigm| \bigm| 1 + \lambda 
\bigl( 
fN (w\ast )

\bigr) d\bigm| \bigm| 
=
| \lambda \prime \lambda | \cdot 

\bigm| \bigm| \bigl( fN (w)
\bigr) d  - \bigl( fN (w\ast )

\bigr) d\bigm| \bigm| \bigm| \bigm| 1 + \lambda 
\bigl( 
fN (w)

\bigr) d\bigm| \bigm| \leq 4dL| \lambda \prime | 2(| p\ast | + r\ast )d - 1\epsilon \prime \leq \epsilon ,

where in the last equality we used (5.36), in the second to last inequality we used
(5.41) and (5.42), and in the last inequality we used the choice of \epsilon \prime . This concludes
the proof of (5.40). To ensure that certain partition functions are nonzero, we will
need the following additional fact for w, namely, that

(5.43) fn(w) \not = p1, . . . , pd for all n = 0, 1, . . . , N.

For n = 0, 1, . . . , N  - 1, this just follows from (5.31) and the fact that w \in B(\omega , r).
For n = N , we have from (5.39) and fN (w\ast ) = x\ast that fN (w) is within distance
2L\epsilon \prime \leq r\ast /2 from x\ast \in B(p\ast , r\ast /2) and therefore fN (w) \in B(p\ast , r\ast ). This implies
that for all poles p \not = p\ast it holds that fN (w) \not = p (cf. (5.33)). For the pole p\ast , we have
from (5.39) that fN (w) is within distance 2L\epsilon \prime \leq \tau /2 from fN (w\ast ) and therefore,
using (5.37), we have that | fN (w)  - p\ast | \geq \tau /2 > 0, i.e., fN (w) \not = p\ast . This finishes
the proof of (5.43).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-423

In light of (5.40), we next focus on implementing the activity \lambda /(1 + \lambda (fN (w))d)
using a bipartite graph of maximum degree \Delta . For h = 0, 1, . . . , N , let Th denote the
d-ary tree of height h and denote the root of the tree by uh. Let Gh be the bipartite
graph of maximum degree \Delta obtained from Th by taking, for each leaf l of Th, d
distinct copies of the graph G (which implements \lambda w) and identifying l with the d
copies of the terminal v of G. Then, using that \lambda w = Z \sansi \sansn 

G,v(\lambda )/Z
\sanso \sansu \sanst 
G,v(\lambda ), we have

(5.44)
Z \sansi \sansn 
G0,u0

(\lambda ) = \lambda 
\bigl( 
Z \sansi \sansn 
G,v(\lambda )/\lambda 

\bigr) d
, Z\sanso \sansu \sanst 

G0,u0
(\lambda ) =

\bigl( 
Z\sanso \sansu \sanst 
G,v(\lambda )

\bigr) d
,

ZG0
(\lambda ) = Z \sansi \sansn 

G0,u0
(\lambda ) + Z\sanso \sansu \sanst 

G0,u0
(\lambda ) =

\bigl( 
Z\sanso \sansu \sanst 
G,v(\lambda )

\bigr) d
(1 + \lambda wd).

(5.43) ensures that w \not = p1, .., pd so we have 1 + \lambda wd \not = 0. We therefore obtain from
(5.44) that

(5.45) ZG0
(\lambda ) \not = 0 and

Z\sanso \sansu \sanst 
G0,u0

(\lambda )

ZG0
(\lambda )

=

\bigl( 
Z\sanso \sansu \sanst 
G,v(\lambda )

\bigr) d\bigl( 
Z\sanso \sansu \sanst 
G,v(\lambda )

\bigr) d\bigl( 
1 + \lambda wd

\bigr) = f(w).

Further, for h = 1, . . . , N it holds that
(5.46)

Z \sansi \sansn 
Gh,uh

(\lambda ) = \lambda 
\bigl( 
Z\sanso \sansu \sanst 
Gh - 1,uh - 1

(\lambda )
\bigr) d
, Z\sanso \sansu \sanst 

Gh,uh
(\lambda ) =

\bigl( 
ZGh - 1

(\lambda )
\bigr) d
,

ZGh
(\lambda ) = Z \sansi \sansn 

Gh,uh
(\lambda ) + Z\sanso \sansu \sanst 

Gh,uh
(\lambda ) =

\bigl( 
ZGh - 1

(\lambda )
\bigr) d\left(  1 + \lambda 

\bigl( 
Z\sanso \sansu \sanst 
Gh - 1,uh - 1

(\lambda )
\bigr) d\bigl( 

ZGh - 1
(\lambda )
\bigr) d

\right)  .

We will show by induction that for all h = 0, 1, . . . , N it holds that

(5.47) ZGh
(\lambda ) \not = 0 and

Z\sanso \sansu \sanst 
Gh,uh

(\lambda )

ZGh
(\lambda )

= fh+1(w).

For h = 0, this is just (5.45). Assume that it holds for h  - 1; we have by (5.46) and
the induction hypothesis that

ZGh
(\lambda ) =

\bigl( 
ZGh - 1

(\lambda )
\bigr) d\Bigl( 

1 + \lambda (fh(w)
\bigr) d\Bigr) \not = 0,

where the disequality follows from ZGh - 1
(\lambda ) \not = 0 and (5.43). We therefore obtain that

Z\sanso \sansu \sanst 
Gh,uh

(\lambda )

ZGh
(\lambda )

=
1

1 + \lambda 
\Bigl( Z\sanso \sansu \sanst 

Gh - 1,uh - 1
(\lambda )

ZGh - 1
(\lambda )

\Bigr) d =
1

1 + \lambda 
\bigl( 
fh(w)

\bigr) d = fh+1(w),

completing the induction and the proof of (5.47). For h = N , (5.47) gives that
ZGN

(\lambda ) \not = 0 and

(5.48)
Z\sanso \sansu \sanst 
GN ,uN

(\lambda )

ZGN
(\lambda )

= fN+1(w) = f(fN (w)) =
1

1 + \lambda 
\bigl( 
fN (w)

\bigr) d .
Consider the graph G\prime obtained from GN by adding a new vertex u\prime whose single

neighbor is the vertex uN . Then, we have that

(5.49) Z \sansi \sansn 
G\prime ,u\prime (\lambda ) = \lambda Z\sanso \sansu \sanst 

GN ,uN
(\lambda ), Z\sanso \sansu \sanst 

G\prime ,u\prime (\lambda ) = ZGN
(\lambda ) \not = 0.
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Using this in conjuction with (5.48), we conclude that

Z \sansi \sansn 
G\prime ,u\prime (\lambda )

Z\sanso \sansu \sanst 
G\prime ,u\prime (\lambda )

=
\lambda Z\sanso \sansu \sanst 

GN ,uN
(\lambda )

ZGN
(\lambda )

=
\lambda 

1 + \lambda 
\bigl( 
fN (w)

\bigr) d .
From this and (5.40), we obtain that G\prime is a bipartite graph of maximum degree \Delta 
with terminal u\prime which implements \lambda \prime with accuracy \epsilon . Moreover, using (5.44), (5.46),
and (5.49), we can also compute the values Z \sansi \sansn 

G\prime ,u\prime (\lambda ), Z\sanso \sansu \sanst 
G\prime ,u\prime (\lambda ).

The remaining cases of the algorithm (Cases II and III below) are almost identical
to Cases II and III of the algorithm in Proposition 2.11 for the real case, so we focus on
the main differences (which mostly amount to modifying the upper and lower bounds
for the relevant quantities). To align with the notation there, let G4 be a bipartite
graph of maximum degree at most \Delta with terminal v4 that implements a constant
activity \lambda \prime 

4 with

(5.50) | \lambda \prime 
4| > (M + 1)(M + 2), where \lambda \prime 

4 =
Z \sansi \sansn 
G4,v4

(\lambda )

Z\sanso \sansu \sanst 
G4,v4

(\lambda )
.

Note, this implementation can be done using the algorithm for Case I. We next give
the details of the algorithm for the remaining cases.

Case II (small | \lambda \prime | ): | \lambda \prime | \leq | \lambda | /(M + 1). We first assume that \lambda \prime \not = 0. Let \^\lambda be
such that

(5.51)
\lambda 

1 + \^\lambda 
= \lambda \prime so that \^\lambda =

\lambda 

\lambda \prime  - 1.

Let \^\epsilon = \epsilon \cdot min
\bigl\{ | \lambda | 

2| \lambda \prime | ,
| \lambda | 

2| \lambda \prime | 2 , 1
\bigr\} 
and let \epsilon \prime be a rational less than \^\epsilon so that size(\epsilon \prime ) =

poly(size(\lambda \prime , \epsilon )).
Using the assumption | \lambda \prime | \leq | \lambda | /(M +1) and the triangle inequality, we have that

| \^\lambda | \geq | \lambda | 
| \lambda \prime |  - 1 \geq M . Therefore, by Case I, we can construct in time poly(size(\lambda \prime , \epsilon ))

a bipartite graph G of maximum degree \Delta with terminal v that implements \^\lambda with
accuracy \epsilon \prime , and we can compute the values Z \sansi \sansn 

G,v(\lambda ) and Z\sanso \sansu \sanst 
G,v(\lambda ) at the same time.

Let \lambda \prime \prime =
Z \sansi \sansn 

G,v(\lambda )

Z\sanso \sansu \sanst 
G,v(\lambda )

, so that | \lambda \prime \prime  - \^\lambda | \leq \epsilon \prime . Using this and (5.51), we have

(5.52) | 1 + \lambda \prime \prime | \geq | 1 + \^\lambda |  - | (\lambda \prime \prime  - \^\lambda )| \geq | \lambda | 
| \lambda \prime | 
 - \epsilon \prime \geq | \lambda | 

2| \lambda \prime | 

and, therefore,

(5.53)
\bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime \prime  - \lambda \prime 
\bigm| \bigm| \bigm| = | \lambda \prime | | \lambda \prime \prime  - \^\lambda | 

| 1 + \lambda \prime \prime | 
\leq 2| \lambda \prime | 2

| \lambda | 
| \lambda \prime \prime  - \^\lambda | \leq \epsilon .

Now, let G\prime be the bipartite graph obtained from G by adding a new vertex u
whose single neighbor is the terminal v of G. Then, just as in Case II of Propo-
sition 2.11 we can conclude that G\prime with terminal u is a bipartite graph of maximum
degree \Delta which implements \lambda \prime with accuracy \epsilon , and we can also compute the values
Z \sansi \sansn 
G\prime ,u(\lambda ), Z

\sanso \sansu \sanst 
G\prime ,u(\lambda ). The case \lambda \prime = 0 can be handled using the above technique by

implementing the activity \epsilon \prime \prime /2 \not = 0 with accuracy \epsilon \prime \prime /2, where \epsilon \prime \prime > 0 is a rational less
than min\{ \epsilon , | \lambda | /(M + 1)\} such that size(\epsilon \prime \prime ) = poly(size(\epsilon )); see Case II of the proof
of Proposition 2.11 for more details.
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Case III (moderate | \lambda \prime | ): | \lambda | /(M + 1) < | \lambda \prime | < M . Let x\ast be such that

(5.54)
\lambda 

1 + \lambda \prime 
4x

\ast = \lambda \prime so that x\ast =
1

\lambda \prime 
4

\Bigl( \lambda 

\lambda \prime  - 1
\Bigr) 
.

Let \^\epsilon = \epsilon \cdot min\{ | \lambda | 2
2M | \lambda \prime 

4| 
, | \lambda | 2
2M2| \lambda \prime 

4| 
, 1\} and let \epsilon \prime be a rational less than \^\epsilon so that size(\epsilon \prime ) =

poly(size(\lambda \prime , \epsilon )).
Using the assumption | \lambda \prime | > | \lambda | /(M +1) and | \lambda \prime 

4| > (M +1)(M +2) (see (5.50)),
we have that | x\ast | \leq 1/(M + 1). By the algorithm for Case II, we can implement the
activity \lambda x\ast with precision \epsilon \prime in time poly(size(\lambda x\ast , \epsilon \prime )) = poly(size(\lambda \prime , \epsilon )), i.e., we can
construct a bipartite graph G of maximum degree at most \Delta with terminal v such
that, for \lambda \prime \prime := Z \sansi \sansn 

G,v(\lambda )/Z
\sanso \sansu \sanst 
G,v(\lambda ), it holds that

(5.55)
\bigm| \bigm| \lambda \prime \prime  - \lambda x\ast \bigm| \bigm| \leq \epsilon \prime .

Now, using (5.54) and (5.55), we have by the triangle inequality that

(5.56) | 1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )| \geq | 1 + \lambda \prime 
4x

\ast |  - | \lambda \prime 
4(x

\ast  - \lambda \prime \prime /\lambda )| \geq | \lambda | 
M
 - | \lambda 

\prime 
4| \epsilon \prime 

| \lambda | 
\geq | \lambda | 

2M

and, therefore,
(5.57)\bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )
 - \lambda \prime 

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \lambda 

1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )
 - \lambda 

1 + \lambda \prime 
4x

\ast 

\bigm| \bigm| \bigm| = | \lambda | | \lambda \prime 
4| | x\ast  - (\lambda \prime \prime /\lambda )| 

| 1 + \lambda \prime 
4x

\ast | \cdot | 1 + \lambda \prime 
4(\lambda 

\prime \prime /\lambda )| 

=
| \lambda \prime | | \lambda \prime 

4| | x\ast  - (\lambda \prime \prime /\lambda )| 
| 1 + \lambda \prime 

4(\lambda 
\prime \prime /\lambda )| 

\leq 2M2 | \lambda \prime 
4| 
| \lambda | 2
| \lambda x\ast  - \lambda \prime \prime | \leq \epsilon ,

where in the last equality we used (5.54), in the second to last inequality we used
(5.56) and | \lambda \prime | \leq M , and in the last inequality we used (5.55) and the choice of \epsilon \prime .

