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We study the problem of approximating the value of the matching polynomial on graphs with edge parame-
ter γ , where γ takes arbitrary values in the complex plane.

Whenγ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs.
For general complex values of γ , Patel and Regts, building on methods developed by Barvinok, showed that
the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number
less than or equal to −1/(4(Δ − 1)). Our first main result completes the picture for the approximability of
the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than
−1/(4(Δ − 1)), the problem of approximating the value of the matching polynomial on graphs of maximum
degree Δ with edge parameter γ is #P-hard.

We then explore whether the maximum degree parameter can be replaced by the connective constant.
Sinclair et al. showed that for positive realγ , it is possible to approximate the value of the matching polynomial
using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded
maximum degree). We first show that this result does not extend in general in the complex plane; in particular,
the problem is #P-hard on graphs with bounded connective constant for a dense set ofγ values on the negative
real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the
negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex
plane in the metric defined by an appropriate density function.

mailto:permissions@acm.org
https://doi.org/10.1145/3448645


13:2 I. Bezáková et al.

1 INTRODUCTION

We study the problem of approximating the matching polynomial of a graph. This polynomial has
a parameter γ , called the edge activity. A matching of a graph G is a set M ⊆ E (G ) such that each
vertex v ∈ V (G ) is contained in at most one edge in M . We denote byMG the set of all matchings
of G. The matching polynomial ZG (γ ) is given by

ZG (γ ) =
∑

M ∈MG

γ |M | .

This polynomial is also referred to as the partition function of the monomer-dimer model in statis-
tical physics.

Here is what is known about approximating this polynomial. We first describe the case where
γ is positive and real. This is a natural case, and is the case where the first complexity-theoretic
results were obtained. We next describe the more general case, whereγ is a complex number. There
are many reasons for considering the more general case. The parameterγ is defined to be complex,
rather than real, in the classic work of Heilmann and Lieb [12]. Furthermore, it has recently been
shown [19] that “the quantum evolution of a system originally in thermodynamic equilibrium is
equivalent to the partition function of the system with a complex parameter”. As Wei et al. [19]
explain, recent discoveries in physics “make it possible to study thermodynamics in the complex
plane of physical parameters”—so complex parameters are increasingly relevant. As we will see in
this article, it is beneficial to study partition functions with complex parameters even when one
is most interested in the real case—the reason is that the generalisation sheds light on “what is
really going on” with complexity bottlenecks, and on appropriate potential functions. Here is the
summary of known results in both cases:

• When the edge activity γ is a positive real number: For any positive real number γ ,
Jerrum and Sinclair [13, Corollary 4.4] gave an FPRAS for approximating ZG (γ ). Using the
correlation decay technique, Bayati et al. [3] gave a (deterministic) FPTAS for the same
problem for the case in which the degree of the input graph G is at most a constant Δ.

• When the edge activity γ is a complex number: Known results are restricted to the case
where γ is not a real number less than or equal to −1/(4(Δ − 1)). In this case, there is a
positive result, due to Patel and Regts [15]. Using a method of Barvinok [1, 2] for approxi-
mating a partition function by truncating its Taylor series (in a region where the partition
function has no zeroes), Patel and Regts [15, Theorem 1.2] extended the positive result of
Bayati et al. to the case in which γ is a complex number that is not a negative real that is
less than −1/(4(Δ − 1)); see also [2, Section 5.1.7]). Patel and Regts obtained a polynomial
time algorithm (rather than a quasi-polynomial time one) by developing clever methods for
exactly computing coefficients of the Taylor series.

Our first contribution completes this picture by showing that for all Δ ≥ 3 and all real γ <
−1/(4(Δ − 1)), it is actually #P-hard to approximate ZG (γ ) on graphs with degree at most Δ. We
use the following notation to state our result more precisely. We consider the problems of multi-
plicatively approximating the norm of ZG (γ ), and of computing its sign. Our first theorem shows
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that, for all Δ ≥ 3 and all rational numbersγ < −1/(4(Δ − 1)), it is #P-hard to approximate |ZG (γ ) |
on bipartite graphs of maximum degree Δ within a constant factor.

Theorem 1.1. Let Δ ≥ 3 and γ < − 1
4(Δ−1) be a rational number. Then, it is #P-hard to approximate

|ZG (γ ) | within a factor of 1.01 on graphs G of maximum degree Δ, even when restricted to bipartite

graphs G with ZG (γ ) � 0.

The number 1.01 in Theorem 1.1 is not important. It can be replaced with any constant greater
than 1. In fact, for any fixed ϵ > 0, the theorem, together with a standard powering argument,
shows that it is #P-hard to approximate ZG (γ ) within a factor of 2 |V (G ) |1−ϵ

.
Our second theorem shows that it is #P-hard to compute the sign of ZG (γ ) on bipartite graphs

of maximum degree Δ.

Theorem 1.2. Let Δ ≥ 3 and γ < − 1
4(Δ−1) be a rational number. Then, it is #P-hard to decide

whether ZG (γ ) > 0 on graphs G of maximum degree Δ, even when restricted to bipartite graphs G
with ZG (γ ) � 0.

We next explore whether the bound on the maximum degree ofG can be relaxed to a restriction
on average degree. The notion of average degree that we use is the connective constant. Given a
graph G, and a vertex v , let NG (v,k ) be the number of k-edge paths in G that start from v . The
following definition is taken almost verbatim from Sinclair et al. [17, 18]1:

Definition 1.3 ([17, 18]). Let F be a family of finite graphs, and let Δ, a and c be positive real
numbers. The connective constant of F is at most Δ with profile (a, c ) if, for any graphG = (V ,E)
in F and any vertex v in G, it holds that

∑�
k=1 NG (v,k ) ≤ cΔ� for all � ≥ a log |V |.

Sinclair et al. [17, Theorem 1.3] showed that, for fixed Δ, whenγ is a positive real, the correlation
decay method gives an FPTAS for approximating ZG (γ ) on graphs G with connective constant at
most Δ (without any bound on the maximum degree of G). The runtime of their algorithm is

(n/ϵ )O(
√

γ Δ log Δ) , where n is the number of vertices of G and ϵ is the relative error.
Our next result shows that, in striking contrast to the bounded-degree case, the algorithmic

result of Sinclair et al. cannot be extended to negative reals, even if γ ≥ −1/(4(Δ − 1)). Given pos-
itive real numbers a and c and a real number Δ > 1, let FΔ,a,c be the set of graphs with connective
constant at most Δ and profile (a, c ).

Theorem 1.4. There exist a dense set of values γ on the negative real axis such that the following

holds for any real numbers Δ > 1 and all a, c > 0:

(1) It is #P-hard to approximate |ZG (γ ) | within a factor 1.01 on graphs G ∈ FΔ,a,c , and

(2) it is #P-hard to decide whether ZG (γ ) > 0 on graphs G ∈ FΔ,a,c .

Both of these results hold even when restricted to bipartite graphs G with ZG (γ ) � 0.

The algorithmic contribution of our work is to show that, despite the hardness result of The-
orem 1.4, correlation decay gives a good approximation algorithm for any complex value γ that
does not lie on the negative real axis when the input graph has bounded connective constant. It is
interesting that we are able to use correlation decay to get a good approximation for all non-real
complex values γ . Our result is the only known approximation in this setting. In particular, it is
not known how to obtain such a result using the method of Patel and Regts [15]. To describe our

1The only difference between Definition 1.3 and the corresponding definitions in the work of Sinclair et al. [17, 18] is the
addition of the terminology “profile (a, c )” which will be used to state our hardness results in a strong form (the results in
the work of Sinclair et al. [17, 18] were algorithmic, which is why this handle on the constants a and c was not required).
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result, we use the following notation. Given a complex number x , let arg(x ) denote the principal
value of its argument in the range [0, 2π ) and |x | denote its norm. Our result is the following.

Theorem 1.5. Let Δ, a and c be positive real numbers, and let γ ∈ C \R<0 be any fixed edge

activity. Then there is an algorithm which takes as input an n-vertex graphG ∈ FΔ,a,c and a rational

ϵ ∈ (0, 1) and produces an output Ẑ = ZG (γ )ez for some complex number z with |z | ≤ ϵ . The running

time of the algorithm is (ĉn/ϵ )O ((1+a+
√
|γ̂ |Δ) log Δ) , where γ̂ =

2 |γ |
1+cos(argγ ) and ĉ = max{1, c}.

Theorem 1.5 gives an algorithmic result which contrasts with the hardness results of Theo-
rems 1.1 and 1.2. It has the following corollary.

Corollary 1.6. Let Δ, a and c be positive real numbers, and let γ ∈ C \R<0 be any fixed edge ac-

tivity. Then, for any rational K > 1 and any positive rational ρ, there are polynomial time algorithms

that take as input a graph G ∈ FΔ,a,c and approximate |ZG (γ ) | within a multiplicative factor of K
and arg(ZG (γ )) within an additive error ρ.

To prove Theorem 1.5, showing correlation decay for complex γ , we use geodesic distances in
the complex plane in the metric defined by an appropriate density function. Correlation decay for
complex activities has been analysed in the context of the hard-core model (see [11]).2 The region
in the complex plane in which Harvey et al. [11] worked allowed them to measure distances using
the norm instead of requiring geodesic distances. An alternative approach was given by Peters and
Regts [16], again in the context of the hard-core model, where they showed contraction within the
basin of an attracting fixpoint using the theory of complex dynamical systems.

2 PRELIMINARIES

Let γ be a complex number and G = (V ,E) be an arbitrary graph. Recall that MG is the set of
matchings of G. For a matching M ∈ MG , we denote by ver(M ) the set of matched vertices in the
matching M . For a vertex u in G, we also define

ZG,u (γ ) :=
∑

M ∈MG ; u ∈ver(M )

γ |M | and ZG,¬u (γ ) :=
∑

M ∈MG ; u�ver(M )

γ |M | .