Recall from (5.50) that G4 is a bipartite graph of maximum degree \Delta with ter-
minal v4 which implements the activity \lambda \prime 

4. Let G\prime be the bipartite graph obtained
by taking a copy of G4 and G and identifying the terminals v4, v into a single vertex
which we label u\prime . Further, consider the graph G\prime \prime obtained from G\prime by adding a new
vertex u\prime \prime whose single neighbor is the vertex u\prime . Then, just as in Case III of Propo-
sition 2.11, using (5.57) we can conclude that G\prime \prime is a bipartite graph of maximum
degree at most \Delta with terminal u\prime \prime which implements \lambda \prime with accuracy \epsilon , and we can
also compute the values Z \sansi \sansn 

G\prime ,u(\lambda ), Z
\sanso \sansu \sanst 
G\prime ,u(\lambda ).

This completes the three different cases of the algorithm, thus completing the
proof of Proposition 2.2.

6. \#P-hardness. In order to prove Theorems 1.1 and 1.3 we first prove \#P-
hardness of multivariate versions of our problems. Instead of insisting that every
vertex has activity \lambda , we allow the activities to be drawn from the set

(6.1) \scrL (\lambda ) = \{ \lambda , - \lambda  - 1, - 1, 1\} .

Name \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K).
Instance A graph G with maximum degree at most \Delta . An activity vector \bfitlambda =

\{ \lambda v\} v\in V , such that, for each v \in V , \lambda v \in \scrL (\lambda ). For every vertex v \in V with
\lambda v \not = \lambda , the degree of v in G must be at most 2.

Output If | ZG(\bfitlambda )| = 0 then the algorithm may output any rational number. Other-

wise, it must output a rational number \widehat N such that \widehat N/K \leq | ZG(\bfitlambda )| \leq K \widehat N .
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ui

\lambda ui
= \lambda 

vi

\lambda vi = 1

zi

\lambda zi = \lambda 

xi

\lambda xi =  - \lambda  - 1

yi

\lambda yi =  - \lambda  - 1

Bi with activity vector \bfitlambda 

si

\lambda si = \lambda 

ti

\lambda ti = 1

ui

\lambda ui =  - 1

vi

\lambda vi =  - 1

zi

\lambda zi = 1

xi

\lambda xi
=  - 1

yi

\lambda yi
=  - 1

B\prime 
i with activity vector \bfitlambda \prime 

Fig. 2. The binary equality gadgets Bi and B\prime 
i used in the proof of Lemma 6.3.

Name \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ).
Instance A graph G = (V,E) with maximum degree at most \Delta . An activity vector

\bfitlambda = \{ \lambda v\} v\in V such that, for each v \in V , \lambda v \in \scrL (\lambda ). For every vertex v \in V
with \lambda v \not = \lambda , the degree of v in G must be at most 2.

Output If ZG(\bfitlambda ) = 0 then the algorithm may output any rational number. Otherwise,

it must output a rational number \widehat A such that, for some a \in arg(ZG(\bfitlambda )),

| \widehat A - a| \leq \rho .

6.1. Reducing the degree using equality gadgets. Given a graph B =
(V,E) and two subsets Tin and T of the vertex set V satisfying Tin \subseteq T , let \scrI B,T,Tin

denote the set of independent sets I of B such that I \cap T = Tin. Let ZB,T,Tin(\lambda ) =\sum 
I\in \scrI B,T,Tin

\lambda | I| . We use similar notation when activities are nonuniform. We start

by introducing ``equality"" gadgets.

Lemma 6.1. Let \lambda \in \BbbC be such that \lambda \not =  - 1, 0. Let Bi and B\prime 
i be the graphs

in Figure 2 with activity vectors \bfitlambda and \bfitlambda \prime , respectively, and set Ti = \{ ui, vi\} , T \prime 
i =

\{ si, ti\} . Then,

ZBi,Ti,\{ ui\} (\bfitlambda ) = ZBi,Ti,\{ vi\} (\bfitlambda ) = 0, ZBi,Ti,\emptyset (\bfitlambda ) = ZBi,Ti,Ti
(\bfitlambda ) = C := \lambda (1+\lambda ) \not = 0,

and

ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime ) = ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime ) = 0, ZB\prime 
i,T

\prime 
i ,\emptyset (\bfitlambda 

\prime ) =
1

\lambda 
ZB\prime 

i,T
\prime 
i ,T

\prime 
i
(\bfitlambda \prime ) = 1.

Proof. By enumerating the independent sets of Bi, we have

(6.2)
ZBi,Ti,\{ ui\} (\bfitlambda ) = \lambda ui

(1 + \lambda yi
+ \lambda zi), ZBi,Ti,\{ vi\} (\bfitlambda ) = \lambda vi(1 + \lambda xi

+ \lambda zi),

ZBi,Ti,\emptyset (\bfitlambda ) = 1 + \lambda xi
+ \lambda yi

+ \lambda zi + \lambda xi
\lambda yi

, ZBi,Ti,Ti
(\bfitlambda ) = \lambda ui

\lambda vi(1 + \lambda zi).

Observe that B\prime 
i is obtained from Bi by ``appending"" the vertices si and ti. Therefore,

(6.3)
ZB\prime 

i,T
\prime 
i ,\emptyset (\bfitlambda 

\prime ) = ZBi,Ti,\emptyset (\bfitlambda 
\prime ) + ZBi,Ti,\{ ui\} (\bfitlambda 

\prime ) + ZBi,Ti,\{ vi\} (\bfitlambda 
\prime ) + ZBi,Ti,Ti

(\bfitlambda \prime ),

ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime ) = \lambda si

\bigl( 
ZBi,Ti,\emptyset (\bfitlambda 

\prime ) + ZBi,Ti,\{ vi\} (\bfitlambda 
\prime )
\bigr) 
,

ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime ) = \lambda ti

\bigl( 
ZBi,Ti,\emptyset (\bfitlambda 

\prime ) + ZBi,Ti,\{ ui\} (\bfitlambda 
\prime )
\bigr) 
,

ZB\prime 
i,T

\prime 
i ,T

\prime 
i
(\bfitlambda \prime ) = \lambda si\lambda tiZBi,Ti,\emptyset (\bfitlambda 

\prime ).

Using (6.2), we have that

ZBi,Ti,\emptyset (\bfitlambda 
\prime ) = 1, ZBi,Ti,\{ ui\} (\bfitlambda 

\prime ) = ZBi,Ti,\{ vi\} (\bfitlambda 
\prime ) =  - 1, ZBi,Ti,Ti(\bfitlambda 

\prime ) = 2.

Plugging this into (6.3) concludes the proof of the lemma.
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The following lemma defines the gadgets for the case \lambda =  - 1.
Lemma 6.2. Let \lambda =  - 1. Let Bi be the path of length six with endpoints ui, vi,

with activity vector \bfitlambda , where every vertex has activity \lambda =  - 1, apart from the endpoint
vi which has activity +1. Let B\prime 

i be the graph in Figure 2 with the activity vector \bfitlambda \prime 

given there. Set Ti = \{ ui, vi\} and T \prime 
i = \{ si, ti\} . Then,

ZBi,Ti,\{ ui\} (\bfitlambda ) = ZBi,Ti,\{ vi\} (\bfitlambda ) = 0, ZBi,Ti,\emptyset (\bfitlambda ) = ZBi,Ti,Ti(\bfitlambda ) = C := 1,

and

ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime ) = ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime ) = 0, ZB\prime 
i,T

\prime 
i ,\emptyset (\bfitlambda 

\prime ) =
1

\lambda 
ZB\prime 

i,T
\prime 
i ,T

\prime 
i
(\bfitlambda \prime ) = 1.

Proof. Note that both graphs are paths of length six. We can therefore use the
formula in (6.3). The lemma therefore follows by just making the substitutions.

The following lemma shows how to use the equality gadgets to replace high-degree
vertices with equivalent subgraphs made up of low-degree vertices. For a graph G and
a vertex v in G, we denote by dv(G) the number of neighbors of v.

Lemma 6.3. Let \lambda \in \BbbC \not =0. If \lambda =  - 1, let C = 1; otherwise, let C = \lambda (1+\lambda ) \not = 0.
Suppose that G = (V,E) is a graph with an activity vector \bfitlambda = \{ \lambda v\} v\in V such

that, for every vertex v \in V , we have \lambda v \in \{ 1, \lambda \} . Let U1 = \{ v \in V | \lambda v = 1\} and
U\lambda = \{ v \in V | \lambda v = \lambda \} . Consider an arbitrary set S \subseteq V . Then, there is a set
S\prime of vertices (distinct from V ) and a graph G\prime = (V \prime , E\prime ) with an activity vector
\bfitlambda \prime = \{ \lambda \prime 

v\} v\in V \prime such that

ZG(\bfitlambda ) =
ZG\prime (\bfitlambda \prime )\prod 

v\in S\cap U1
Cdv(G)

\prod 
v\in S\cap U\lambda 

Cdv(G) - 1
.

Furthermore,
\bullet V \prime = S\prime \cup (V \setminus S) and | S\prime | is at most 8| V | 2;
\bullet every vertex v \in S\prime has dv(G

\prime ) \leq 3 and \lambda \prime 
v \in \scrL (\lambda ). If \lambda \prime 

v \not = \lambda then dv(G
\prime ) \leq 2;

\bullet every vertex in V (G) \setminus S has dv(G) = dv(G
\prime ) and \lambda \prime 

v = \lambda v.

Proof. To prove the lemma, we can assume that | S| = 1. (To prove the lemma
for a larger set S we just repeatedly apply the singleton-set version to each of the
vertices in S.) So let S = \{ v\} and, for convenience, let d = dv(G) be the degree of v
in G. There are two cases.

Case 1: v \in U1. Assume first that d \not = 1. In this case, S\prime will be the union of the
vertices in the gadgets B1, . . . , Bd by identifying vertex vi of Bi with vertex ui+1 of
Bi+1 for each i = 1, . . . , d (we will use the conventions that ud+1 \equiv u1, Bd+1 \equiv B1,
and B0 \equiv Bd). To construct G\prime from G we replace v with the union of these gadgets.
If a vertex w is in exactly one of these gadgets, then the activity \lambda \prime 

w will be inherited
from the gadget. Also, w will have no other neighbors in G\prime (other than the neighbors
in its gadget). Now, for i = 1, . . . , d, the vertex ui is in two gadgets, namely, Bi and
Bi - 1. In addition to having its gadget neighbors, this vertex ui will be connected to
the ith neighbor of v in G. Then we will set \lambda \prime 

ui
= \lambda , since this is the product of

the activities inherited from Bi and Bi+1. Note from Lemma 6.1 (and Lemma 6.2 in
the case \lambda =  - 1) that, in the resulting graph G\prime , in any independent set of nonzero
weight, either all vi's are in the independent set, or all vi's are missing. In each of
these cases, we get a factor of Cd in the partition function. The construction for
d = 1 is analogous, i.e., we replace v with the gadget B1, but now we do not do any
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identification of vertices and we use u1 to connect to the neighbor of v in G; further,
every vertex in B1 retains its activity in G\prime . As before, we conclude that we get a
factor of C in the partition function.

Case 2: v \in U\lambda . Assume first that d \not = 1. In this case, S\prime will be the union of the
gadgets B1, . . . , Bd - 1, B

\prime 
d. We will further identify vertex vi of Bi with vertex ui+1

for each i = 1, . . . , d  - 2; for i = d  - 1, we will identify vertex vd - 1 of Bd - 1 with
vertex sd of B\prime 

d and vertex td of B\prime 
d with vertex u1 of B1. To construct G\prime from G

we we will replace v with the union of these gadgets. The assignment of activities
is the same as in Case 1; the only difference is in the construction of the graph G\prime 

where now, for i = 1, . . . , d - 1, the ith neighbor of v connects to the vertex ui while
the dth neighbor of v connects to the vertex sd. From Lemma 6.1 (and Lemma 6.2
in the case \lambda =  - 1), we have that, in the resulting graph G\prime , in any independent set
of nonzero weight, either all vi's are in the independent set, or all vi's are missing.
If they are all in, then we get a factor of Cd - 1\lambda in the partition function; otherwise,
we get a factor of Cd - 1. The construction for d = 1 is analogous, i.e., we replace v
with the gadget B\prime 

1, but now we do not do any identification of vertices and we use s1
to connect to the neighbor of v in G; further, every vertex in B\prime 

1 retains its activity
in G\prime . As before, we conclude that in any independent set of nonzero weight, either
all vi's are in the independent set (contributing a factor of \lambda ), or all vi's are missing
(contributing a factor of 1).

This concludes the proof of Lemma 6.3.

6.2. \#P-hardness of the multivariate problem.

Theorem 6.4. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be a complex number such that \lambda \not \in 
(\Lambda \Delta \cup \BbbR \geq 0). Then, for K = 1.02, \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K) is \#\sansP -hard. Also, for
\rho = 9\pi /24, \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ) is \#\sansP -hard.

Proof. Counting the number of independent sets of an input graph is a well
known \#\sansP -hard problem. We will reduce this to both problems. To do this, let
H be an n-vertex graph, and let N = ZH(1) denote the number of independent sets
of H. Our goal is to show how to use an oracle for \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K) or
\#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ) to compute N . Let \epsilon = 1/50 and \eta = 1/35.

Consider any rational number M in the range 0 \leq M \leq 2n. Let JM be a graph
with terminal v and maximum degree at most \Delta that implements - M with accuracy \epsilon ;
note, by applying Propositions 2.2 and 2.11 (for complex and real \lambda , respectively),
there is an algorithm to construct JM in time poly(size(M, \epsilon )) = poly(size(M)) that
also outputs the exact values of Z \sansi \sansn 

JM ,v(\lambda ), Z
\sanso \sansu \sanst 
JM ,v(\lambda ). Let

(6.4) \lambda M := Z \sansi \sansn 
JM ,v(\lambda )/Z

\sanso \sansu \sanst 
JM ,v(\lambda ), and note that Z\sanso \sansu \sanst 

JM ,v(\lambda ) \not = 0 and | \lambda M +M | \leq \epsilon .

Let GM be the graph formed by taking the disjoint union of H and JM and attaching
the terminal v of JM to every vertex in H. Let \bfitlambda M be the activity vector for GM

obtained by setting the activities of vertices originally belonging to H equal to 1 and
the activities of vertices originally belonging to JM equal to \lambda . Note that

(6.5) ZGM
(\bfitlambda M ) = Z \sansi \sansn 

JM ,v(\lambda ) + Z\sanso \sansu \sanst 
JM ,v(\lambda )ZH(1) = Z \sansi \sansn 

JM ,v(\lambda ) + Z\sanso \sansu \sanst 
JM ,v(\lambda )N.

Let G\prime 
M and \bfitlambda \prime 

M be the graph and activity vector that are constructed by applying
Lemma 6.3 to GM with S = V (H) \cup \{ v\} . Note that the size of GM is at most
a polynomial in size(M) so (from Lemma 6.3) the size of G\prime 

M is also at most a
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polynomial in size(M). From Lemma 6.3, we have that

(6.6) ZGM
(\bfitlambda M ) = ZG\prime 

M
(\bfitlambda \prime 

M )/WH , where WH := Cn - 1
\prod 

v\in V (H)

Cdv(H),

and C is the constant in Lemma 6.3. Furthermore, every vertex v of G\prime 
M has degree

at most \Delta and every vertex v of G\prime 
M with \lambda \prime 

v \not = \lambda has degree at most 2 in G\prime 
M . Thus,

G\prime 
M is a valid input to \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K) and \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ).

Moreover, combining (6.5), (6.6) and dividing through by Z\sanso \sansu \sanst 
JM ,v(\lambda ), we have

(6.7) \lambda M +N =
ZG\prime 

M
(\bfitlambda \prime 

M )

WH Z\sanso \sansu \sanst 
JM ,v(\lambda )

=: fM .

Part one: \#P-hardness of \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.02).
By the triangle inequality (in the form

\bigm| \bigm| | a|  - | b| \bigm| \bigm| \leq | a+ b| ), we have\bigm| \bigm| | fM |  - | M  - N | 
\bigm| \bigm| \leq | \lambda M +N +M  - N | = | \lambda M +M | \leq \epsilon ,

where in the last inequality we used (6.4). Therefore, | N - M |  - \epsilon \leq | fM | \leq | N - M | +\epsilon .
Consider M so that | N  - M | \geq 1. Then | fM | is not 0. From the definition

of fM in (6.7), this means that | ZG\prime 
M
(\bfitlambda \prime 

M )| \not = 0 and hence we can use the oracle

for \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,1.02) to produce an estimate for | ZG\prime 
M
(\bfitlambda \prime 

M )| within a
factor of 1.02. We can also obtain an estimate of the value | WHZ\sanso \sansu \sanst 

JM ,v(\lambda )| within a
factor of (1 + 7\eta /8)/1.02 = 1.025/1.02, since Z\sanso \sansu \sanst 

JM ,v(\lambda ) is output by the algorithm

from Propositions 2.2 and 2.11. Combining these, we obtain an estimate \^fM for | fM | 
satisfying (1 - \eta )| fM | \leq \^fM \leq (1 + \eta )| fM | . We now use the binary search technique
of [7].

The invariant that we will maintain is that we have an interval [Mstart,Mend] of
real numbers with Mstart \leq N \leq Mend. Initially, Mstart = 0 and Mend = 2n. Let
\ell = Mend  - Mstart. If \ell < 1 then there is only one integer between Mstart and Mend,
so the value of N is known.

Suppose \ell \geq 1. For i \in \{ 0, . . . , 8\} , let Mi = Mstart + i\ell /8. For i \in \{ 0, . . . , 7\} , let
si be the sign (positive, negative, or zero) of \^fMi

 - \^fMi+1
.

First, consider i \in \{ 0, . . . , 7\} and suppose N \geq Mi+2. Then,

\^fMi  - \^fMi+1 \geq (1 - \eta )| fMi |  - (1 + \eta )| fMi+1 | 
\geq (1 - \eta )(N  - Mi  - \epsilon ) - (1 + \eta )(N  - Mi  - \ell /8 + \epsilon )

= (1 + \eta )\ell /8 - 2\eta (N  - Mi) - 2\epsilon 

\geq (1 + \eta )\ell /8 - 2\eta \ell  - 2\epsilon .

This is positive since 2\eta < (1 + \eta )/16 and \epsilon \leq \eta \leq \eta \ell , so si is positive. Similarly, if
N \leq Mi - 1 then

\^fMi
 - \^fMi+1

\leq (1 + \eta )| fMi
|  - (1 - \eta )| fMi+1

| 
\leq (1 + \eta )(Mi  - N + \epsilon ) - (1 - \eta )(Mi  - N + \ell /8 - \epsilon )

=  - (1 - \eta )\ell /8 + 2\eta (Mi  - N) + 2\epsilon 

\leq  - (1 - \eta )\ell /8 + 2\eta \ell + 2\epsilon ,

so si is negative.
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Now, consider i\ast so that Mi\ast \leq N \leq Mi\ast +1. Then s0, . . . , si\ast  - 2 are plus and
si\ast +2, . . . , s7 are minus. So we have a (possibly nonempty) sequence of pluses followed
by three arbitrary signs followed by a (possibly nonempty) sequence of minuses. If
there are three minuses in a row at the end of the sequence, we must have N \leq M7

(otherwise s5 would have been a plus). So we can shrink the interval by redefining
Mend to be M7. Otherwise, there are three pluses in a row at the beginning of the
sequence. This means that N \geq M1 (otherwise s2 would have been negative). So, in
this case, we can shrink the interval by redefining Mstart to be M1. Either way, the
interval shrinks to 7/8 of its original size, so we can recurse on the new interval; after
at most poly(n) steps, we will have Mend - Mstart < 1, which gives us the exact value
of N .

Part two: \#P-hardness of \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24).
Consider any rational number M in the range 0 \leq M \leq 2n. We will show that,

if N > M + 1/7 then there is an a \in arg(fM ) such that  - \pi /12 < a < \pi /12. Also, if
N < M  - 1/7 then there is an a \in arg(fM ) such that \pi  - \pi /12 < a < \pi + \pi /12.

To prove these claims, let xM = \lambda M +M so by (6.4), | xM | \leq \epsilon . Then by (6.7),
fM = \lambda M +N = xM +N  - M . Suppose N > M + 1/7 and consider \theta \in arg(fM ) =
arg(xM +N  - M). For concreteness (by adding integer multiples of 2\pi if necessary),
suppose that \theta is in the range [ - \pi , \pi ). Then tan(\theta ) \leq \epsilon 

N - M \leq 7\epsilon . But tan(\pi /12) >
0.26 > 7\epsilon . So \theta \leq \pi /12. Similarly, \theta \geq  - \pi /12. The case M > N + 1/7 is similar
(restricting \theta to [0, 2\pi )).

Now suppose | N  - M | > 1/7. Since fM = xM + N  - M , we have fM \not =
0. Since we can compute the value of WHZ\sanso \sansu \sanst 

JM ,v(\lambda ) exactly, we can also compute
Arg(WHZ\sanso \sansu \sanst 

JM ,v(\lambda )) within \pm \pi /48. Using an oracle for \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24)

with input (G\prime 
M ,\bfitlambda \prime 

M ) we thus obtain an estimate \^AM such that, for some a \in arg(fM ),

| \^AM  - a| \leq 9\pi /24 + \pi /48 = 19\pi /48.
As in Part one, we now do a binary search. Again, the invariant that we will

maintain is that we have an interval [Mstart,Mend] of real numbers with Mstart \leq 
N \leq Mend. Initially, Mstart = 0 and Mend = 2n. Let \ell = Mend - Mstart. If \ell < 1 then
there is only one integer between Mstart and Mend, so the value of N is known.

Suppose \ell \geq 1. For i \in \{ 0, . . . , 6\} , let Mi = Mstart + i\ell /6. Let si be minus if
there is an integer j such that \pi /2 < \^AMi

+ 2\pi j < 3\pi /2. Let si be plus if there is an
integer j such that  - \pi /2 < \^AMi + 2\pi j < \pi /2. If neither of these occurs, then si is
undefined.

If N \leq Mi - 1 then si is minus. If N \geq Mi+1 then si is plus. So s0, . . . , s6 consists
of a (possibly empty) sequence of pluses followed by one unknown value followed by
a (possibly empty) sequence of minuses.

Suppose that s0, s1, and s2 are all plus. Then N \geq M1 (otherwise s2 would be
minus). Otherwise, s4, s5, and s6 are all minus. In this case, N \leq M5 (otherwise s4
would be plus). Either way, we can shrink the interval to 5/6 of its original length,
so, as in Part one, we can discover the value of N .

6.3. Restricting to bipartite graphs. In this section, we reduce the problems
\#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K) and \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ) to multivariate versions
whose inputs are further restricted to bipartite graphs. To do this, we will need to
enlarge slightly the set of activities that a vertex can have. Namely, let

(6.8) \scrL bip(\lambda ) := \scrL (\lambda ) \cup \{  - 2, - 1/4\} = \{ \lambda , - \lambda  - 1, - 1, 1, - 2, - 1/4\} .

We will consider the following problems.
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pi

\lambda pi

qi

\lambda qi

si

\lambda si =  - 2

ti

\lambda ti =  - 2

ui

\lambda ui = 1

vi

\lambda vi = 1

zi

\lambda zi =  - 1/4

xi

\lambda xi
=  - 1

yi

\lambda yi
=  - 1

Fig. 3. The gadget B\prime \prime 
i with activity vector \bfitlambda \prime \prime used in the proof of Lemma 6.5.

Name \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K).
Instance A bipartite graph G with maximum degree at most \Delta . An activity vector

\bfitlambda = \{ \lambda v\} v\in V , such that, for each v \in V , \lambda v \in \scrL bip(\lambda ). For every vertex
v \in V with \lambda v \not = \lambda , the degree of v in G must be at most 2.

Output If | ZG(\bfitlambda )| = 0 then the algorithm may output any rational number. Other-

wise, it must output a rational number \widehat N such that \widehat N/K \leq | ZG(\bfitlambda )| \leq K \widehat N .

Name \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ).
Instance A bipartite graph G = (V,E) with maximum degree at most \Delta . An activity

vector \bfitlambda = \{ \lambda v\} v\in V such that, for each v \in V , \lambda v \in \scrL bip(\lambda ). For every vertex
v \in V with \lambda v \not = \lambda , the degree of v in G must be at most 2.

Output If ZG(\bfitlambda ) = 0 then the algorithm may output any rational number. Otherwise,

it must output a rational number \widehat A such that, for some a \in arg(ZG(\bfitlambda )),

| \widehat A - a| \leq \rho .

Lemma 6.5. Let B\prime \prime 
i be the graph in Figure 3 with activity vector \bfitlambda , and set T \prime \prime 

i =
\{ pi, qi\} . Then, for any value of the activities \lambda pi

, \lambda qi \in \BbbC , it holds that

ZBi,T \prime \prime 
i ,\emptyset (\bfitlambda 

\prime \prime ) = 1, ZB\prime \prime 
i ,T \prime \prime 

i ,\{ pi\} (\bfitlambda 
\prime \prime ) = \lambda pi

,

ZBi,T \prime \prime 
i ,\{ qi\} (\bfitlambda 

\prime \prime ) = \lambda qi , ZB\prime \prime 
i ,T \prime \prime 

i ,T \prime \prime 
i
(\bfitlambda \prime \prime ) = 0.