Thus, ZG,u (γ ) is the contribution to the partition function ZG (γ ) from those matchings M ∈ MG

such that u is matched in M , whereas ZG,¬u (γ ) is the contribution to the partition function ZG (γ )
from those matchings M ∈ MG such that u is not matched in M .

We will use the following result about the location of the zeroes of the matching polynomial.

Theorem 2.1 ([12], see, e.g., [2, Theorem 5.1.2]). Let Δ ≥ 3 be an integer and G be a graph of

maximum degree Δ. Then, for all complexγ that do not lie in the interval (−∞,− 1
4(Δ−1) ) of the negative

real axis, it holds that ZG (γ ) � 0.

Corollary 2.2. Let Δ ≥ 3 be an integer and γ > − 1
4(Δ−1) be a real number. Then, for all graphsG

of maximum degree Δ, it holds that ZG (γ ) > 0.

For our approximation algorithm of Theorem 1.5, given a graphG = (V ,E) with ZG (γ ) � 0 and
a vertex v ∈ V , we will be interested in the quantity

pv (G,γ ) := ZG,¬v (γ )/ZG (γ ).

The algorithm will be based on the following result by Godsil [8].

2Note that Harvey et al. were actually working with the mutivariate hard-core polynomial—this causes interesting com-
plications which will not be relevant to this article. They also extend their method (for the hard-core polynomial, in their
region) to graphs of unbounded degree that have bounded connective constant.
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Theorem 2.3 ([8]). Let γ ∈ C\R<0. LetG = (V ,E) be a graph, and letv ∈ V be one of its vertices.

Let TSAW (v,G ) be the self-avoiding walk tree of G rooted at v . Then,

pv (G,γ ) = pv (TSAW (v,G ),γ ).

3 FPTAS FOR GRAPHS WITH BOUNDED CONNECTIVE CONSTANT

In this section, we prove Theorem 1.5. Consider γ ∈ C\R<0.
We will use the correlation decay technique of Weitz [20], which we adapt for use with complex

activities. We review the basic idea behind the technique (see, e.g., [3, 17, 18]). For a graph G (of
bounded connective constant), we first express ZG (γ ) as a telescoping product

ZG (γ ) = 1/
n∏

i=1

pvj
(G j ,γ ), (1)

where v1, . . . ,vn is an arbitrary enumeration of the vertices of the graph G and G j is the graph
obtained fromG by deleting the verticesv1, . . . ,vj . In light of (1), we can therefore focus on approx-
imating the value pv (G,γ ) for a graph G and vertex v . Using Godsil’s theorem (cf. Theorem 2.3),
it in turn suffices to approximate pv (TSAW (v,G ),γ ). This might seem as a somewhat simpler task
given that TSAW (v,G ) is a tree; the caveat, however, is that the tree TSAW (v,G ) is prohibitively
large, so to be able to perform computations efficiently, we need to truncate the tree. The correla-
tion decay technique analyses the approximation error introduced by this truncation process by
recursively tracking the error using tree recurrences.

In the case of matchings, for a treeT and a vertexv inT , we can write a recursion for pv (T ,γ ) as
follows. Ifv is the only vertex inT , thenpv (T ,γ ) = 1 (since the only possible matching is the empty
set and thus ZT ,¬v (γ ) = ZT (γ ) = 1). Otherwise, let T1, . . . ,Td be the trees of T \{v} and v1, . . . ,vd

be the neighbours of v in T1, . . . ,Td , respectively. Then, we have that

ZT ,¬v (γ ) =
d∏

i=1

ZTi
(γ ), ZT (γ ) =

d∏
i=1

ZTi
(γ ) +

d∑
i=1

γ ZTi ,¬vi
(γ )

∏
j ∈{1, ...,d }, j�i

ZTj
(γ )

and therefore

pv (T ,γ ) =
ZT ,¬v (γ )

ZT (γ )
=

1

1 + γ
∑d

i=1
ZTi ,¬vi (γ )

ZTi (γ )

=
1

1 + γ
∑d

i=1 pvi
(Ti ,γ )

.

Hence, we need to evaluate the recurrence

x = F (x1, . . . ,xd ), where F (x1, . . . ,xd ) =
1

1 + γ
∑d

i=1 xi

, (2)

with base case x = 1.
To show the decay of correlations, one wants to show that after applying the recurrence starting

from two different sets of values at v1, . . . ,vd , the two computed values at v will be “closer” than
were the initial values at the vi ’s. This leads us to define a notion of distance. Often straightfor-
ward distances do not suffice to show decay of correlations, and distances defined via a “potential”
function are used. We adapt this notion to the complex plane.

3.1 Metrics for Measuring the Error in the Complex Plane

We use a distance metric based on conformal density functions (see [14] for details).
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Definition 3.1 (Length, Distance, Metric). Let U be a simply connected open subset of C, and
let Φ : U → R>0 be a function (called conformal density). The length with respect to Φ of a path3

η : [0, 1]→ U is defined as ∫ 1

0
Φ(η(t ))

���� ∂∂t η(t )
����dt .

The distance with respect to Φ between two points x ,y ∈ U , denoted distΦ(x ,y), is the infimum of
the lengths of the paths η connecting x to y, i.e., η(0) = x and η(1) = y. We will refer to the metric
induced by the distance function distΦ(·, ·) as the (conformal) metric given by Φ.

Here is an example of a conformal metric.

Example. Suppose that U is the right-complex half-plane, i.e., x ∈ U iff Re(x ) > 0, and Φ(x ) =
1/Re(x ). The metric is the Poincaré metric in the half-plane (usually one takes the upper-complex
half-plane) and the distance between a = x1 + y1i and b = x2 + y2i is

2 ln ��
√

(y2 − y1)2 + (x2 − x1)2 +
√

(y2 − y1)2 + (x1 + x2)2

2
√
x1x2

�� .
We first quantify one-level correlation decay.

Lemma 3.2. Let U be a simply connected open subset of C, Φ : U → R>0 be a conformal density

function, and distΦ(·, ·) be the metric given by Φ. Let p and q be conjugate exponents, i.e., 1/p + 1/q =
1, where p,q ∈ R>0 ∪ {∞}.

Suppose that d ≥ 1 is an integer and F : U d → U is a holomorphic map. Let x1, . . . ,xd ∈ U and

y1, . . . ,yd ∈ U , and let x = F (x1, . . . ,xd ) and y = F (y1, . . . ,yd ). Assume that there exists a real α ∈
(0, 1) such that for any z1, . . . , zd ∈ U

d∑
i=1

����Φ(F (z1, . . . , zd ))
∂F

∂zi
(z1, . . . , zd )

1

Φ(zi )

����p ≤ αp . (3)

Then

distΦ(x ,y) ≤ α ��
d∑

i=1

distΦ(xi ,yi )q��
1/q

. (4)

Proof. Let ϵ > 0. For i ∈ [d], let ηi be a path connecting xi to yi of length �i ≤ distΦ(xi ,yi ) + ϵ .
W.l.o.g., ηi is re-parameterized to uniform speed (cf. Footnote 3), i.e., for a.e. t ∈ [0, 1], we have����� ∂∂t ηi (t )

�����Φ(ηi (t )) = �i . (5)

We now define a path η connecting x to y:

η(t ) := F (η1 (t ), . . . ,ηd (t )).

3Following Kraus and Roth [14], paths are assumed to be continuous and piecewise continuously differentiable. By re-
moving intervals where the derivative of the path is zero, we obtain a path whose derivative is non-zero a.e. (zeros of a
continuous function cannot be dense in any interval unless the whole interval consists of zeros because of continuity).
3Following Kraus and Roth [14], paths are assumed to be continuous and piecewise continuously differentiable. By re-
moving intervals where the derivative of the path is zero, we obtain a path whose derivative is non-zero a.e. (zeros of a
continuous function cannot be dense in any interval unless the whole interval consists of zeros because of continuity).
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Let L denote the length of η and Fi (x1, . . . ,xd ) denote the function ∂F
∂xi

(x1, . . . ,xd ). Then, using
the triangle inequality and (5), we have

L =

∫ 1

0
Φ(η(t ))

���� ∂∂t η(t )
����dt =

∫ 1

0
Φ(η(t ))

������
d∑

i=1

Fi (η1 (t ), . . . ,ηd (t ))
∂ηi

∂t
(t )

������ dt
≤

∫ 1

0
Φ(η(t ))

d∑
i=1

����Fi (η1 (t ), . . . ,ηd (t ))
∂ηi

∂t
(t )

����dt
=

∫ 1

0

d∑
i=1

����Φ(η(t ))Fi (η1 (t ), . . . ,ηd (t ))
1

Φ(ηi (t ))
�i
����dt .

(6)

By Hölder’s inequality and condition (3), for any t ∈ [0, 1], we have

d∑
i=1

����Φ(η(t ))Fi (η1 (t ), . . . ,ηd (t ))
1

Φ(ηi (t ))
�i
����

≤ ��
d∑

i=1

����Φ(η(t ))Fi (η1 (t ), . . . ,ηd (t ))
1

Φ(ηi (t ))

����p��
1/p ��

d∑
i=1

�
q
i
��

1/q

≤ α ��
d∑

i=1

�
q
i
��

1/q

.

Integrating this for t between 0 and 1 and combining with (6), we obtain

distΦ(x ,y) ≤ L ≤ α ��
d∑

i=1

�
q
i
��

1/q

.