Proof. Note that B\prime \prime 
i is obtained from the path B\prime 

i in Figure 2 by appending the
vertices pi, qi, and in turn B\prime 

i is obtained from the path Bi in Figure 2 by appending
the vertices si, ti. As in Lemma 6.1, we denote T \prime 

i = \{ si, ti\} and Ti = \{ ui, vi\} .
Completely analogously to (6.3), we have
(6.9)

ZB\prime \prime 
i ,T \prime \prime 

i ,\emptyset (\bfitlambda 
\prime \prime ) = ZB\prime 

i,T
\prime 
i ,\emptyset (\bfitlambda 

\prime \prime ) + ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime \prime ) + ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime \prime ) + ZB\prime 
i,T

\prime 
i ,T

\prime 
i
(\bfitlambda \prime \prime ),

ZB\prime \prime 
i ,T \prime \prime 

i ,\{ pi\} (\bfitlambda 
\prime \prime ) = \lambda pi

\bigl( 
ZB\prime 

i,T
\prime 
i ,\emptyset (\bfitlambda 

\prime \prime ) + ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime \prime )
\bigr) 
,

ZB\prime \prime 
i ,T \prime \prime 

i ,\{ qi\} (\bfitlambda 
\prime \prime ) = \lambda qi

\bigl( 
ZB\prime 

i,T
\prime 
i ,\emptyset (\bfitlambda 

\prime \prime ) + ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime \prime )
\bigr) 
,

ZB\prime \prime 
i ,T \prime \prime 

i ,T \prime \prime 
i
(\bfitlambda \prime \prime ) = \lambda pi

\lambda qiZB\prime 
i,T

\prime 
i ,\emptyset (\bfitlambda 

\prime ).

To compute the r.h.s. in (6.9) we will use (6.3) which expresses the relevant quantities
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in terms of the gadget Bi in Figure 2. Using (6.2) and (6.3), we therefore obtain

ZBi,Ti,\emptyset (\bfitlambda 
\prime \prime ) =  - 1/4, ZBi,Ti,\{ ui\} (\bfitlambda 

\prime \prime ) = ZBi,Ti,\{ vi\} (\bfitlambda 
\prime \prime ) =  - 1/4, ZBi,Ti,Ti

(\bfitlambda \prime \prime ) = 3/4,

ZB\prime 
i,T

\prime 
i ,\emptyset (\bfitlambda 

\prime \prime ) = 0, ZB\prime 
i,T

\prime 
i ,\{ si\} (\bfitlambda 

\prime ) = ZB\prime 
i,T

\prime 
i ,\{ ti\} (\bfitlambda 

\prime \prime ) = 1, ZB\prime 
i,T

\prime 
i ,T

\prime 
i
(\bfitlambda \prime \prime ) =  - 1.

Plugging this into (6.9) concludes the proof of the lemma.

Theorem 6.6. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be a complex number such that \lambda \not \in 
(\Lambda \Delta \cup \BbbR \geq 0).

Then, for K = 1.02, \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta ,K) is \#\sansP -hard. Also, for \rho =
9\pi /24, \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \rho ) is \#\sansP -hard.

Proof. Let G = (V,E) be an n-vertex graph with maximum degree at most \Delta .
Suppose that \bfitlambda = \{ \lambda v\} v\in V is an activity vector for G such that, for each v \in V ,
\lambda v \in \scrL (\lambda ). Let e1, . . . , em be an arbitrary enumeration of the edges of G and suppose
that ei = \{ pi, qi\} , where pi and qi are vertices of G. Let H be the bipartite graph
constructed from G by replacing every edge ei of G with the gadget B\prime \prime 

i from Figure 3
and denote by \bfitlambda \prime the resulting activity vector onH (every vertex originally inG retains
its activity in H). Observe that every vertex activity in H is from the set \scrL bip(\lambda ).
Moreover, ZG(\bfitlambda ) = ZH(\bfitlambda \prime ). The result therefore follows from Theorem 6.4.

We will need the following lower bound on ZG(\bfitlambda ), which follows from Lemma 3.6.

Lemma 6.7. Suppose that \lambda \in \BbbC \BbbQ . Then, there exists a rational C\lambda > 1 such
that the following holds. For any n-vertex graph G = (V,E) and any activity vector
\bfitlambda = \{ \lambda v\} v\in V such that \lambda v \in \scrL bip(\lambda ) for all v \in V , it holds that either ZG(\bfitlambda ) = 0 or
| ZG(\bfitlambda )| > C - n

\lambda .

Proof. Let \lambda 1 =  - \lambda  - 1, \lambda 2 =  - 1, \lambda 3 = 1, \lambda 4 =  - 2, and \lambda 5 =  - 1/4, so that
\scrL bip(\lambda ) = \{ \lambda , \lambda 1, . . . , \lambda 5\} .

Let \{ U0, U1, . . . , U5\} be a partition of V such that \lambda v is equal to \lambda if v \in U0 and,
for i = 1, . . . , 5, \lambda v = \lambda i if v \in Ui. For an independent set I \in \scrI G and i = 0, . . . , 5,
let ni(I) = | I \cap Ui| and n - (I) = n1(I) + n2(I) + n4(I) + n5(I). Then,

ZG(\bfitlambda ) =
\sum 
I\in \scrI G

\lambda n0(I)
5\prod 

i=1

\lambda 
ni(I)
i =

\sum 
I\in \scrI G

( - 1)n - (I)2n4(I)(1/4)n5(I)\lambda n0(I)(1 + \lambda )n1(I)

=
\sum 
I\in \scrI G

( - 1)n - (I)2n4(I)(1/4)n5(I)\lambda n0(I)

n1(I)\sum 
k=0

\biggl( 
n1(I)

k

\biggr) 
\lambda k.

Thus, we have that 4nZG(\bfitlambda ) is an integer polynomial of \lambda . Moreover, observe that
the absolute values of the coefficients of 4nZG(\bfitlambda ) corresponding to an independent
set I \in \scrI G sum to at most 4n \cdot 2n = 8n. Since | \scrI G| \leq 2n, we have that the absolute
values of the coefficients of 4nZG(\bfitlambda ) sum to at most 2n \cdot 8n = 16n. The result now
follows by applying Liouville's inequality (cf. Lemma 3.6).

6.4. Reduction from the multivariate problem to the single-activity
problem. The purpose of this section is to prove the following theorem.

Theorem 6.8. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ be a complex number such that \lambda \not \in 
(\Lambda \Delta \cup \BbbR \geq 0). Then there is a polynomial-time Turing reduction from the problem
\#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.02) to \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.01). There is also a
polynomial-time Turing reduction from the problem \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24)
to the problem \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \pi /3).
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Proof. Let \lambda 1 =  - \lambda  - 1, \lambda 2 =  - 1, \lambda 3 = 1, \lambda 4 =  - 2, \lambda 5 =  - 1/4 so that \scrL bip(\lambda ) =
\{ \lambda , \lambda 1, . . . , \lambda 5\} . Let M > 1 be a rational such that M > max\{ | \lambda | , | \lambda 1| , . . . , | \lambda 5| \} and
let C\lambda > 1 be the rational in Lemma 6.7.

Let G = (V,E) be an n-vertex bipartite graph with maximum degree at most
\Delta . Suppose that \bfitlambda = \{ \lambda v\} v\in V is an activity vector for G such that, for each v \in V ,
\lambda v \in \scrL bip(\lambda ). Let \{ U0, U1, . . . , U5\} be a partition of V such that \lambda v is equal to \lambda if
v \in U0 and, for i = 1, . . . , 5, \lambda v = \lambda i if v \in Ui. Suppose further that, for every vertex
v \in 

\bigcup 5
i=1 Ui, the degree of v in G is at most 2.

Let \epsilon := 1
104n(4MC\lambda )n

. For i = 1, . . . , 5, let Ji be a bipartite graph with maximum

degree at most \Delta with terminal vi that implements \lambda i with accuracy \epsilon . Propo-
sitions 2.2 and 2.11 guarantee that Ji exists, and that it can be constructed in
time poly(size(\epsilon )). The propositions also guarantee that Z\sanso \sansu \sanst 

Ji,vi
(\lambda ) \not = 0. Let \lambda \prime 

i =

Z \sansi \sansn 
Ji,vi

(\lambda )/Z\sanso \sansu \sanst 
Ji,vi

(\lambda ), so that | \lambda \prime 
i  - \lambda i| \leq \epsilon . Note, we have the crude bound | \lambda \prime 

i| \leq 2M
for all i = 1, . . . , 5.

Let \bfitlambda \prime be the activity vector for G formed from \bfitlambda by replacing every instance
of \lambda i with \lambda \prime 

i for i = 1, . . . , 5. Let H be the bipartite graph constructed from G by
replacing, for each i \in [5], every vertex v \in Ui with a (distinct) copy of Ji, relabeling
the terminal vi as v and attaching the terminal to the (at most two) neighbors of v
in G (note that this is the same construction as the one in Lemma 3.2). Note that
the maximum degree of H is at most \Delta and, by Lemma 3.2,

(6.10) ZG(\bfitlambda 
\prime ) = ZH(\lambda )/CH , where CH :=

5\prod 
i=1

\prod 
v\in Ui

Z\sanso \sansu \sanst 
Ji,vi

(\lambda ).

Note that using the output of the algorithm provided by Propositions 2.11 and 2.2,
we can compute CH exactly in time poly(size(\epsilon )).

We will show that, whenever ZG(\bfitlambda ) \not = 0, it holds that

(6.11)
1.01

1.015
| ZG(\bfitlambda 

\prime )| \leq | ZG(\bfitlambda )| \leq 
1.015

1.01
| ZG(\bfitlambda 

\prime )| 

and that

(6.12) there are a \in arg(ZG(\bfitlambda )) and a\prime \in arg(ZG(\bfitlambda 
\prime )) such that | a - a\prime | \leq \pi /30.

Before proving (6.11) and (6.12), we show that they give the desired reductions.
To reduce \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.02) to \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.01), sup-
pose that (G,\bfitlambda ) is an input to \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.02) and that ZG(\bfitlambda ) \not = 0.
By (6.11), we obtain that ZG(\bfitlambda 

\prime ) is nonzero and, therefore, by (6.10), | ZH(\lambda )| \not = 0
as well. Thus, an oracle for \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.01) with input H gives an
approximation \^N so that \^N/1.01 \leq | ZH(\lambda )| \leq 1.01 \^N . By (6.10) and (6.11), we
therefore obtain that

\^N

1.015| CH | 
\leq | ZG(\bfitlambda )| \leq 1.015

\^N

| CH | 
.

As we noted earlier, the value CH can be computed exactly in time poly(size(\epsilon )).
Thus, it is easy, in time poly(size(\epsilon )), to compute a value \^C such that

1.015

1.02
\^C \leq | CH | \leq 

1.02

1.015
\^C.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STOC18-434 BEZ\'AKOV\'A, GALANIS, GOLDBERG, AND \v STEFANKOVI\v C

Thus, the algorithm for \#\sansM \sansV \sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansN \sanso \sansr \sansm (\lambda ,\Delta , 1.02) can return \^N/ \^C as an
output.

To reduce \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24) to \#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \pi /3), sup-
pose that (G,\bfitlambda ) is an input to \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24). An oracle call to
\#\sansB \sansi \sansp \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , \pi /3) with input H gives a value \^A such that, for some h \in 
arg(ZH(\lambda )), | \^A  - h| \leq \pi /3. Consider a and a\prime from (6.12). By (6.10) there is a
c \in arg(CH) such that a\prime = h - c. Now, by the triangle inequality,

| a - ( \^A - c)| \leq | a - a\prime | + | a\prime  - (h - c)| + | h - \^A| \leq \pi /30 + 0 + \pi /3 = 11\pi /30.

Adding an integer multiple of 2\pi to both a and c on the left-hand side, we conclude
that for every \~c \in arg(CH) there exists an \~a \in arg(ZG(\bfitlambda )) such that | \~a - ( \^A - \~c)| \leq 
11\pi /30. In particular, taking \~c = Arg(CH), there exists an \~a \in arg(ZG(\bfitlambda )) such that
| \~a - ( \^A - Arg(CH))| \leq 11\pi /30. Thus, the algorithm for \#\sansM \sansV \sansH \sansa \sansr \sansd \sansC \sanso \sansr \sanse \sansA \sansr \sansg (\lambda ,\Delta , 9\pi /24)
can compute a value \^C such that | \^C  - Arg(CH)| \leq 9\pi /24  - 11\pi /30 and return the
value \^A - \^C as output.

So in the rest of the proof, we will establish (6.11) and (6.12). First, we show
that, whenever ZG(\bfitlambda ) \not = 0, it holds that

(6.13) | ZG(\bfitlambda ) - ZG(\bfitlambda 
\prime )| \leq 1

104(C\lambda )n
\leq | ZG(\bfitlambda )| 

104
.

The rightmost inequality is immediate by Lemma 6.7. For the leftmost inequality,
note that for all positive integers k and arbitrary complex numbers x1, y1, . . . , xk, yk we
have the telescopic expansion

\prod k
i=1 xi  - 

\prod k
i=1 yi =

\sum k
j=1(xj  - yj)

\prod j - 1
i=1 xi

\prod k
i=j+1 yi.