Taking ϵ → 0, we obtain

distΦ(x ,y) ≤ α ��
d∑

i=1

distΦ(xi ,yi )q��
1/q

. �

Now, given a rooted tree, our goal will be to bound the correlation decay at the root when we
truncate the tree at depth Θ(logn). LetT be a finite tree rooted at a vertex ρ, and letC be a subset
of the leaves of T . Let U ⊆ C. We will have a family of maps {Fd }d ≥1, where Fd : U d 
→ U will be
a symmetric map of arity d (which will be the recurrence applied to a vertex of the tree with d
children). Let σ : C → U be an arbitrary assignment of values in U to the vertices of C . Let also
u0 ∈ U be the “initial” value (u0 corresponds to the starting point of the recurrences). For a vertex
v in T and an initial value u0 ∈ U , we define the quantity rv (C,σ ,u0) recursively as follows.

rv (C,σ ,u0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u0 if v is a leaf of T and v � C,
σ (v ) if v ∈ C,
Fd (x1, . . . ,xd ) otherwise, where xi = rvi

(C,σ ,u0)
and v1, . . . ,vd are v’s children in T .

(7)

We can now study the sensitivity of rv (C,σ ,u0) to the assignment σ . The following lemma is
the analogue of Sinclair et al. [18, Lemma 3] for the complex plane and will be used to apply the
correlation decay technique for graphs of bounded connective constant.

Lemma 3.3. Let U be a simply connected open subset of C and Φ : U → R>0 be a conformal den-

sity function. For d = 1, 2, . . . , let Fd : U d 
→ U be symmetric holomorphic maps. Suppose that there

exists a real α ∈ (0, 1) and conjugate exponents p and q such that for every integer d ≥ 1 and all
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z1, . . . , zd ∈ U , it holds that

d∑
i=1

����Φ(Fd (z1, . . . , zd ))
∂Fd

∂zi
(z1, . . . , zd )

1

Φ(zi )

����p ≤ αp . (8)

Then, the following holds for any initial value u0 ∈ U and any finite tree T rooted at ρ.

Let C be a subset of the leaves of T and consider two arbitrary assignments σ1 : C → U and σ2 :
C → U . Then

|rρ (C,σ1,u0) − rρ (C,σ2,u0) | ≤
(M
L

) ( ∑
v ∈C

αq ·depth(v )

)1/q

,

where L := infx ∈U Φ(x ), M := maxv ∈C distΦ(σ1 (v ),σ2 (v )) and depth(v ) is the distance ofv from the

root ρ.

Proof. The proof is close to that of Sinclair et al. [18, Proof of Lemma 3], and the only difference
is we have to use the metric induced by Φ, which we denote distΦ(·, ·). In particular, for an arbitrary
vertex v in T , we use Cv to denote the subset of C that belongs to the subtree of T rooted at v .
Then, we will show that

(distΦ(x ,y))q ≤ Mq
∑

v ′ ∈Cv

αq (depth(v ′)−depth(v )), where x = rv (C,σ1,u0) and y = rv (C,σ2,u0). (9)

We show this by induction. When v is a leaf ofT and v � C , we have that x = y = u0 and (9) holds
trivially. When v ∈ C , then x = σ1 (v ), y = σ2 (v ) and Cv = {v}, so (9) holds by the definition of M .
For the inductive case, suppose that v neither is a leaf of T nor belongs to C and that (9) holds for
the children v1, . . . ,vd of v . For i ∈ [d], set xi = rvi

(C,σ1,u0), yi = rvi
(C,σ2,u0) and observe that

x = Fd (x1, . . . ,xd ), y = Fd (y1, . . . ,yd ).

By the inductive hypothesis, we also have that

(distΦ(xi ,yi ))q ≤ Mq
∑

v ′ ∈Cvi

αq (depth(v ′)−depth(vi )) .

From Lemma 3.2 and the assumption (8), we obtain that

distΦ(x ,y)q ≤ αq
d∑

i=1

distΦ(xi ,yi )q ≤ αq
d∑

i=1

Mq
∑

v ′ ∈Cvi

αq (depth(v ′)−depth(vi ))

= Mq
d∑

i=1

∑
u ∈Cvi

αq (depth(v ′)−depth(vi )+1) = Mq
∑

v ′ ∈Cv

αq (depth(v ′)−depth(v )),

proving (9). Notice that for any x ,y ∈ U , we have

distΦ(x ,y) =

∫ 1

0
Φ(η(t ))

���� ∂∂t η(t )
����dt ≥

∫ 1

0
L
���� ∂∂t η(t )

����dt ≥ L|x − y |.

The lemma follows from this and (9) (applied to v = ρ). �

3.2 Applying the Method for Matchings

Suppose that γ ∈ C \R≤0. We will parameterise γ as

γ = (1/Q )2, where we choose Q such that Re(Q ) > 0. (10)
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Note that, in the choice of Q , we used the assumption that γ is not a negative real number.4 LetH
be the right complex half-plane, i.e., the set of complex x such that Re(x ) > 0, and note thatQ ∈ H .
We will also transform the space in which the quantities pv (G,γ ) live using the map x 
→ x/Q . In
the transformed space, the recurrence (2) becomes

y = F (y1, . . . ,yd ), where F (y1, . . . ,yd ) =
1

Q +
∑d

i=1 yi

, (11)

where if y corresponds to a leaf, then y = 1/Q (we refer to this y as the initial y). Let

U = {y ∈ C | Re(y) > 0, |y | < 1/Re(Q )}. (12)

The following lemma shows that the set U is closed under application of the recurrence (11).

Lemma 3.4. Suppose that y1, . . . ,yd ∈ U and Re(Q ) > 0. Then, for y given by (11), we have that

y ∈ U as well. In fact, we have that Re(y) ≥ Re(Q )

( |Q |+ d
Re(Q ) )2

.

Proof. Since y1, . . . ,yd ∈ U , we have that Re(y1), . . . ,Re(yd ) > 0. Using that Re(Q ) > 0, we
have that Re(Q +

∑d
i=1 yi ) = Re(Q ) +

∑d
i=1 Re(yi ) > 0 and therefore Re(1/y) > 0. This yields that

Re(y) > 0. Moreover, using again that Re(y1), . . . ,Re(yd ) > 0 and Re(Q ) > 0, we have������Q +
d∑

i=1

yi

������ > Re(Q ), (13)

and hence |y | < 1/Re(Q ). It follows that y ∈ U .
To prove the stronger bound on Re(y), note by the triangle inequality that������Q +

d∑
i=1

yi

������ ≤ |Q | +
d∑

i=1

|yi | ≤ |Q | +
d

Re(Q )
,

and therefore

Re(y) = Re �� 1

Q +
∑d

i=1 yi

�� =
Re

(
Q +

∑d
i=1 yi

)
|Q +∑d

i=1 yi |2
≥ Re(Q )(
|Q | + d

Re(Q )

)2
. �

We next go on to show the required contraction properties for an appropriate function Φ. This
will largely be based on the following lemma from Sinclair et al. [17].

Lemma 3.5. Let Δ and γ̂ be positive real numbers. For x ∈ (0, 1], let Φ̂(x ) = 1
x (2−x ) . Let D =

max{Δ, 3
4γ̂
}, p = 1/(1 − 1√

1+4γ̂ D
) and q = p/(p − 1). Then, for arbitrary x1, . . . ,xd ∈ (0, 1], it holds

that [
Φ̂

(
1

1 + γ̂
∑d

i=1 xi

)]p d∑
i=1

[
1

Φ̂(xi )

γ̂

(1 + γ̂
∑d

j=1 xi )2

]p

≤ α̂p ,

where α̂ = 1
D1/q (1 − 2

1+
√

1+4γ̂ D
).

Proof. The lemma follows from the derivations of Sinclair et al. [17] as follows. Let
fd (x1, . . . ,xd ) = 1

1+γ̂
∑d

i=1 xi
as defined in Equation (2) of Sinclair et al. [17]. Then, Lemma 7 (see

4In other words, we choose real numbers a and b and set Q = a + ib . a and b are chosen so that γ = (1/Q )2, which implies
γ = 1/(a2 − b2 + 2aib ). We can ensure a > 0 by flipping the sign of b , but not if b = 0.
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also Definition 10) of Sinclair et al. [17] shows that the expression

Φ̂( fd (x1, . . . ,xd ))p
d∑

i=1

(
1

Φ̂(xi )

�����∂ fd∂xi

�����
)p

= Φ̂ �� 1

1 + γ̂
∑d

i=1 xi

��
p d∑

i=1

⎡⎢⎢⎢⎢⎣ 1

Φ̂(xi )

γ̂

(1 + γ̂
∑d

j=1 x j )2

⎤⎥⎥⎥⎥⎦
p

, (14)

constrained to fd (x1, . . . ,xd ) = B for any fixed B > 0, is maximized for x1 = x2 · · · = x
d̂
=: x and

x j = 0 for j > d , for some d̂ ≤ d .
Then, (14) can be bounded from above by

Φ̂ �� 1

1 + d̂γ̂x
��

p

d̂
⎡⎢⎢⎢⎢⎣ 1

Φ̂(x )

γ̂

(1 + γ̂ d̂x )2

⎤⎥⎥⎥⎥⎦
p

= Φ̂ �� 1

1 + d̂γ̂x
��

p

d̂
⎡⎢⎢⎢⎢⎣ 1

d̂

1

Φ̂(x )

d̂γ̂

(1 + γ̂ d̂x )2

⎤⎥⎥⎥⎥⎦
p

= Φ̂
(
f
d̂

(x )
)p

d̂

[
1

d̂

1

Φ̂(x )
| f ′

d̂
(x ) |

]p

,

(15)

where the univariate f
d̂

(x ) := 1
1+d̂γ̂ x

. From Lemma 9 (see also Definition 11) of Sinclair et al. [17],

we get that for all x ,

1

d̂

⎡⎢⎢⎢⎢⎣Φ̂( f
d̂

(x ))
| f ′

d̂
(x ) |

Φ̂(x )

⎤⎥⎥⎥⎥⎦
q

≤ 1

D
��1 − 2

1 +
√

1 + 4γ̂D
��

q

,

where the left-hand side is maximized for d̂ = D. So,⎡⎢⎢⎢⎢⎣Φ̂( f
d̂

(x ))
| f ′

d̂
(x ) |

Φ̂(x )

⎤⎥⎥⎥⎥⎦
q

≤ d̂

D
��1 − 2

1 +
√

1 + 4γ̂D
��

q

,

and therefore,

Φ̂( f
d̂

(x ))
| f ′

d̂
(x ) |

Φ̂(x )
≤ �� d̂D ��

1/q ��1 − 2

1 +
√

1 + 4γ̂D
�� .

Plugging this bound and the bound obtained in (15) into the expression from the lemma, we get[
Φ̂

(
1

1 + γ̂
∑d

i=1 xi

)]p d∑
i=1

[
1

Φ̂(xi )

γ̂

(1 + γ̂
∑d

j=1 xi )2

]p

≤ Φ̂( f
d̂

(x ))pd̂

[
1

d̂

1

Φ̂(x )
| f ′

d̂
(x ) |

]p

= d̂1−p

[
Φ̂( f

d̂
(x ))

1

Φ̂(x )
| f ′

d̂
(x ) |

]p

≤ d̂1−p �� d̂D ��
p/q ��1 − 2

1 +
√

1 + 4γ̂D
��

p

.

(16)

It remains to prove that the right-hand side is equal to α̂p , which will finish the proof. To see this,
we use 1/p + 1/q = 1:

α̂p = �� 1

D1/q
��1 − 2

1 +
√

1 + 4γ̂D
����

p

=
1

Dp/q
��d̂ (1/p+1/q−1) ��1 − 2

1 +
√

1 + 4γ̂D
����

p

=
d̂ (1−p+p/q )

Dp/q
��1 − 2

1 +
√

1 + 4γ̂D
��

p

,

which is equivalent to the right-hand side of (16). �

Using Lemma 3.5, we can obtain the following in the complex plane.

Lemma 3.6. Let Δ be a positive real number, γ ∈ C \R<0, and letQ,U be given from (10) and (12),

respectively. Consider the function Φ : U 
→ R>0 given by Φ(y) = 1
Re(y )(2/Re(Q )−Re(y )) , and let

γ̂ =
2 |γ |

1 + cos(argγ )
, D = max

{
Δ,

3

4γ̂

}
, p = 1/ ��1 − 1√

1 + 4γ̂ D
�� , q =

p

p − 1
, α =

1

D1/q

(
1 − 2

1 +
√

1 + 4γ̂ D

)
. (17)
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Then, the following holds for all integer d ≥ 1.

Consider the map F : U d 
→ U given by F (y1, . . . ,yd ) = 1
Q+

∑d
i=1 yi

. Then, for arbitraryy1, . . . ,yd ∈
U , we have

d∑
i=1

����Φ(F (y1, . . . ,yd ))
∂F

∂yi
(y1, . . . ,yd )

1

Φ(yi )

����p ≤ αp . (18)

Proof. Note that ∂F (y1, . . . ,yd )/∂yi = −F (y1, . . . ,yd )2 and Φ(y) = 1
|y |2Re(1/y )( 2

Re(Q ) −Re(y ))
, so we

obtain that (18) is equivalent to

1(
Re

(
Q +

∑d
i=1 yi

) (
2

Re(Q ) − Re
(

1
Q+

∑d
i=1 yi

)) )p

d∑
i=1

[
Re(yi )

( 2

Re(Q )
− Re(yi )

)]p

≤ αp . (19)

We have Re(1/z) ≤ 1/Re(z), and therefore

2

Re(Q )
− Re

(
1

Q +
∑d

i=1 yi

)
≥ 2

Re(Q )
− 1

Re
(
Q +

∑d
i=1 yi

) > 0,

where the last inequality follows from the fact that y1, . . . ,yd ∈ H . Thus, (19) will follow from

1(
Re

(
Q +

∑d
i=1 yi

) (
2

Re(Q ) −
1

Re(Q+
∑d

i=1 yi )

))p

d∑
i=1

[
Re(yi )

( 2

Re(Q )
− Re(yi )

)]p

≤ αp . (20)

For γ̂ = 2 |γ |
1+cos(argγ ) =

|γ |
cos2 ( 1

2 argγ )
, we have that γ̂ = 1/(Re(Q ))2. We will show below that (20) is an

immediate consequence of Lemma 3.5 applied to xi = Re(Q )Re(yi ) and γ̂ = 1/(Re(Q ))2. First note
that x1, . . . ,xd ∈ (0, 1] since y1, . . . ,yd ∈ U , so Lemma 3.5 indeed applies, showing

d∑
i=1

[
Φ̂

(
1

1 + γ̂
∑d

i=1 xi

) (
γ̂

Φ̂(xi )

) (
1

(1 + γ̂
∑d

i=1 xi )2

)]p

≤ αp ,

where Φ̂(x ) = 1
x (2−x ) so Φ̂(1/x ) = x2/(2x − 1). Using Y to denote

∑d
i=1 Re(yi ) so that γ̂

∑d
i=1 xi =

Y/Re(Q ) and substituting in the values of xi and γ̂ , this is

d∑
i=1

[(
(1 + Y/Re(Q ))2

2(1 + Y/Re(Q )) − 1

) (
Re(yi ) (2 − Re(Q )Re(yi ))

Re(Q )

) (
1

(1 + Y/Re(Q ))2

)]p

≤ αp .

Cancelling terms and moving the sum inside, this is[
1

2(1 + Y/Re(Q )) − 1

]p d∑
i=1

[(
Re(yi ) (2 − Re(Q )Re(yi ))

Re(Q )

)]p

≤ αp .

To see that this is equivalent to (20), we need only show that the part outside of the sum is the
same, e.g.,

2(1 + Y/Re(Q )) − 1 = Re(Q + Y )
( 2

Re(Q )
− 1

Re (Q + Y )

)
.

This follows easily since Re(Q + Y ) = Re(Q ) + Y . �
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3.3 Concluding the Proof of Theorem 1.5

Theorem 1.5. Let Δ, a and c be positive real numbers, and let γ ∈ C \R<0 be any fixed edge

activity. Then there is an algorithm which takes as input an n-vertex graphG ∈ FΔ,a,c and a rational

ϵ ∈ (0, 1) and produces an output Ẑ = ZG (γ )ez for some complex number z with |z | ≤ ϵ . The running

time of the algorithm is (ĉn/ϵ )O ((1+a+
√
|γ̂ |Δ) log Δ) , where γ̂ =

2 |γ |
1+cos(argγ ) and ĉ = max{1, c}.

Proof of Theorem 1.5. If γ is a non-negative real number, then the result follows from Sinclair
et al. [17, Theorem 1.3]. So we focus on the case where γ is not real.

Using the telescoping expansion of ZG (γ ) described in (1), it suffices to give an algo-
rithm that on an input graph G ∈ FΔ,a,c , a vertex v in G and rational δ > 0 outputs in time

(ĉn/δ )O ((1+a+
√
|γ̂ |Δ) log Δ) a quantity p̃ which satisfies p̃ = pv (G,γ )ez for some complex number z

with |z | ≤ δ .
Let D,p,q,α be the remaining constants in Lemma 3.6 (other than γ̂ ), i.e.,

D = max

{
Δ,

3

4γ̂

}
, p =

1

1 − 1√
1+4γ̂ D

, q =
p

p − 1
, α =

1

D1/q

(
1 − 2

1 +
√

1 + 4γ̂D

)
. (17)

We will also use the parameterisation of Section 3.2. Namely, as in (10) and (12), we will set

γ = (1/Q )2 and U = {y ∈ C | Re(y) > 0, |y | < 1/Re(Q )},

where Q is chosen so that Re(Q ) > 0. Define also the constants

u0 := 1/Q, L :=
1

2
(Re(Q ))2 and M :=

2

Re(Q )

(
|Q | + n

Re(Q )

)2
. (21)

Note that u0 ∈ U , since γ is not real.
LetT = TSAW (v,G ) be the self-avoiding walk tree rooted atv , then by Theorem 2.3 we have that

pv (G,γ ) = pv (T ,γ ), so it suffices to approximate pv (T ,γ ). Let C be the set of vertices in T which
are at distance � from v , where � is the smallest integer satisfying

� ≥ a logn and
M

L
ĉ1/q (Δ1/qα )� ≤ Re(Q )

2
(
|Q | + n

Re(Q )

)2
δ . (22)

Note that such an � exists since Δ1/qα < 1 and, in fact, � = O (log(n/δ )). LetT ′ be the subtree ofT
obtained by deleting the descendants of C (excluding vertices in C). We will show that

pv (T ′,γ ) = pv (T ,γ )ez for some |z | ≤ δ . (23)

From this, it follows that we can just output p̃ = pv (T ′,γ ) as an approximation to pv (G,γ ) =
pv (T ,γ ). Since G ∈ FΔ,a,c and � ≥ a logn, we have that T ′ is a tree with at most cΔ� vertices,

and hence we can compute pv (T ′,γ ) in time (ĉn/δ )O ((1+a+
√
|γ̂ |Δ) log Δ) .

It therefore remains to prove (23). For a graph H and a vertex w, we define p̂w (H ,γ ) by

p̂w (H ,γ ) = pw (H ,γ )/Q .