Hence, for an arbitrary independent set I \in \scrI G, we have that (using the crude bounds
| \lambda i| , | \lambda \prime 

i| < 2M and | \lambda | < 2M)\bigm| \bigm| \bigm| \prod 
v\in I

\lambda v  - 
\prod 
v\in I

\lambda \prime 
v

\bigm| \bigm| \bigm| \leq \sum 
v\in I

(2M)| I|  - 1| \lambda v  - \lambda \prime 
v| \leq n(2M)n\epsilon ,

where in the last inequality we used that | \lambda v  - \lambda \prime 
v| \leq \epsilon for all v \in V . Since | \scrI G| \leq 2n

and \epsilon = 1
104n(4MC\lambda )n

, we obtain (6.13).

Now we are ready to show (6.11) and (6.12) whenever ZG(\bfitlambda ) \not = 0. In particular,
by the triangle inequality and (6.13), we have that\bigm| \bigm| \bigm| \bigm| | ZG(\bfitlambda 

\prime )| 
| ZG(\bfitlambda )| 

 - 1

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| | ZG(\bfitlambda 

\prime )|  - | ZG(\bfitlambda )| 
\bigm| \bigm| 

| ZG(\bfitlambda )| 
\leq | ZG(\bfitlambda 

\prime ) - ZG(\bfitlambda )| 
| ZG(\bfitlambda )| 

\leq 10 - 4,

which proves (6.11). In fact, using the inequality above and (6.11), it follows that the
Ziv distance between ZG(\bfitlambda ) and ZG(\bfitlambda 

\prime ) is at most 10 - 3 and, therefore, (6.12) follows
from [7, Lemma 2.1].

7. Proof of Proposition 2.6. In this section, we prove Proposition 2.6. To do
this, we will focus on understanding the following type of sequences.

Definition 7.1. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. A hard-core
program is a sequence a0, a1, . . . , starting with a0 = 1, and

(7.1) ak =
1

1 + \lambda aik,1
\cdot \cdot \cdot aik,d

for k \geq 1,

where ik,1, . . . , ik,d \in \{ 0, . . . , k  - 1\} . We say that the hard-core program generates
x \in \BbbC if there exists an integer k \geq 0 such that ak = x.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INAPPROXIMABILITY OF INDEPENDENT SETS STOC18-435

Our interest in hard-core programs is justified by the following lemma.

Lemma 7.2. Let \lambda \in \BbbC and d \geq 2. Suppose that a0, a1, . . . is a hard-core program.
Then, for every k \geq 1, there exists a tree of maximum degree at most \Delta = d+ 1 that
implements the activity \lambda ak.

Proof. The proof is by induction on k. For k = 1, we have that i0,1 = \cdot \cdot \cdot = i0,d =
0, so a1 = 1/(1 + \lambda ). Let T be the single-edge tree \{ u, v\} . Then, we have that

Z \sansi \sansn 
T,v(\lambda ) = \lambda , Z\sanso \sansu \sanst 

T,v(\lambda ) = 1 + \lambda ,

and therefore T with terminal v implements the activity
Z \sansi \sansn 

T,v(\lambda )

Z\sanso \sansu \sanst 
T,v(\lambda )

= \lambda a1, as wanted.

Suppose that the statement is true for all values \leq k and suppose that

ak+1 =
1

1 + \lambda aik,1
\cdot \cdot \cdot aik,d

for some ik,1, . . . , ik,d \in \{ 0, . . . , k  - 1\} . Let J = \{ j \in [d] | ik,j \not = 0\} and note that
for every j \in [d]\setminus J , it holds that aik,j

= 1. By the induction hypothesis, for every
j \in J , there exists a tree Tj of maximum degree at most \Delta , with terminal vj , such

that
Z \sansi \sansn 

T,v(\lambda )

Z\sanso \sansu \sanst 
T,v(\lambda )

= \lambda aik,j
. Let T be the tree obtained by taking the disjoint union of the

trees Tj with j \in J and identifying all the terminals vj into a new vertex v. Then,

(7.2) Z \sansi \sansn 
T,v(\lambda ) = \lambda 

\prod 
j\in J

Z \sansi \sansn 
Tj ,vj

(\lambda )

\lambda 
, Z\sanso \sansu \sanst 

T,v(\lambda ) =
\prod 
j\in J

Z\sanso \sansu \sanst 
Tj ,vj (\lambda ).

Now consider the tree T \prime obtained from T by adding a new vertex u whose single
neighbor is the vertex v. Then,

Z \sansi \sansn 
T \prime ,u(\lambda ) = \lambda Z\sanso \sansu \sanst 

T,v(\lambda ), Z\sanso \sansu \sanst 
T \prime ,u(\lambda ) = ZT (\lambda ).

Using this and (7.2), we therefore obtain that

Z \sansi \sansn 
T \prime ,u(\lambda )

Z\sanso \sansu \sanst 
T \prime ,u(\lambda )

= \lambda 
Z\sanso \sansu \sanst 
T,v(\lambda )

ZT (\lambda )
= \lambda 

1

1 +
Z \sansi \sansn 

T,v(\lambda )

Z\sanso \sansu \sanst 
T,v(\lambda )

=
\lambda 

1 + \lambda 
\prod 

j\in [J] aik,j

=
\lambda 

1 + \lambda 
\prod 

j\in [d] aik,j
= \lambda a\ell +1,

where in the second to last equality we used that aik,j
= 1 for j \in [d]\setminus J .

7.1. Getting close to a repelling fixpoint. In this section, we will show
how to generate points that are arbitrarily close to a fixpoint of the function f(x) =

1
1+\lambda x\Delta  - 1 using a hard-core program. We start with the following lemma.

Lemma 7.3. Let \Delta \geq 3 and set d := \Delta  - 1. Let pk be a polynomial in \lambda defined
by

p0 = p1 = \cdot \cdot \cdot = pd = 1, and pk+1 = pk + \lambda pk - d for k \geq d.

Then, for all k \geq 0, all roots of pk are real.
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Proof. Consider a graph Gk = (V,E) with V = \{ d+1, . . . , k\} with i, j connected
if | i - j| \leq d. We will show, by induction, that the independent set polynomial of Gk

is pk. The claim is true for k = 0, . . . , d (since the graph is empty and pk = 1). For
k + 1 \geq d+ 1 the claim follows by induction:

\bullet the contribution of the independent sets with k + 1 included is \lambda times the
independence polynomial of Gk - d, which, by the inductive hypothesis, is
\lambda pk - d;

\bullet the contribution of the independent sets with k + 1 not included is the inde-
pendent set polynomial of Gk, which, by the inductive hypothesis, is pk.

Hence, the independent set polynomial of Gk+1 is pk + \lambda pk - d = pk+1.
A claw is a graph with 4 vertices a, b1, b2, b3 and 3 edges ab1, ab2, ab3. A claw-

free graph is a graph that does not contain a claw as an induced subgraph. We will
show that Gk is claw-free. Suppose a, b1, b2, b3 \in \{ d + 1, . . . , k\} form a claw; w.l.o.g.
b1 < b2 < b3. Then | a - bi| \leq d for i = 1, 2, 3. If b2 < a then b2  - b1 \leq a - b1 \leq d and
hence b1b2 is an edge---a contradiction with the assumption that a, b1, b2, b3 form a
claw. If b2 > a then b3  - b2 \leq b3  - a \leq d and hence b2b3 is an edge---a contradiction
with the assumption that a, b1, b2, b3 form a claw. Thus Gk is claw-free.

Now we use [5, Theorem 1.1] which states that the roots of the independent set
polynomial of a claw-free graph are all real.

We will now show that we can get close to the fixpoint of f with the smallest
norm.

Lemma 2.7. Let \Delta \geq 3 and \lambda \in \BbbC \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the fixpoint
of f(x) = 1

1+\lambda xd with the smallest norm. For k \geq 0, let xk be the sequence defined by

(7.3) x0 = x1 = \cdot \cdot \cdot = xd - 1 = 1, xk =
1

1 + \lambda 
\prod d

i=1 xk - i

for k \geq d.

Then, the sequence xk is well-defined (i.e., the denominator of (7.3) is nonzero for
all k \geq d) and converges to the fixpoint \omega as k \rightarrow \infty . Moreover, there exist infinitely
many k such that xk \not = \omega .

Proof. For k \geq 0, let Rk be the sequence defined by

(7.4) R0 = R1 = \cdot \cdot \cdot = Rd = 1, Rk+1 = Rk + \lambda Rk - d for k \geq d.

Observe that Rk = pk(\lambda ), where pk is the polynomial in Lemma 7.3. Since \lambda \in \BbbC \setminus \BbbR ,
Lemma 7.3 implies that Rk \not = 0 for all k and hence for k \geq 0 we can let

(7.5) yk = Rk/Rk+1.

Note that for k \in \{ 0, . . . , d - 1\} we have yk = xk. For k \geq d we have

yk =
Rk

Rk+1
=

Rk

Rk + \lambda Rk - d
=

1

1 + \lambda Rk - d

Rk

=
1

1 + \lambda 
\prod d

j=1
Rk - j

Rk - j+1

=
1

1 + \lambda 
\prod d

j=1 yk - j

and hence, by induction, xk = yk for all k. It follows that the sequence xk is well-
defined.

Let \omega 1, . . . , \omega d+1 be the fixpoints of f(x) = 1
1+\lambda xd sorted in increasing order of

their absolute value, so that \omega 1 = \omega . Note, since \lambda \in \BbbC \setminus \BbbR , by Lemma 4.2 we have
that | \omega i| \not = | \omega j | for different i, j \in [d+ 1]. Observe that the characteristic polynomial
of the recurrence (7.4) is zd+1  - zd  - \lambda and that the roots of the polynomial are
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1/\omega 1, . . . , 1/\omega d+1 (to verify this, use that \lambda \omega d+1
j +\omega j - 1 = 0 for j \in [d+1]). Therefore,

from the theory of linear recurrences we have that there exist \alpha 1, . . . , \alpha d+1 \in \BbbC such
that for all k \geq 0

Rk =

d+1\sum 
j=1

\alpha j(1/\omega j)
k.

Note that since R0 = R1 = \cdot \cdot \cdot = Rd = 1 we have that \alpha 1, . . . , \alpha d+1 is the solution of
the following (Vandermonde) system

d+1\sum 
j=1

(1/\omega j)
k\alpha j = 1 for k \in \{ 0, . . . , d\} .

Suppose one of the \alpha 1, . . . , \alpha d+1 is zero, say \alpha i = 0 for some i \in [d+1]. Let \alpha d+2 =  - 1
and \omega d+2 = 1. For j \in [d+ 1], note that \omega j \not = 1 (since that would imply \lambda = 0) and
therefore \omega j \not = \omega d+2. Then we have that \{ \alpha j\} j\in [d+2]\setminus \{ i\} is a nonzero solution of the
following (again Vandermonde) system

(7.6)
\sum 

j\in [d+2]\setminus \{ i\} 

(1/\omega j)
k\alpha j = 0 for k \in \{ 0, . . . , d\} .

This is a contradiction, since the system only has a zero solution (\omega 1, . . . , \omega d+1, \omega d+2

are distinct). Thus none of the \alpha 1, . . . , \alpha d+1 is zero and, in particular, \alpha 1 \not = 0. It
follows that xk = Rk/Rk+1 converges to \omega 1 = \omega as k \rightarrow \infty .

To finish the proof, it remains to show that xk \not = \omega for infinitely many k. For the
sake of contradiction, assume otherwise, and let k0 be the largest integer such that
xk0 \not = \omega . From (7.3), we obtain

xk0+d =
1

1 + \lambda 
\prod d - 1

j=0 xk0+j

.

By the choice of k0, we have xk0+1 = \cdot \cdot \cdot = xk0+d = \omega , which gives that xk0
= \omega 

(using that \omega = 1
1+\lambda \omega d ), a contradiction.

This concludes the proof of Lemma 2.7.

Finally, we conclude this section with the following lemma, which will be useful
later.

Lemma 7.4. For \lambda \in \BbbC \setminus \BbbR and d \geq 2, let \omega be the fixpoint of f(x) = 1
1+\lambda xd with

the smallest norm. Then, \omega \in \BbbC \setminus \BbbR and 0 < | \omega  - 1| < 1.

Proof. Since 1  - \omega = \lambda \omega d+1, we have that | \omega  - 1| > 0 (otherwise, \lambda = 0) and
\omega \in \BbbC \setminus \BbbR (otherwise, \lambda \in \BbbR ). We therefore focus on showing that | \omega  - 1| < 1.

Let \omega 1, . . . , \omega d+1 be the fixpoints of f sorted in increasing order of their norm,
so that \omega 1 = \omega . By Lemma 4.2, we have | \omega 1| < \cdot \cdot \cdot < | \omega d+1| , so by 1  - \omega j = \lambda \omega d+1

j

(j \in [d]), we obtain that

(7.7) | 1 - \omega 1| < | 1 - \omega 2| < \cdot \cdot \cdot < | 1 - \omega d+1| .

Note that \omega 1 - 1, . . . , \omega d+1 - 1 are roots of \lambda (y+1)d+1+ y = 0; the coefficient of yd+1

and the coefficient of y0 are both equal to \lambda , so by Vieta's formula,

(7.8)

d+1\prod 
j=1

(1 - \omega j) = 1.