Let {Fd }d ≥1 be the sequence of maps corresponding to recurrence in (11), i.e., for integer d ≥ 1 and
y1, . . . ,yd ∈ U ,

Fd (y1, . . . ,yd ) =
1

Q +
∑d

i=1 yi

.
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For a vertex w in T ′ and an assignment σ : C → U , we define the quantity rw (·, ·, ·)

rw (C,σ ,u0) =
⎧⎪⎪⎨⎪⎪⎩
u0 if w is a leaf of T ′ that is not in C
σ (v ) if w ∈ C
Fd (x1, . . . ,xd ) where w1, . . . ,wd are w ’s children in T ′ and xi = rwi

(C,σ ,u0).
(24)

Let σ1,σ2 be assignments on C such that

for all w ∈ C , σ1 (w ) = u0 and σ2 (w ) = p̂w (Tw ,γ ),

where Tw denotes the subtree of T induced by the descendants of w (including w). Note that

p̂v (T ′,γ ) = rv (C,σ1,u0), p̂v (T ,γ ) = rv (C,σ2,u0). (25)

Moreover, by Lemma 3.6, we have that the family of maps {Fd }d ≥1 and the function Φ : U → R>0

given by Φ(y) = 1
Re(y )

(
2

Re(Q ) −Re(y )
) satisfy the hypotheses of Lemma 3.3. We will also show shortly

that the constants L,M defined in (21) satisfy

L ≤ inf
x ∈U

Φ(x ) and M ≥ max
w ∈C

distΦ(σ1 (w ),σ2 (w )), (26)

where distΦ(σ1 (w ),σ2 (w )) is the metric corresponding to Φ (cf. Definition 3.1). Let us assume (26)
for the moment and conclude the proof of the theorem. Applying the conclusion of Lemma 3.3 to
the tree T ′, we obtain that

|rv (C,σ1,u0) − rv (C,σ2,u0) | ≤ M

L
��
∑
w ∈C

αq ·depth(w )��
1/q

=
M

L
|C |1/qα � ≤ M

L
c1/q (Δ1/qα )�

≤ Re(Q )

2
(
|Q | + n

Re(Q )

)2
δ ,

(27)

where we used that G ∈ FΔ,a,c and the choice of � in (22). To prove (26), note that for y ∈ U , we
have that Re(y) ≤ |y | ≤ 1

Re(Q ) and hence, using also the fact that Re(y) > 0, it follows that

inf
y∈U

Φ(y) = inf
y∈U

1

Re(y)
(

2
Re(Q ) − Re(y)

) ≥ 1

2
(Re(Q )2) = L.

To prove the bound on M in (26), let us consider arbitrary w ∈ C; we will show that

distΦ(σ1 (w ),σ2 (w )) ≤ M .

We have σ1 (w ) = u0 ∈ U and

Re(σ1 (w )) = Re(u0) = Re(1/Q ) = Re(Q )/|Q |2.

For σ2 (w ), letw1, . . . ,wd be the children ofw in the treeT and note that d ≤ n. Setyi = p̂wi
(Twi
,γ )

so that y1, . . . ,yd ∈ U and σ2 (w ) = F (y1, . . . ,yd ). It follows from Lemma 3.4 that σ2 (w ) ∈ U and

Re(σ2 (w )) ≥ Re(Q )(
|Q | + d

Re(Q )

)2
≥ Re(Q )(
|Q | + n

Re(Q )

)2
.

Consider a path η given by η(t ) = (1 − t )σ1 (w ) + tσ2 (w ) for t ∈ [0, 1]. Then, for all t ∈ [0, 1], we
have that

Re(η(t )) ≥ min{|Re(σ1 (w )) |, |Re(σ2 (w )) |} ≥ Re(Q )(
|Q | + n

Re(Q )

)2
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and hence

Φ(η(t )) =
1

Re(η(t ))
(

2
Re(Q ) − Re(η(t ))

) ≤ (
|Q | + n

Re(Q )

)2
.

It follows that

distΦ(σ1 (w ),σ2 (w )) ≤
∫ 1

0
Φ(η(t ))

���� ∂∂t η(t )
����dt ≤ (

|Q | + n

Re(Q )

)2���σ1 (w ) − σ2 (w )���
≤ 2

Re(Q )

(
|Q | + n

Re(Q )

)2
,

where the last inequality is obtained from the triangle inequality and σ1 (w ),σ2 (w ) ∈ U . This fin-
ishes the proof of (26).

Now, from Lemma 3.4, we have that |rv (C,σ2,u0) | ≥ Re(rv (C,σ2,u0)) ≥ Re(Q )
( |Q |+ n

Re(Q ) )2 , and there-

fore (27) combined with (25) gives that

|pv (T ,γ ) − pv (T ′,γ ) |
|pv (T ,γ ) | ≤ δ/2.

This yields (23), therefore completing the proof of Theorem 1.5. �

4 PROOF OF THEOREMS 1.1 AND 1.2 (BOUNDED DEGREE)

4.1 Implementing Edge Activities

Let G = (V ,E) be a graph and u,v ∈ V . Analogously to the notation ZG,u (γ ) and ZG,¬u (γ ) of Sec-
tion 2, we will denote

ZG,u,v (γ ) :=
∑

M ∈MG ; u,v ∈ver(M )

γ |M |, ZG,u,¬v (γ ) :=
∑

M ∈MG ; u ∈ver(M ),v�ver(M )

γ |M |,

ZG,¬u,¬v (γ ) :=
∑

M ∈MG ; u,v�ver(M )

γ |M |, ZG,¬u,v (γ ) :=
∑

M ∈MG ; u�ver(M ),v ∈ver(M )

γ |M | .

Thus, ZG,u,v (γ ) is the contribution to the partition function ZG (γ ) from those matchings M ∈ MG

such that both u,v are matched in M , whereas ZG,¬u,¬v (γ ) is the contribution to the partition
function ZG (γ ) from those matchings M ∈ MG such that neither of u,v are matched in M .

Definition 4.1. Fix a real number γ . Given γ , the graph G = (V ,E) is said to implement the edge
activity γ ′ ∈ R with accuracy ϵ > 0 if there are vertices u, v in G such that ZG,¬u,¬v (γ ) � 0 and

(1) u,v have degree 1 in G and (u,v ) � E,

(2)
���� ZG,u,¬v (γ )

ZG,¬u,¬v (γ )

���� ≤ ϵ ,
���� ZG,¬u,v (γ )

ZG,¬u,¬v (γ )

���� ≤ ϵ ,

(3)
���� ZG,u,v (γ )

ZG,¬u,¬v (γ )
− γ ′

���� ≤ ϵ .

We call u,v the terminals of G. If both of Items (2) and (3) hold with ϵ = 0, we say that G
implements the edge activity γ ′ (perfectly).

Definition 4.2. Let α be a rational number and write α = p/q, where p,q are integers such that
gcd(p,q) = 1. Then, the size of α , denoted by size(α ), is given by 1 + log( |p | + |q |). For α1, . . . ,αt ∈
Q, we denote by size(α1, . . . ,αt ) the total of the sizes of α1, . . . ,αt .

For a multivariate polynomial P (x1, . . . ,xn ) of degree d with rational coefficients α1, . . . ,αt , we
let size(P ) be d + size(α1, . . . ,αt ).

Lemma 4.3. Let Δ ≥ 3 be an integer and γ < − 1
4(Δ−1) be a rational number.
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There is an algorithm which, on input rational γ ′ ≤ 0 and ϵ > 0, outputs in poly (size(γ ′, ϵ )) time

a bipartite graph G of maximum degree at most Δ with terminals u,v in the same part of the vertex

partition of G so that G implements γ ′ with accuracy ϵ .

4.2 Proof of Main Hardness Results

In this section, assuming our key Lemma 4.3 (which will be proved in Section 5), we complete
the proof of Theorems 1.1 and 1.2. To capture the restriction on the input graph G within those
theorems and also for easy reference within the proofs, it will be convenient to define the following
computational problems which capture the problems of multiplicatively approximating the norm
of ZG (γ ) and determining the sign of ZG (γ ):

Name #NormMatchings(γ ,Δ,K ).
Instance A bipartite graph G with maximum degree at most Δ.
Output If ZG (γ ) = 0, then the algorithm may output any rational number. Otherwise, it must

output a rational number N̂ such that N̂ /K ≤ |ZG (γ ) | ≤ KN̂ .

Name SignMatchings(γ ,Δ).
Instance A bipartite graph G with maximum degree at most Δ.
Output If ZG (γ ) = 0, then the output may be either + or −. Otherwise, the output is

sign(ZG (γ )).

Using this language, we restate Theorems 1.1 and 1.2, which we focus on proving next.

Theorem 1.1. Let Δ ≥ 3 and γ < − 1
4(Δ−1) be a rational number. Then, #NormMatchings

(γ ,Δ, 1.01) is #P-hard.

Theorem 1.2. Let Δ ≥ 3 and γ < − 1
4(Δ−1) be a rational number. Then, SignMatchings(γ ,Δ) is

#P-hard.

Proof of Theorems 1.1 and 1.2. Letγ0 = −1/10 and G be the set of graphs of maximum degree
3. It is well-known [6, Theorem 3] that the problem of computing ZG (γ0) on input a graph G ∈ G
is #P-hard. Moreover, by Corollary 2.2 we have that ZG (γ0) > 0 for all graphs G ∈ G.

Using an oracle for either #NormMatchings(γ ,Δ, 1.01) or SignMatchings(γ ,Δ), we will design

a polynomial time algorithm to compute the ratio ZG (γ0 )
ZG−e∗ (γ0 ) for an arbitrary graph G ∈ G and an

arbitrary edge e∗ ofG; note that this ratio is well defined since ZG−e∗ (γ0) > 0. With such a subrou-
tine at hand, it is standard to compute ZG (γ0) using self-reducibility techniques,5 which therefore
proves that #NormMatchings(γ ,Δ,K ) and SignMatchings(γ ,Δ) are both #P-hard.

Let G = (V ,E) be an arbitrary graph of maximum degree 3 with |V | = n and |E | =m. Let also

e∗ = (u∗,v∗) be an arbitrary edge of G. Our goal is to compute ZG (γ0 )
ZG−e∗ (γ0 ) . To do this, let

α = ZG\{u∗,v∗ } (γ0), β = ZG−e∗ (γ0)

and note that
ZG (γ0)

ZG−e∗ (γ0)
=
γ0ZG\{u∗,v∗ } (γ0) + ZG−e∗ (γ0)

ZG−e∗ (γ0)
= γ0

α

β
+ 1,

so it suffices to compute Rgoal := − β

α
. Note that Rgoal is a (well-defined) negative number since

both α = ZG\{u∗,v∗ } (γ0) and β = ZG−e∗ (γ0) are positive. Moreover, since γ0 = −1/10 and each of
the graphs G − e∗ and G\{u∗,v∗} have at most m ≤ 2n edges, we have that α = P/102n and

5Namely, let e1, e2, . . . , em be an enumeration of the edges of G, and let Gi be the graph where the edges ei , . . . , em

are deleted (note that Gm+1 = G and G1 is the empty graph). Then, we have that ZG (γ0) =
∏m

i=1

ZGi+1 (γ0 )

ZGi
(γ0 ) .
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β = Q/102n for some integers P ,Q satisfying the crude bounds 1 ≤ P ,Q ≤ 202n . It follows that
Rgoal ∈ R0, where

R0 :=
{
− p/q | 0 ≤ p,q ≤ 202n ,q � 0

}
.

Let N := 103n, L0 := −202n and U0 := 0. For i = 1, . . . ,N , we will show a recursive procedure to
compute rationals Li ,Ui such that

Rgoal ∈ [Li ,Ui ], |Ui − Li | ≤
7

8
|Ui−1 − Li−1 |, Li ,Ui ∈ Ri :=

{
− p/q | 0 ≤ p,q ≤ 8i 202n ,q � 0

}
.

(28)
Observe that any two distinct rationals in R0 differ6 by at least 1/4002n . Since UN − LN ≤
(7/8)N 202n < 1/4002n , it follows that using the values of LN ,UN , we can in fact figure out the
exact value of Rgoal in poly (n) time (see [5, Footnote 8]).

Let ϵ ′ := 1/208(n+N ) . For a number R ∈ RN , letGR be the graph obtained as follows. First, using
the algorithm in Lemma 4.3, we construct in poly (n) time a bipartite graph H0 of maximum degree
Δ with terminalsu0 andv0 (in the same part of the vertex partition) which implements the activity
γ0 = −1/10 with accuracy ϵ = ϵ ′

54n max{ |γ0 |, |R | } . Similarly, we also construct inpoly (n) time a bipartite

graph H1 of maximum degree Δ with terminals u1 and v1 (in the same part of the vertex partition)
which implements the activity R with accuracy ϵ . For every edge e ∈ E such that e � e∗, let H (e )

be a copy of H0 and set γ (e ) = γ0. For e = e∗, let H (e ) be a copy of H1 and set γ (e ) = R. For e ∈ E,
we also denote by u (e ) and v (e ) the terminals of H (e ) and set7

x (e )
R

(1, 1) = ZH (e ),u (e ),v (e ) (γ ), x (e )
R

(0, 0) = ZH (e ),¬u (e ),¬v (e ) (γ ),

x (e )
R

(1, 0) = ZH (e ),u (e ),¬v (e ) (γ ), x (e )
R

(0, 1) = ZH (e ),¬u (e ),v (e ) (γ ).

Note that for all e ∈ E, we have that

x (e )
R

(0, 0) � 0,
������
x (e )

R
(1, 0)

x (e )
R

(0, 0)

������ ≤ ϵ,
������
x (e )

R
(0, 1)

x (e )
R

(0, 0)

������ ≤ ϵ, and
�����x

(e )
R

(1, 1)

x (e )
R

(0, 0)
− γ (e )

����� ≤ ϵ . (29)

Let GR be the bipartite graph obtained from G by replacing every edge e ∈ E with the graph H (e )

and identifying the endpoints of e with the terminals u (e ) and v (e ) (bipartiteness of GR follows
from the fact that u (e ) and v (e ) lie in the same part of the vertex partition of H (e )). In addition, let
TR be the bipartite graph obtained from G by replacing every edge e ∈ E with the graph H (e ) and
deleting the terminals u (e ) and v (e ) (so TR is a disjoint union of copies of H0 and H1 with all the
terminal vertices deleted). We have that

ZTR
(γ ) =

∏
e ∈E

x (e )
R

(0, 0) � 0. (30)

We will also show that

|αR + β − fR | ≤ ϵ ′, where fR :=
ZGR

(γ )

ZTR
(γ )
. (31)

Assuming (31) for the moment, we first conclude the reductions for #NormMatchings(γ ,Δ, 1.01)
and SignMatchings(γ ,Δ) using the binary search technique of Goldberg and Guo [9]. Note that

6Suppose that α = p/q and α ′ = p′/q′ are distinct rationals, where p, q, p′, q′ are integers whose absolute values are all

less than M for some M > 0. Then, we have that |α − α ′ | = |pq′−qp′ |
|qq′ | ≥ 1/M2 since pq′ − qp′ is an integer distinct from

zero.
7Note that x

(e )
R

( ·, ·) depends on H (e ) , which in turn depends on R (via the choice of ϵ ). The reason we explicitly note the

dependence on R but not on H (e ) is for convenience.
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if R1,R2 are distinct numbers in RN with R1 > R2, then we have from footnote 6 that R1 − R2 ≥
1/(82N 204n ) and therefore

fR1 − fR2 ≥ α (R1 − R2) − 2ϵ ′ ≥ 1/(82N 204n202n ) − 2ϵ ′ ≥ 2ϵ ′ > 0. (32)

From (31) with R = Rgoal, we obtain that | fRgoal | ≤ ϵ ′ and therefore, using also (32),

for R ∈ RN , it holds that fR > 0 if R > Rgoal and fR < 0 if R < Rgoal. (33)

#P-hardness of #NormMatchings(γ, Δ, 1.01): Assume that for some i ∈ {1 . . . ,N } we have
computed Li−1,Ui−1 ∈ Ri−1 such that Rgoal ∈ [Li−1,Ui−1]. We will show how to compute Li ,Ui

satisfying (28).
Let � := (Ui−1 − Li−1)/8. For j = 0, . . . , 8, letR j = Li−1 + j� so thatR0 = Li−1 andR8 = Ui−1. Using

the oracle to #NormMatchings(γ ,Δ, 1.01) on inputs TRj
and GRj

(note that ZTRj
(γ ) � 0 from (30)

and ZGRj
(γ ) � 0, unless perhaps in the case where R j = Rgoal which can happen for at most one

index j), we can estimate the partition functions ZGRj
(γ ) and ZTRj

(γ ) within a factor of 1.01 and

therefore we can compute f̂Rj
such that

(1 − η) | fRj
| ≤ | f̂Rj

| ≤ (1 + η) | fRj
| where η := 0.05. (34)

Suppose that j ∈ {0, 1, . . . , 7} is an index such that Rgoal < R j . Then, we have that αR j+1 + β >
αR j + β > 0, so using (34) and (31) we obtain that

| f̂Rj+1 | − | f̂Rj
| ≥ (1 − η) | fRj+1 | − (1 + η) | fRj

|
≥ (1 − η) (αR j+1 + β − ϵ ′) − (1 + η) (αR j + β + ϵ

′)

= α (R j+1 − R j ) − η
(
α (R j+1 + R j ) + 2β

)
− 2ϵ ′

= α
(
R j+1 − R j − η(R j+1 + R j − 2Rgoal)

)
− 2ϵ ′

≥ α
(
� − 16η�

)
− 2ϵ ′ ≥ α�/10 − 2ϵ ′ > 0,

where the second equality follows from the fact αRgoal + β = 0 and the last inequality follows

from α ≥ 1/102n , � ≥ 1/82(N+1)204n and ϵ ′ = 1/208(n+N ) . An analogous calculation shows that if
j ∈ {1, . . . , 8} is an index such that R j < Rgoal, then | f̂Rj−1 | > | f̂Rj

|. Therefore, at least one of the

following series of inequalities holds: either | f̂R0 | > | f̂R1 | > | f̂R2 | > | f̂R3 | or | f̂R5 | < | f̂R6 | < | f̂R7 | <
| f̂R8 | (or both). In the first case, we can be sure that Rgoal � [R0,R1] (since Rgoal < R2 would imply

| f̂R3 | > | f̂R2 |), and therefore we can set Li = R1,Ui = R8. In the second case, we can be sure that

Rgoal � [R7,R8] (since R6 < Rgoal would imply | f̂R5 | > | f̂R6 |), and therefore we can set Li = R0,Ui =

R7. In both cases, we have that Li ,Ui satisfy (28) as wanted.
#P-hardness of SignMatchings(γ, Δ): This is analogous to the previous reduction, only easier

(so essentially the binary search follows the simpler method of Goldberg and Jerrum [10]). Follow-
ing the preceding setting, to compute Li ,Ui we use the oracle to SignMatchings(γ ,Δ) on inputs
TRj

and GRj
to decide whether fRj

> 0 (as noted before, ZTRj
(γ ) � 0 from (30) and ZGRj

(γ ) = 0

is possible for at most one index j). Using (33), we obtain that either f̂R0 , f̂R1 , f̂R2 , f̂R3 < 0 or

f̂R5 , f̂R6 , f̂R7 , f̂R8 > 0 (or both). In the former case, we can then set Li = R1,Ui = R8, and in the latter
case, we can set Li = R0,Ui = R7; in both cases, we have that Li ,Ui satisfy (28).