Equations (7.7) and (7.8) imply | 1 - \omega 1| < 1, as needed.
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7.2. Bootstrapping a point next to a fixpoint to an \bfitepsilon -covering. Once we
have the ability to obtain points close to the fixpoint \omega , we proceed to the next step,
which is creating a moderately dense set of points around \omega (cf. Lemma 2.10).

The main idea of the proof of Lemma 2.10 is that close to the fixpoint the recur-
rence implements with a small error any polynomial with nonnegative integer coeffi-
cients (evaluated at \omega  - 1). Then we use the fact that the values of these polynomials
yield a dense set of points in \BbbC . Before proceeding with the proof of Lemma 2.10 we
state these ingredients formally.

Lemma 7.5. Let z \in \BbbC \setminus \BbbR be such that | z| < 1. Let S be the set of values
of polynomials with nonnegative integer coefficients evaluated at z (that is, S =
\{ p(z) | p \in \BbbZ \geq 0[x]\} ). Then S is dense in \BbbC .

Proof. We can write z = | z| e2\pi ix for some x \in [0, 1). Note that x \not = 0 and x \not = 1/2
(since we assumed z \not \in \BbbR ).

First suppose that x is rational, that is, x = p/q for integer coprime p, q, where
q \geq 3. For any k \in \{ 0, . . . , q  - 1\} we can obtain an arbitrarily small number on the

ray with angle 2\pi k/q (by taking (zp
 - 1 mod q)k+q\ell for large \ell ) and hence we have a

dense set of points on the ray (taking integer multiples of the small number). Now
we show how using the points on the rays we obtain a point arbitrarily close to any
complex number t \in \BbbC . First, we can write t as a convex combination of points
on the rays, that is, t = \alpha 0r0 + \cdot \cdot \cdot + \alpha q - 1rq - 1, where rk is on the ray with angle

2\pi k/q (for k \in \{ 0, . . . , q  - 1\} ), \alpha k \in [0, 1] (for k \in \{ 0, . . . , q  - 1\} ), and
\sum q - 1

k=0 \alpha k = 1.
For \epsilon > 0, let \^\alpha k be a rational such that | \^\alpha k  - \alpha k| \leq \epsilon /q and let w be the product
of the denominators of \^\alpha 0, . . . , \^\alpha q - 1. Since we have a dense set of points on each
ray we can obtain \^rk on the ray with angle 2\pi k/q such that | rk/w  - \^rk| \leq \epsilon /w (for

k \in \{ 0, . . . , q  - 1\} ). Now we argue that
\sum q - 1

k=0(w\^\alpha k)\^rk is close to t. We have

\bigm| \bigm| \bigm| \bigm| t - q - 1\sum 
k=0

(w\^\alpha k)\^rk

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| q - 1\sum 
k=0

(\alpha k  - \^\alpha k)rk +

q - 1\sum 
k=0

\^\alpha k(rk  - w\^rk)

\bigm| \bigm| \bigm| \bigm| \leq \epsilon 

q - 1\sum 
k=0

| rk| + (1 + \epsilon )\epsilon .

(7.9)

Taking \epsilon sufficiently small we get a point arbitrarily close to t.
Now suppose x is irrational. Let t = | t| e2\pi iy be a complex number, where y \in 

[0, 1). The fractional part \{ kx\} of kx for positive integers k is dense in [0, 1) and, hence,
for \epsilon > 0, there exists k such that | \{ kx\}  - y| \leq \epsilon and | z| k \leq \epsilon . Let w = \lfloor | t| /| zk| \rfloor 
so that 0 \leq | t|  - w| z| k \leq \epsilon . Observe that wzk = w| z| ke2\pi i\{ kx\} , so by the triangle
inequality

| t - wzk| \leq 
\bigm| \bigm| t - | t| e2\pi ikx\bigm| \bigm| + \bigm| \bigm| | t| e2\pi ikx  - wzk

\bigm| \bigm| = | t| | e2\pi i(y - \{ kx\} )  - 1| +
\bigm| \bigm| | t|  - w| z| k

\bigm| \bigm| 
\leq \epsilon (1 + 2\pi | t| ),

where in the last inequality we used that for \theta = 2\pi (y  - \{ kx\} ) it holds that

| ei\theta  - 1| =
\surd 
2 - 2 cos \theta = 2| sin(\theta /2)| = 2 sin | \theta /2| \leq | \theta | \leq 2\pi \epsilon .

Taking \epsilon sufficiently small we get a point (wzk) arbitrarily close to t.

Remark 7.6. Note that the assumption | z| < 1 is necessary---the lemma would be
false for, e.g., z = i.

The following operation (as we will prove in Lemma 7.9 below) is a first-order
approximation of operation (7.1) when applied to points around \omega perturbed by
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a1, . . . , ad:

(7.10) (a1, . . . , ad) \mapsto \rightarrow z

d\sum 
i=1

ai.

We will use a sequence of (7.10) to implement polynomials with nonnegative
integer coefficients; the complexity of a polynomial will be the number of steps in the
sequence.

Definition 7.7. A straight-line program with operation (7.10) is a sequence of
assignments starting with a0 = 0, a1 = 1, and

ak = z
\bigl( 
aik,1

+ \cdot \cdot \cdot + aik,d

\bigr) 
for k = 2, 3, . . . ,

where ik,1, . . . , ik,d \in \{ 0, . . . , k  - 1\} . We say that the straight-line program generates
x \in \BbbC if there exists integer k \geq 0 such that ak = x.

Using a finite sequence of (7.10), we can implement any polynomial with nonneg-
ative integer coefficients, up to factors of z. More precisely, we have the following.

Lemma 7.8. Let p \in \BbbZ \geq 0[z] be a polynomial with nonnegative integer coefficients.
There exist nonnegative integers k := k(p) and n := n(p) and a straight-line program
with operation (7.10) such that ak = znp(z).

Proof. Let p(z) =
\sum t

j=0 cjz
j , where ct \not = 0 or t = 0. We will prove the claim by

induction on t +
\sum t

j=0 cj . The base case is p(z) \equiv 0; here we can take k(p) = 0 and

n(p) = 0. Now assume t+
\sum t

j=0 cj \geq 1.
First assume that c0 \geq 1. Let q(z) = p(z) - 1. By the induction hypothesis there

exist n, k, and a straight-line program with operation (7.10) such that ak = znq(z).
Let ak+1 = za1 and ak+j = zak+j - 1 for j = 2, . . . , n (note that ak+n = zn). Finally,
add ak+n+1 = z(ak + ak+n). Note that ak+n+1 = zn+1p(z).

Now assume c0 = 0. Let q(z) = p(z)/z. By the induction hypothesis there exist
n, k, and a straight-line program with operation (7.10) such that ak = znq(z). Let
ak+1 = zak. Note that ak+1 = znp(z).

From the Taylor expansion we have that close to the fixpoint the multivariate
hard-core recurrence implements operation (7.10) (with a small error).

Lemma 7.9. Suppose that \lambda \in \BbbC \setminus \BbbR and d \geq 2. Let \omega be the fixpoint of f(x) =
1

1+\lambda xd with the smallest norm and set z = \omega  - 1.
There exist reals C0 := C0(\omega , \lambda , d) > 1 and \delta 0 := \delta 0(\omega , \lambda , d) > 0 such that for any

a1, . . . , ad \in \BbbC with | aj | \leq \delta 0 (for j \in [d]) we have

(7.11)
1

1 + \lambda 
\prod d

j=1(\omega + aj)
= \omega + z

\biggl( d\sum 
j=1

aj

\biggr) 
+ \tau ,

where | \tau | \leq C0 maxj\in [d] | aj | 2.
Proof. Let b1, . . . , bd be arbitrary complex numbers with | b1| , . . . , | bd| \leq 1. Let

F (t) =
1

G(t)
, where G(t) = 1 + \lambda 

d\prod 
j=1

(\omega + bjt).
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Then, using that \omega is a fixpoint of f(x) = 1
1+\lambda xd , we have G(0) = 1/\omega and

(7.12) F \prime (0) =  - 
\lambda 
\Bigl( \sum d

j=1 bj

\Bigr) 
(\omega )d - 1

(1 + \lambda (\omega )d)
2 = z

d\sum 
j=1

bj .

Note that for all t \in [0, 1]

(7.13) | G\prime (t)| =
\bigm| \bigm| \bigm| \lambda d\sum 

j=1

bj
\prod 
k \not =j

(\omega + bkt)
\bigm| \bigm| \bigm| \leq d| \lambda | (1 + | \omega | )d.

Similarly, we have that for all t \in [0, 1]

| G\prime \prime (t)| \leq d2| \lambda | (1 + | \omega | )d.

Let \delta 0 := min
\bigl\{ 

1
2| \omega | d| \lambda | (1+| \omega | )d , 1

\bigr\} 
. Note that (7.13) implies that for t \in (0, \delta 0) we

have

| G(t)| \geq | G(0)|  - td| \lambda | (1 + | \omega | )d \geq 1

| \omega | 
 - \delta 0d| \lambda | (1 + | \omega | )d \geq 

1

2| \omega | 
,

and hence for t \in (0, \delta 0)

(7.14) | F \prime \prime (t)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 2G\prime (t)2

G(t)3
 - G\prime \prime (t)

G(t)2

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 3(2| \omega | )3d4| \lambda | 2(1 + | \omega | )2d =: C,

which implies

(7.15) | F (t) - F (0) - tF \prime (0)| \leq Ct2.

Given a1, . . . , ad such that | aj | \leq \delta 0, let t = maxj | aj | \in (0, \delta 0) and bj = aj/t (for
j \in [d]); note,

1

1 + \lambda 
\prod d

j=1(\omega + aj)
= F (t) and tF \prime (0) = z

d\sum 
j=1

aj .

Let C0 := max\{ C, 2\} > 1. The lemma now follows from (7.15), (7.12), and the fact
that F (0) = \omega .

Finally we can prove Lemma 2.10, which we restate here for convenience.

Lemma 2.10. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the
fixpoint of f(x) = 1

1+\lambda xd with the smallest norm. For any \epsilon , \kappa > 0 there exists a
radius \rho \in (0, \kappa ) such that the following holds. For every \lambda \prime \in B(\lambda \omega , \rho ), there exists
a tree G of maximum degree at most \Delta that implements \lambda \prime with accuracy \rho \epsilon .

Proof. Consider arbitrary \epsilon , \kappa > 0 and let z := \omega  - 1. By Lemma 7.4, we have
that z \in \BbbC \setminus \BbbR and 0 < | z| < 1. Therefore, Lemma 7.5 gives that polynomials with
nonnegative integer coefficients evaluated at z are dense in \BbbC . Hence there exists a
finite collection \scrF of polynomials with nonnegative integer coefficients whose values
at z form an \epsilon /2-covering of the unit disk (to obtain the collection take a finite \epsilon /4-
covering of the unit disk and for every point in the covering, using the density, get a
polynomial whose value at z is at distance at most \epsilon /4 from the point).
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By Lemma 7.8 every polynomial p with nonnegative integer coefficients can be
generated, up to a factor zn(p), using k(p) operations (7.10). Let

N := max
p\in \scrF 

n(p) and K := N +max
p\in \scrF 

k(p).

For every p \in \scrF , there is a straight-line program to generate zNp(z) using at most
K applications of (7.10) (the extra N in the definition of K is to allow for extra
operations (7.10) to move from zn(p)p(z) to zNp(z)). Let C0 > 1 and \delta 0 > 0 be the
constants from Lemma 7.9. Let Z(C0, d, k) := C0(2d)

2k for k \geq 0 and

(7.16) \delta = min
\Bigl\{ 
\delta 0/d

K ,
\epsilon | z| N

2Z(C0, d,K)
,

1

Z(C0, d,K)
,

\kappa 

2| \lambda | 

\Bigr\} 
.

By Lemma 2.7, there is a hard-core program x0, x1, . . . such that for sufficiently large
m,m\prime , it holds that 0 < | xm  - \omega | \leq \delta and | xm\prime  - \omega | \leq | xm  - \omega | 2. Let y1 = xm and
y0 = xm\prime , so that 0 < | y1  - \omega | \leq \delta and | y0  - \omega | \leq | y1  - \omega | 2. Finally, let

h := y1  - \omega and set r := | hzN | .

Since | z| < 1, we have r \leq | h| \leq \delta < \kappa /| \lambda | .
We claim that for any u such that (\omega + u) \in B(\omega , r), there exists a hard-core

program that generates \omega +u\prime with | u - u\prime | \leq \epsilon r. By Lemma 7.2, this implies that, for
\rho := | \lambda | r \in (0, \kappa ), any activity in the ball B(\lambda \omega , \rho ) can be implemented with accuracy
\epsilon \rho by a tree of maximum degree \Delta , as needed.

To obtain the desired hard-core program, observe first that u/r belongs to the
unit disc, so there exists p \in \scrF such that

(7.17) | p(z) - u/r| \leq \epsilon /2.