6Suppose that α = p/q and α ′ = p′/q′ are distinct rationals, where p, q, p′, q′ are integers whose absolute values are all

less than M for some M > 0. Then, we have that |α − α ′ | = |pq′−qp′ |
|qq′ | ≥ 1/M2 since pq′ − qp′ is an integer distinct from

zero.
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To finish the proof, it remains to establish (31). We will need some definitions. For a matching
MR ofGR , the phase of the matching MR , denoted byY (MR ), is a 0-1 vector indexed by pairs (e,v )
such that e is an edge ofG and v is an endpoint of e; we set the (e,v ) entry ofY (MR ) equal to 1 if
v is matched in the matching MR by edges in the gadget H (e ) .

Let P be the set consisting of all phases, i.e. the values ofY (MR ) asMR ranges over matchings of
GR . For a vertexv ∈ V , denote bydv its degree inG. Note that |P | =∏

v ∈V (dv + 1) ≤ 4n , since each
vertex v of G can be either unmatched or matched in exactly one of the gadgets H (e1 ), . . . ,H (edv ) ,
where e1, . . . , edv

are the edges incident to v . Fix a possible phase Y ∈ P and let ΩY be the set of
matchings MR of GR such that Y (MR ) = Y . The aggregate weight of matchings in ΩY is given by∏

e=(u,v )∈E

x (e )
R

(Y(e,u ),Y(e,v ) ) =:WY .

Let P1 be the set of Y ∈ P such that, for some edge ê = (û, v̂ ) ∈ E, we have Y(ê,û ) � Y(ê,v̂ ) . Let
P2 = P \ P1. We next consider cases, depending on whether Y ∈ P1 or Y ∈ P2:

(1) Suppose Y ∈ P1: Let ê = (û, v̂ ) be an edge in E such that Y(ê,û ) � Y(ê,v̂ ) . In this case, using
(29) and |γ (e ) | − ϵ ≥ ϵ and (hence) |γ (e ) | + ϵ ≤ 2|γ (e ) |, we obtain that

|WY |∏
e ∈E x

(e )
R

(0, 0)
≤ ϵ

∏
e ∈E ;e�ê

( |γ (e ) | + ϵ ) ≤ 2mϵ
∏

e ∈E ;e�ê

|γ (e ) |

≤ 2mϵ |γ0 |m−2 max{|γ0 |, |R |} ≤ ϵ ′/5n . (35)

(2) Suppose Y ∈ P2: Let M be a subset of edges of G such that e ∈ M iff Y(e,u ) = Y(e,v ) = 1.

Since Y ∈ P2, M is a matching. If e∗ � M, then using that |a
n−bn |
|a−b | = |

∑n−1
k=0 a

kbn−1−k | ≤
n max{|a |n−1, |b |n−1} for distinct real numbers a,b, we obtain using (29) that������ WY∏

e ∈E x
(e )
R

(0, 0)
− (γ0) |M |

������ =
������
∏
e ∈M

x (e )
R

(1, 1)

x (e )
R

(0, 0)
− (γ0) |M |

������
≤ max

{����(γ0 + ϵ ) |M | − γ |M |0

����, ����(γ0 − ϵ ) |M | − γ |M |0

����}
≤ ϵ |M |(2|γ0 |) |M |−1 ≤ ϵ ′/5n . (36)

An analogous calculation shows that if e∗ ∈ M, then withA :=
∏

e ∈M ;e�e∗
x

(e )
R

(1,1)

x
(e )
R

(0,0)
, we have

that |A − (γ0) |M |−1 | ≤ ϵ |M |(2|γ0 |) |M |−2 and therefore������ WY∏
e ∈E x

(e )
R

(0, 0)
− (γ0) |M |−1R

������ =
������A
x (e∗ )

R
(1, 1)

x (e∗ )
R

(0, 0)
− (γ0) |M |−1R

������
=

������A ��
x (e∗ )

R
(1, 1)

x (e∗ )
R

(0, 0)
− R�� + R

(
A − (γ0) |M |−1

) ������
≤ ϵ (2|γ0 |) |M |−1 + ϵ |M | |R |(2|γ0 |) |M |−2 ≤ ϵ ′/5n . (37)

Note that

fR =

∑
Y ∈PWY∏

e ∈E x
(e )
R

(0, 0)

and ∑
M ∈MG ;e∗ ∈M

(γ0) |M |−1 = ZG\{u∗,v∗ } (γ0) = α and
∑

M ∈MG ;e∗�M

(γ0) |M | = ZG−e∗ (γ0) = β .
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So (31) is equivalent to�������R
∑

M ∈MG ;e∗ ∈M

(γ0) |M |−1 +
∑

M ∈MG ;e∗�M

(γ0) |M | −
∑

Y ∈P1
WY∏

e ∈E x
(e )
R

(0, 0)
−

∑
Y ∈P2

WY∏
e ∈E x

(e )
R

(0, 0)

������� ≤ ϵ ′.

Applying the triangle inequality and (37), the left-hand-side is at most

∑
Y ∈P1

ϵ ′/5n +

�������R
∑

M ∈MG ;e∗ ∈M

(γ0) |M |−1 +
∑

M ∈MG ;e∗�M

(γ0) |M | −
∑

Y ∈P2
WY∏

e ∈E x
(e )
R

(0, 0)

������� .
Using once more the triangle inequality, now in combination with (36) and (37), we obtain that the
left-hand-side is at most

∑
Y ∈P1

ϵ ′/5n +
∑

Y ∈P2
ϵ ′/5n ≤ ϵ . This proves (31), therefore concluding

the proofs of Theorems 1.1 and 1.2. �

5 PROOF OF LEMMA 4.3—IMPLEMENTING EDGE ACTIVITIES

5.1 Approximating the Values of Polynomials

Lemma 5.1. Let P (x1, . . . ,xn ) be a multivariate polynomial with rational coefficients. Then, there is

an algorithm which takes as input P and rational numbers {ai }i=1, ...,n and ϵ > 0, and outputs in time

poly (size(P ), size(a1, . . . ,an , ϵ )) a rational number ϵ ′ > 0 such that for all real numbers b1, . . . ,bn

satisfying

|b1 − a1 |, . . . , |bn − an | ≤ ϵ ′,

it holds that ���P (b1, . . . ,bn ) − P (a1, . . . ,an )��� ≤ ϵ .

Proof. Suppose that P (x1, . . . ,xn ) =
∑m

j=1 c j
∏n

i=1 x
di, j

i where the c j ’s are non-zero rational
numbers and the di, j ’s are non-negative integers. In time poly (size(P ), size(a1, . . . ,an , ϵ )), we
can compute a rational ϵ ′ > 0 satisfying the following inequalities for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . ,n}:

ϵ ′ ≤ |ai |, ϵ ′di, j 2
di, j−1 ≤ |ai |, (38)

ϵ ′di, j (2|ai |)di, j−1
∏
k<i

|ak |dk, j

∏
k>i

(
2|ak |dk, j

)
≤ ϵ/(mn |c j |). (39)

Now let b1, . . . ,bn be arbitrary reals such that |bi − ai | ≤ ϵ ′ for all i = 1, . . . ,n, we will show that
|P (b1, . . . ,bn ) − P (a1, . . . ,an ) | ≤ ϵ .

We first show that for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, it holds that���adi, j

i − bdi, j

i
��� ≤ ϵ ′di, j (2|ai |)di, j−1. (40)

This is clear if di, j = 0; if di, j is a strictly positive integer, then we have

���adi, j

i − bdi, j

i
��� = |ai − bi | ·

�������
di, j−1∑
k=0

ak
i b

di, j−1−k

i

������� ≤ ϵ ′
di, j−1∑

k=0

|ai |k |bi |di, j−1−k

≤ ϵ ′
di, j−1∑
k=0

|ai |k ( |ai | + ϵ ′)di, j−1−k ≤ ϵ ′
di, j−1∑

k=0

|ai |k (2|ai |)di, j−1−k ≤ ϵ ′di, j (2|ai |)di, j−1,

where in the second-to-last inequality we used that ϵ ′ ≤ |ai | from (38). This proves (40). From (38)
we also have that ϵ ′di, j (2|ai |)di, j−1 ≤ |ai |di, j , so (40) yields that

|bi |di, j ≤ 2|ai |di, j . (41)
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Moreover, for arbitrary reals {yi , zi }i=1, ...,n we have the identity
∏

i yi −
∏

j zi =
∑

i (yi −
zi )

∏
k<i yk

∏
k>i zk , which gives that for all j ∈ {1, . . . ,n}, it holds that������

n∏
i=1

a
di, j

i −
n∏

i=1

b
di, j

i

������ ≤
n∑

i=1

���adi, j

i − bdi, j

i
���∏

k<i

|ak |dk, j

∏
k>i

|bk |dk, j

≤ ϵ ′
n∑

i=1

di, j (2|ai |)di, j−1���∏
k<i

|ak |dk, j

∏
k>i

(
2|ak |dk, j

)
≤ ϵ/(m |c j |),

where the second-to-last inequality follows from (40) and (41) and the last inequality follows from
the choice of ϵ ′ in (39). It now remains to observe that

���P (a1,a2, . . . ,an ) − P (b1,b2, . . . ,bn )��� ≤ m∑
j=1

|c j | ·
������

n∏
i=1

a
di, j

i −
n∏

i=1

b
di, j

i

������ ≤ ϵ,

therefore completing the proof. �

We can extend Lemma 5.1 to rational functions.