Moreover, there is a straight-line program \^y0, \^y1, . . . , \^yk with k \leq K to generate
zNp(z), i.e., \^y0 = 0, \^y1 = 1, and

(7.18) \^y\ell = z
\bigl( 
\^yi\ell ,1 + \cdot \cdot \cdot + \^yi\ell ,d

\bigr) 
for \ell = 2, 3, . . . , k,

where i\ell ,1, . . . , i\ell ,d \in \{ 0, . . . , \ell  - 1\} and \^yk = zNp(z). Note that for all \ell \in \{ 0, . . . , k\} 
we have by induction (using | z| < 1 from Lemma 7.4) that

(7.19) | \^y\ell | \leq d\ell  - 1.

We will next convert the straight-line program (7.18) into a hard-core program. For
y0, y1 as above, let y2, . . . , yk be given by

(7.20) y\ell =
1

1 + \lambda 
\prod d

j=1 yi\ell ,j
for \ell = 2, 3, . . . , k.

We will prove that for all \ell = 0, 1, . . . , k it holds that

(7.21) y\ell = \omega + h\^y\ell + \tau \ell , where | \tau \ell | \leq | h| 2Z(C0, d, \ell ).

Assuming (7.21) for the moment, let us conclude the proof of the claim by showing that
yk is at distance \leq r\epsilon from \omega +u and that it can be generated by a hard-core program.
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In particular, for \ell = k, (7.21) gives (using that \^yk = zNp(z), | h| = | y1  - \omega | \leq \delta , and
(7.16))

yk = \omega + hzNp(z) + \tau k, where | \tau k| \leq | h| 2Z(C0, d,K) \leq | h| | z| N \epsilon /2.

Combining this with (7.17) and recalling that r = | hzN | , we obtain that

| yk  - (\omega + u)| = | hzNp(z) + \tau k  - u| \leq r| p(z) - u/r| + | \tau k| \leq r\epsilon .

To finish the proof of the claim, we only need to observe that, since y0, y1 can be
generated using a hard-core program, we can also generate the sequence y0, y1, . . . , yk
using a hard-core program.

It remains to prove (7.21). We do this by induction. Note that y0 = \omega +0 \cdot h+ \tau 0,
where | \tau 0| = | y0  - \omega | \leq | h| 2 and y1 = \omega + 1 \cdot h+ 0, covering the base cases of (7.21).
For the induction step, assume that for all 0 \leq \ell \prime < \ell it holds that

(7.22) y\ell \prime = \omega + h\^y\ell \prime + \tau \ell \prime , where | \tau \ell \prime | \leq | h| 2Z(C0, d, \ell 
\prime ).

For all \ell \leq K, we have by (7.16) that Z(C0, d, \ell ) \leq Z(C0, d,K) \leq 1/\delta \leq 1/h and
| h| d\ell  - 1 \leq \delta 0/d. Therefore (7.19) and (7.22) give that, for all 0 \leq \ell \prime < \ell ,

(7.23) | h\^y\ell \prime + \tau \ell \prime | \leq | h| d\ell 
\prime  - 1 + | h| 2Z(C0, d, \ell 

\prime ) \leq | h| d\ell  - 1 + | h| \leq \delta 0.

Hence, we can apply Lemma 7.9 with aj 's of the form h\^y\ell \prime +\tau \ell \prime (\ell 
\prime \in \{ 0, 1, . . . , \ell  - 1\} ).

From Lemma 7.9 and (7.23) we have

y\ell =
1

1 + \lambda 
\prod d

j=1(\omega + h\^yi\ell ,j + \tau i\ell ,j )
= \omega +hz

\Bigl( d\sum 
j=1

\^yi\ell ,j

\Bigr) 
+\tau \ell , where \tau \ell = z

d\sum 
j=1

\tau i\ell ,j +\tau 

and
| \tau | \leq C0 max

\ell \prime =0,...,\ell  - 1
| h\^y\ell \prime + \tau \ell \prime | 2 \leq C0| h| 2(d\ell  - 1 + 1)2 \leq C0| h| 2d2\ell .

Thus

| \tau \ell | \leq d| h| 2Z(C0, d, \ell  - 1) + C0| h| 2d2\ell = | h| 2C0(d(2d)
2\ell  - 2 + d2\ell )

\leq | h| 2C0(2d)
2\ell = | h| 2Z(C0, d, \ell ),

completing the induction step. This finishes the proof of (7.21) and therefore the
proof of Lemma 2.10.

7.3. Bootstraping \bfitepsilon -covering to arbitrary density. Our next step is to use
the ``moderately dense"" set of points in a small disk around \omega to create a dense set
of points. We first need a few technical results.

Lemma 7.10. Suppose that \lambda \in \BbbC \setminus \BbbR and d \geq 2. Let \omega be the fixpoint of f(x) =
1

1+\lambda xd with the smallest norm and let z = \omega  - 1.
There exist reals C1 := C1(\omega , \lambda , d) > 0 and \delta 1 := \delta 1(\omega , \lambda , d) > 0 such that for any

a1, . . . , ad \in \BbbC with | aj | \leq \delta 1 (for j \in [d]) we have

(7.24)
1

\lambda 

\Bigl( 1

\omega + ad
 - 1
\Bigr) d - 1\prod 

j=1

(\omega + ak)
 - 1 = \omega +

\left(  ad
z
 - 

d - 1\sum 
j=1

aj

\right)  + \tau ,

where | \tau | \leq C1 maxk\in [d] | ak| 2.
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Proof. Let b1, . . . , bd be arbitrary complex numbers with | b1| , . . . , | bd| \leq 1. Let

F (t) =
1

\lambda 

\Biggl( 
1

Gd(t)
 - 1

Gd - 1(t)

\Biggr) 
, where Gk(t) :=

k\prod 
j=1

(\omega + bjt) for k \in [d].

Then, Gk(0) = \omega k and G\prime 
k(0) = \omega k - 1

\sum k
j=1 bj , so

(7.25) F \prime (0) =  - G\prime 
d(0)

\lambda 
\bigl( 
Gd(0)

\bigr) 2 +
G\prime 

d - 1(0)

\lambda 
\bigl( 
Gd - 1(0)

\bigr) 2 =  - 
\sum d

j=1 bj

\lambda \omega d+1
+

\sum d - 1
j=1 bj

\lambda \omega d
=

bd
z
 - 

d - 1\sum 
j=1

bj ,

where in the last equality we used that \lambda \omega d+1 = 1 - \omega =  - z. As in (7.13), for k \in [d]
and all t \in [0, 1], we have that

(7.26) | G\prime 
k(t)| \leq d(1 + | \omega | )d.

Let \delta 1 := min
\bigl\{ | \omega | d

2d(1+| \omega | )d) , 1
\bigr\} 

> 0. Note that (7.26) implies that for k \in [d] and

t \in (0, \delta 1) we have

| Gk(t)| \geq | Gk(0)|  - td(1 + | \omega | )d \geq | \omega | 
d

2
.

Similarly to (7.26), for k \in [d] and all t \in [0, 1], we have

(7.27) | G\prime \prime 
k(t)| \leq d2(1 + | \omega | )d,

and hence for t \in (0, \delta 1), following the same argument as in (7.14),

| F \prime \prime (t)| \leq 6

| \lambda | 
(2/| \omega | d)3d4(1 + | \omega | )2d =: C1,

which implies

(7.28) | F (t) - F (0) - tF \prime (0)| \leq C1t
2.

Given a1, . . . , ad such that | aj | \leq \delta 1, let t = maxj | aj | and bj = aj/t (for j \in [d]);
then, from (7.25)

1

\lambda 

\Bigl( 1

\omega + ad
 - 1
\Bigr) d - 1\prod 

j=1

(\omega + ak)
 - 1 = F (t) and tF \prime (0) =

ad
z
 - 

d - 1\sum 
j=1

aj .

The lemma now follows from (7.28) and the fact that F (0) = \omega .

Lemma 7.11. Suppose that \lambda \in \BbbC \setminus \BbbR and d \geq 2. Let \omega be the fixpoint of f(x) =
1

1+\lambda xd with the smallest norm and let z = \omega  - 1.
There exist reals C2 := C2(\omega , \lambda , d) > 0 and \delta 2 := \delta 2(\omega , \lambda , d) > 0 such that for any

a1, . . . , ad \in \BbbC with | aj | \leq \delta 2 (for j \in [d]) we have

(7.29)
\partial 

\partial x

1

1 + \lambda (\omega + x)
\prod d - 1

j=1(\omega + aj)

\bigm| \bigm| \bigm| 
x=ad

= z + \tau ,

where | \tau | \leq C2 maxj\in [d] | aj | .
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Proof. Let C0, \delta 0 be the constants in Lemma 7.9 and let \delta 2 := min\{ 1, \delta 0\} .
Suppose that a1, . . . , ad \in \BbbC with | aj | \leq \delta 2 \leq 1. From Lemma 7.9 and the fact

that | z| < 1 (cf. Lemma 7.4), we have
(7.30)\bigm| \bigm| \bigm| 1

1 + \lambda 
\prod d

j=1(\omega + aj)
 - \omega 
\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| z d\sum 

j=1

aj

\bigm| \bigm| \bigm| +C0 max
j\in [d]
| aj | 2 \leq Cmax

j\in [d]
| aj | , where C := d+C0.

From (7.13), we have

(7.31)
\bigm| \bigm| \bigm| \lambda d - 1\prod 

j=1

(\omega + aj) - \lambda \omega d - 1
\bigm| \bigm| \bigm| \leq C \prime max

j\in [d - 1]
| aj | , where C \prime := d| \lambda | (1 + | \omega | )d.

Note that \partial 
\partial x

1

1+\lambda (\omega +x)
\prod d - 1

j=1 (\omega +aj)

\bigm| \bigm| \bigm| 
x=ad

equals

 - 
\lambda 
\prod d - 1

j=1(\omega + aj)\Bigl( 
1 + \lambda 

\prod d
j=1(\omega + aj)

\Bigr) 2 =  - (\lambda \omega d - 1 + \tau 1)(\omega + \tau 2)
2,

where | \tau 1| \leq C \prime maxj\in [d] | aj | and | \tau 2| \leq Cmaxj\in [d] | aj | . Notice

 - (\lambda \omega d - 1 + \tau 1)(\omega + \tau 2)
2 =  - \lambda \omega d+1 + \tau ,

where | \tau | \leq | \lambda | | \tau 2| | \omega | d - 1(2| \omega | + | \tau 2| ) + | \tau 1| (| \omega | + | \tau 2| )2. Using that maxj\in [d] | aj | \leq 1,
we obtain | \tau | \leq C2 maxj\in [d] | aj | , where

C2 := | \lambda | | \omega | d - 1C(2| \omega | + C) + C \prime (| \omega | + C) > 0.

This finishes the proof.

Lemma 7.12. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the fixpoint
of f(x) = 1

1+\lambda xd with the smallest norm. There is a set of activities \{ \lambda \prime 
0, \lambda 

\prime 
1, . . . , \lambda 

\prime 
t\} \subseteq 

\BbbC \BbbQ \setminus \{ 0\} and a real r > 0 such that the following hold for all \^\omega \in B(\omega , r):
1. for i = 0, 1

1+\lambda \prime 
0
\in B(\^\omega , 2r);

2. for i = 1, . . . , t, the map \Phi i : x \mapsto \rightarrow 1
1+\lambda \prime 

ix
is contracting on the ball B(\^\omega , 2r);

3. B(\^\omega , 2r) \subseteq 
\bigcup t

i=1 \Phi i(B(\^\omega , 2r)).
Moreover, for i = 0, 1, . . . , t, there is a bipartite graph G\prime 

i of degree \Delta with a vertex
wi such that

\lambda \prime 
i =

Z \sansi \sansn 
G\prime 

i,wi
(\lambda )

Z\sanso \sansu \sanst 
G\prime 

i,wi
(\lambda )

and degwi
(G\prime 

i) =

\Biggl\{ 
\Delta  - 1 if i = 0,

\Delta  - 2 if i = 1, . . . , t.

Proof. Take C = max\{ C0, C1, C2, 1\} > 0 and \delta = min\{ \delta 0, \delta 1, \delta 2, | \omega | , 1\} \in (0, 1],
where C0, C1, C2, \delta 0, \delta 1, \delta 2 are the constants from Lemmas 7.9, 7.10, and 7.11. More-
over, let z = \omega  - 1 and recall by Lemma 7.4 that 0 < | z| < 1. Let \epsilon = 1

9 | z| > 0.
By Lemma 2.10, (\Delta , \lambda ) implements a set of activities S = \{ \lambda 1, . . . , \lambda t\} which is an
(\epsilon \rho )-covering of B(\lambda \omega , \rho ) for some \rho > 0 satisfying

(7.32) \rho <
| \lambda | 
10C

\delta | z| (1 - | z| ).
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For convenience, for i \in [t], define \zeta i by setting

\lambda i = \lambda (\omega + \zeta i) so that max
i\in [t]
| \zeta i| \leq 

\rho 

| \lambda | 
<

1

5C
\delta | z| (1 - | z| ) < \delta .

By Lemma 2.10, (\Delta , \lambda ) also implements an activity \lambda 0 such that \lambda 0 = \lambda (\omega + \zeta 0) with
d| \zeta 0| < \epsilon \rho /| \lambda | (in particular, | \zeta 0| < \delta ). Note that since \lambda \in \BbbC \BbbQ we have that S \subseteq \BbbC \BbbQ .

Let r := \rho | z| 
3| \lambda | . Moreover, let \lambda \prime 

0 := \lambda (\omega + \zeta 0)
d, while for i = 1, . . . , t, let

\lambda \prime 
i := \lambda (\omega + \zeta i)(\omega + \zeta 0)

d - 2 and \Phi i be the map x \mapsto \rightarrow 1

1 + \lambda \prime 
ix

.

Note that \{ \lambda \prime 
0, . . . , \lambda 

\prime 
t\} \subseteq \BbbC \BbbQ \setminus \{ 0\} , since \lambda \in \BbbC \BbbQ , S \subseteq \BbbC \BbbQ , and for i = 0, 1, . . . , t it

holds that | \zeta i| < \delta \leq | \omega | .
Consider an arbitrary \^\omega \in B(\omega , r). We first show that

(7.33) \Phi i is contracting on the ball B(\^\omega , 2r) for every i \in [t].

Let x \in B(\^\omega , 2r). Since | \^\omega  - \omega | \leq r, we have x \in B(\omega , 3r). Note that 3r < \delta and
maxi\in [t] | \zeta i| < \delta , therefore from Lemma 7.11 (applied to ad = x  - \omega , a1 = \zeta i and
a2 = \cdot \cdot \cdot = ad - 1 = \zeta 0), we have \Phi \prime 

i(x) = z + \tau , where

| \tau | \leq Cmax\{ \zeta 0, \zeta i, | x - \omega | \} \leq Cmax
\Bigl\{ \rho 

| \lambda | 
, 3r
\Bigr\} 
= C

\rho 

| \lambda | 
\leq 1 - | z| 

2
,

and hence | \Phi \prime 
i(x)| \leq 

1+| z| 
2 , proving (7.33). We next show that

(7.34) for every x \in B(\^\omega , 2r), there exists i \in [t] such that \Phi  - 1
i (x) \in B(\^\omega , 2r).

We first calculate \Phi  - 1
i (x) for i \in [t]. By Lemma 7.10 (applied to ad = x - \omega , a1 = \zeta i,

and a2 = \cdot \cdot \cdot = ad - 1 = \zeta 0), we have

\Phi  - 1
i (x) =

1

\lambda 

\Bigl( 1
x
 - 1
\Bigr) 1

(\omega + \zeta i)(\omega + \zeta 0)d - 2
= \omega +

\Bigl( x - \omega 

z
 - \zeta i  - (d - 2)\zeta 0

\Bigr) 
+ \tau ,

where

| \tau | \leq Cmax\{ | \zeta 0| 2, | \zeta i| 2, | x - \omega | 2\} \leq C
\Bigl( \rho 

| \lambda | 

\Bigr) 2
\leq \epsilon 

\rho 

| \lambda | 
and (d - 2)| \zeta 0| \leq d| \zeta 0| < \epsilon 

\rho 

| \lambda | 
.

It follows that

(7.35) \Phi  - 1
i (x) - \omega = (\omega + \zeta ) - (\omega + \zeta i) + \tau \prime , where \zeta :=

x - \omega 

z
and | \tau \prime | \leq 2\epsilon 

\rho 

| \lambda | 
.

Note that

| \lambda \zeta | \leq | \lambda | | x - \omega | 
| z| 

\leq | \lambda | 3r
| z| 

= \rho ,

so \lambda (\omega + \zeta ) belongs to the ball B(\lambda \omega , \rho ). In particular, we can choose \lambda i from the
(\epsilon \rho )-covering such that\bigm| \bigm| \lambda (\omega + \zeta ) - \lambda i

\bigm| \bigm| \leq \epsilon \rho , which gives that
\bigm| \bigm| (\omega + \zeta ) - (\omega + \zeta i)

\bigm| \bigm| \leq \epsilon 
\rho 

| \lambda | 
.
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Combining this with (7.35) and using that \epsilon = 1
3 | z| , we obtain that | \Phi  - 1

i (x)  - \omega | \leq 
3\epsilon \rho 

| \lambda | = r and, therefore, by the triangle inequality | \Phi  - 1
i (x) - \^\omega | \leq 2r (since | \^\omega  - \omega | \leq 

r). This proves (7.34). Finally, we show that

(7.36)
1

1 + \lambda \prime 
0

\in B(\^\omega , 2r).

From Lemma 7.9 (applied to a1 = \cdot \cdot \cdot = ad = \zeta 0), we obtain that

1

1 + \lambda \prime 
0

= \omega + d\zeta 0 + \tau , where | \tau | \leq C| \zeta 0| 2 \leq \epsilon 
\rho 

| \lambda | 
= r/3.

Since d| \zeta 0| \leq \epsilon \rho 
| \lambda | = r/3, we obtain that 1

1+\lambda \prime 
0
\in B(\omega , r) and therefore 1

1+\lambda \prime 
0
\in B(\^\omega , 2r)

as well (since | \^\omega  - \omega | \leq r), finishing the proof of (7.36).
In light of (7.33), (7.34) and (7.36), to prove the lemma it remains to show

the existence of the graphs G\prime 
0, G

\prime 
1, . . . , G

\prime 
t claimed in the stamement. Since (\Delta , \lambda )

implements the activities \lambda 0, \lambda 1, . . . , \lambda t, for i = 0, 1, . . . , t there exists a bipartite graph

Gi of maximum degree at most \Delta with terminal vi such that \lambda i =
Z \sansi \sansn 

Gi,vi
(\lambda )

Z\sanso \sansu \sanst 
Gi,vi

(\lambda ) . Consider

first the case where we want to implement \lambda \prime 
i for some i \not = 0. Construct the graph

G\prime 
i by taking d  - 2 disjoint copies of the graph G0, one copy of the graph Gi, and

identifying their terminals into a single vertex wi. Then, the degree of wi in Gi is
d - 1 = \Delta  - 2 and we have that

Z \sansi \sansn 
G\prime 

i,wi
(\lambda ) = \lambda 

\Bigl( Z \sansi \sansn 
G0,v0

(\lambda )

\lambda 

\Bigr) d - 2\Bigl( Z \sansi \sansn 
Gi,vi

(\lambda )

\lambda 

\Bigr) 
, Z\sanso \sansu \sanst 

G\prime 
i,wi

(\lambda ) = (Z\sanso \sansu \sanst 
G0,v0(\lambda ))

d - 2Z\sanso \sansu \sanst 
Gi,vi(\lambda )

and, therefore,

Z \sansi \sansn 
G\prime 

i,wi
(\lambda )

Z\sanso \sansu \sanst 
G\prime 

i,wi
(\lambda )

= \lambda (\lambda 0/\lambda )
d - 2(\lambda i/\lambda ) = \lambda (\omega + \zeta i)(\omega + \zeta 0)

d - 2 = \lambda \prime 
i,

as needed. The construction for the case i = 0 is analogous; to construct G\prime 
0, we take

d disjoint copies of the graph G0 and identify their terminals into a single vertex w0.
Then, w0 has degree d = \Delta  - 1 and it holds that \lambda 0 = Z \sansi \sansn 

G\prime 
0,w0

(\lambda )/Z\sanso \sansu \sanst 
G\prime 

0,w0
(\lambda ).

Using Lemma 7.12, we can now prove Proposition 2.6 by applying Lemmas 2.8
and 5.2.

Proposition 2.6. Let \Delta \geq 3 and \lambda \in \BbbC \BbbQ \setminus \BbbR , and set d := \Delta  - 1. Let \omega be the
fixpoint of f(x) = 1

1+\lambda xd with the smallest norm. There exists a rational \rho > 0 such
that the following holds.

There is a polynomial-time algorithm such that, on input \lambda \prime \in B(\lambda \omega , \rho ) \cap \BbbC \BbbQ 
and rational \epsilon > 0, outputs a bipartite graph G of maximum degree at most \Delta with
terminal v that implements \lambda \prime with accuracy \epsilon . Moreover, the algorithm outputs the
values Z \sansi \sansn 

G,v(\lambda ), Z
\sanso \sansu \sanst 
G,v(\lambda ).

Proof. Let r > 0, \{ \lambda \prime 
0, \lambda 

\prime 
1, . . . , \lambda 

\prime 
t\} \subseteq \BbbC \BbbQ \setminus \{ 0\} , and let G\prime 

0, . . . , G
\prime 
t (with vertices

w0, . . . , wt, respectively) be as in Lemma 7.12. Let \^\omega \in \BbbC \BbbQ be such that | \omega  - \^\omega | < r
and let \rho > 0 be a rational such that | \omega  - \^\omega | < \rho /| \lambda | < r. Note that the choice of \^\omega 
and \rho ensures that

(7.37) B(\omega , \rho /| \lambda | ) \subset B(\^\omega , 2r)
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since for all x with | x  - \omega | \leq \rho 
| \lambda | , we have by the triangle inequality | x  - \^\omega | \leq 

| x - \omega | + | \omega  - \^\omega | < 2r. Let

(7.38) x0 :=
1

1 + \lambda \prime 
0

so that, by Lemma 7.12, x0 \in B(\^\omega , 2r).

Now, suppose that we are given inputs \lambda \prime \in B(\lambda \omega , \rho ) \cap \BbbC \BbbQ and rational \epsilon > 0.
We want to output in time poly(size(\lambda \prime , \epsilon )) a bipartite graph of maximum degree
\Delta that implements \lambda \prime with accuracy \epsilon . By Lemma 7.12, we have that the maps
\Phi i(x) = 1

1+\lambda \prime 
ix

with i \in [t] satisfy the hypotheses of Lemma 2.8 (with z0 = \^\omega and

radius 2r). Moreover, by (7.37) and (7.38), we have that x0 and x\ast = \lambda \prime 

\lambda belong to
the ball B(\^\omega , 2r). Let \^\epsilon = \epsilon /| \lambda | and \epsilon \prime \in (0, \^\epsilon ) be a rational such that size(\epsilon \prime ) =
poly(size(\^\epsilon )) = poly(size(\epsilon )). Using the algorithm of Lemma 2.8 on input x0, x

\ast , and
\epsilon \prime , we obtain in time poly(size(x0, x

\ast , \epsilon \prime )) = poly(size(\lambda \prime , \epsilon )) a number \^x \in B(\^\omega , 2r)
and a sequence i1, . . . , ik \in [t] such that

(7.39) \^x = \Phi ik(\Phi ik - 1
(\cdot \cdot \cdot \Phi i1(x0) \cdot \cdot \cdot )) and

\bigm| \bigm| \bigm| \^x - \lambda \prime 

\lambda 

\bigm| \bigm| \bigm| \leq \epsilon \prime \leq \epsilon /| \lambda | .

For convenience, let i0 = 0.
Now, let P be a path of length k+1 with vertices labeled v0, v1, . . . , vk, vk+1. Let

\bfitlambda be the activity vector on P given by

\lambda v0 = \lambda \prime 
0 =

1 - x0

x0
, \lambda vj = \lambda \prime 

ij for j \in [k], \lambda vk+1
= \lambda .

Then, by Lemma 5.2, it holds that Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) \not = 0 and
Z \sansi \sansn 

P,vk+1
(\bfitlambda )

Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) = \lambda \^x; moreover,

we can also compute the values Z \sansi \sansn 
P,vk+1

(\bfitlambda ), Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ) in time polynomial in k =

poly(size(\lambda \prime , \epsilon )) and size(x0, \lambda 
\prime 
1, . . . , \lambda 

\prime 
t) = O(1).

Now, let G\prime be the bipartite graph obtained from the path P by taking for each
j = 0, 1, . . . , k a disjoint copy of the graph G\prime 

ij
and identifying its vertex wij with

the vertex vj of the path P . Using the degree specifications in Lemma 7.12, we
have that G\prime has maximum degree \Delta . Moreover, by Lemma 7.12 we have that \lambda \prime 

i =
Z \sansi \sansn 
G\prime 

i,wi
(\lambda )/Z\sanso \sansu \sanst 

G\prime 
i,wi

(\lambda ) for all i = 0, 1, . . . , t, so analogously to Lemma 3.2 we have that

(7.40) Z \sansi \sansn 
G\prime ,vk+1

(\lambda ) = C \cdot Z \sansi \sansn 
P,vk+1

(\bfitlambda ), Z\sanso \sansu \sanst 
G\prime ,vk+1

(\lambda ) = C \cdot Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda ),

where C =
\prod t

i=0

\bigl( 
Z\sanso \sansu \sanst 
Gi,vi

(\lambda )
\bigr) | \{ j\in \{ 0,...,k\} | \lambda vj

=\lambda \prime 
i\} | . We conclude that

Z \sansi \sansn 
G\prime ,vk+1

(\lambda )

Z\sanso \sansu \sanst 
G\prime ,vk+1

(\lambda )
=

Z \sansi \sansn 
P,vk+1

(\bfitlambda )

Z\sanso \sansu \sanst 
P,vk+1

(\bfitlambda )
= \lambda \^x.

Combining this with (7.39), we obtain that G\prime with terminal vk+1 is a bipartite graph
of maximum degree \Delta which implements \lambda \prime with accuracy \epsilon . Moreover, using (7.40),
we can also compute the values Z \sansi \sansn 

G\prime ,vk+1
(\lambda ), Z\sanso \sansu \sanst 

G\prime ,vk+1
(\lambda ).
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