Lemma 5.2. Let P (x1, . . . ,xn ),Q (x1, . . . ,xn ) be multivariate polynomials with rational coeffi-

cients, and let f = P/Q .

There is an algorithm which takes as input P and Q , rational numbers {ai }i=1, ...,n satisfying

Q (a1, . . . ,an ) � 0 and a rational number ϵ > 0, and outputs in poly (size(P ,Q ), size(a1, . . . ,an , ϵ ))-
time a rational number ϵ ′ > 0 such that for all real numbers b1, . . . ,bn satisfying

|b1 − a1 |, . . . , |bn − an | ≤ ϵ ′,

it holds that Q (b1, . . . ,bn ) � 0 and
���f (b1, . . . ,bn ) − f (a1, . . . ,an )��� ≤ ϵ .

Proof. Consider input polynomials P and Q , and rational numbers a1, . . . ,an and ϵ > 0 such
that Q (a1, . . . ,an ) � 0.

Let η := min{ ϵ |Q (a1, ...,an ) |2
2( |P (a1, ...,an ) |+ |Q (a1, ...,an ) |) ,

1
2 |Q (a1, . . . ,an ) |}. Using the algorithm of Lemma 5.1,

we can compute in time poly (size(P ,Q ), size(a1, . . . ,an ,η)) = poly (size(P ,Q ), size(a1, . . . ,an , ϵ ))
a rational number ϵ ′ such that for all b1, . . . ,bn satisfying |b1 − a1 |, . . . , |bn − an | ≤ ϵ ′, it holds that

|P (b1, . . . ,bn ) − P (a1, . . . ,an ) | ≤ η and |Q (b1, . . . ,bn ) −Q (a1, . . . ,an ) | ≤ η. (42)

Let b1, . . . ,bn be arbitrary numbers satisfying |b1 − a1 |, . . . , |bn − an | ≤ ϵ ′; we will show that
Q (b1, . . . ,bn ) � 0 and | f (b1, . . . ,bn ) − f (a1, . . . ,an ) | ≤ ϵ . For convenience, let

N1 = P (a1, . . . ,an ), N2 = P (b1, . . . ,bn ),
D1 = Q (a1, . . . ,an ), D2 = Q (b1, . . . ,bn ).

Since η ≤ 1
2 |Q (a1, . . . ,an ) |, we obtain from (42) that

|N1 − N2 | ≤ η, |D1 − D2 | ≤ η, |D2 | ≥
1

2
|D1 |. (43)

In particular, we have D2 > 0. Moreover, we have that���f (a1, . . . ,an ) − f (b1, . . . ,bn )��� = |N1D2 − N2D1 |
|D1D2 |

=
|N1 (D2 − D1) + D1 (N1 − N2) |

|D1D2 |

≤ |N1 | |D2 − D1 | + |D1 | |N2 − N1 |
|D1D2 |

≤ η
|N1 | + |D1 |
|D1 | |D2 |

≤ η
2( |N1 | + |D1 |)
|D1 |2

≤ ϵ,

where in the last three inequalities we used (43) and the choice of η. This concludes the proof. �
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5.2 Implementing Vertex Activities

Definition 5.3. Fix a real number γ . Given γ , the graphG = (V ,E) is said to implement the vertex

activity λ ∈ R with accuracy ϵ > 0 if there is vertex u in G such that

(1) u has degree 1 in G,

(2) ZG (γ ) � 0 and
����ZG,¬u (γ )

ZG (γ )
− λ

���� ≤ ϵ .

We call u the terminal of G. If Item 2 holds with ϵ = 0, we say that G implements λ (perfectly).

Lemma 5.4. Let Δ ≥ 3 be an integer and γ < − 1
4(Δ−1) be a rational number.

There is an algorithm which, on input a rational number λ and ϵ > 0, outputs in poly (size(λ, ϵ ))
time a bipartite graph G of maximum degree at most Δ that implements the vertex activity λ with

accuracy ϵ .

Assuming Lemma 5.4 for now, we can conclude Lemma 4.3.

Proof of Lemma 4.3. Letγ ′ ≤ 0 be an arbitrary rational edge activity that we wish to implement
with some accuracy ϵ > 0. We can compute in time poly (size(γ ′, ϵ )) a rational γ ′′ < 0 such that
|γ ′ + (γ ′′)2 | ≤ ϵ/2. Thus, to implement the edge activityγ ′with accuracy ϵ , it suffices to implement
the edge activity −(γ ′′)2 with accuracy ϵ/2 (this way we will avoid irrational square roots in the
following argument). We begin by specifying some parameters that will be important later.

Let λ1 = −γ ′′/γ , λ2 = 1/γ ′′, λ3 = −γ ′′/γ and note that

1 + γλ1λ2 = 1 + γλ2λ3 = 0,
γ 2λ1λ3

1 + γλ1λ2 + γλ2λ3
= −(γ ′′)2.

Consider the multivariate polynomials

P1 (x1,x2,x3) = γx1 (1 + γx2x3), P2 (x1,x2,x3) = γ 2x1x3, P3 (x1,x2,x3) = γx3 (1 + γx1x2)

Q (x1,x2,x3) = 1 + γx1x2 + γx2x3.

For i ∈ {1, 2, 3}, let fi = Pi/Q so that

f1 (λ1, λ2, λ3) = f3 (λ1, λ2, λ3) = 0, f2 (λ1, λ2, λ3) = −(γ ′′)2.

Using the algorithm of Lemma 5.2, we can compute in poly (size(P1, P2, P3,Q ), size(λ1, λ2, λ3, ϵ )) =
poly (size(γ ′, ϵ )) time a rational number ϵ ′ such that for all λ′1, λ

′
2, λ
′
3 satisfying |λ1 − λ′1 |, |λ2 −

λ′2 |, |λ3 − λ′3 | ≤ ϵ ′, it holds that

Q (λ′1, λ
′
2, λ
′
3) � 0 and ���fi (λ′1, λ

′
2, λ
′
3) − fi (λ1, λ2, λ3)��� ≤ ϵ/2 for all i ∈ {1, 2, 3}. (44)

Let i ∈ {1, 2, 3}. Using the algorithm of Lemma 5.4, we can construct in poly (size(λi , ϵ
′)) =

poly (size(γ ′, ϵ )) time a bipartite graph Hi of maximum degree at most Δ that implements the
vertex activity λi with accuracy ϵ ′. Let yi be the terminal of Hi , and let

qi := ZHi ,¬yi
(γ ), zi := ZHi

(γ ) so that zi � 0 and
����qi

zi
− λi

���� ≤ ϵ ′. (45)

Let G be the graph obtained by taking the disjoint union of H1,H2,H3, two new vertices u,v and
adding the edges (u,y1), (y1,y2), (y2,y3), (y3,v ). Note that G is bipartite and u,v lie in the same
part of the vertex partition of G. Then, we have that

ZG,u,v (γ ) = γ 2q1z2q3, ZG,¬u,¬v (γ ) = z1z2z3 + γ (q1q2z3 + z1q2q3),
ZG,u,¬v (γ ) = γq1 (z2z3 + γq2q3), ZG,¬u,v (γ ) = γq3 (z1z2 + γq1q2).

(46)

For illustration, we next justify the expression for ZG,u,¬v (γ ). Let M be a matching such that u
is matched but not v . Note that the only way that u can be matched in G is if (u,y1) ∈ M . Since
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v is unmatched in M and (u,y1) ∈ M , the edges (y1,y2) and (y3,v ) do not belong to M . The re-
maining edge (y2,y3) can either belong to M or not. The aggregate contribution of matchings M
with (y2,y3) ∈ M is γ 2q1q2q3: the factor γ 2 comes from the edges (u,y1) and (y2,y3) and the factor
q1q2q3 comes from the fact that y1,y2,y3 are unmatched in H1,H2,H3 respectively. The aggregate
contribution of matchings M with (y2,y3) � M is γq1z2z3: the factor γ comes from the edge (u,y1),
the factor q1 comes from the fact that y1 is unmatched in H1, and the factor z2z3 accounts for
the weight of all matchings in H2,H3 (note that there is no restriction in this case on the vertices
y2,y3 whether they are matched). This proves the expression for ZG,u,¬v (γ ) in (46); the remaining
expressions therein can be justified analogously.

Let λ′1 = q1/z1, λ
′
2 = q2/z2, λ

′
3 = q3/z3. Then, using (46), we see that

ZG,¬u,¬v (γ ) = z1z2z3

(
1 + γ

q1q2

z1z2
+ γ

q2q3

z2z3

)
= z1z2z3 ·Q (λ′1, λ

′
2, λ
′
3) � 0, (47)

where the disequality follows from z1z2z3 � 0 (cf. (45)) andQ (λ′1, λ
′
2, λ
′
3) � 0 from (44); note that the

λ′j fall within the scope of (44) since (45) guarantees that |λ1 − λ′1 |, |λ2 − λ′2 |, |λ3 − λ′3 | ≤ ϵ ′. Using
again (46), we have that

���� ZG,u,v (γ )

ZG,¬u,¬v (γ )
+ (γ ′′)2���� =

������
γ 2 q1q3

z1z3

1 + γ (
q1q2

z1z2
+

q2q3

z2z3
)
+ (γ ′′)2

������ = ���f2 (λ′1, λ
′
2, λ
′
3) − f2 (λ1, λ2, λ3)��� ≤ ϵ/2, (48)

where the last inequality follows from (44) for i = 2. Analogously, we obtain that

���� ZG,u,¬v (γ )

ZG,¬u,¬v (γ )

���� =
�������
γ

q1

z1

(
1 + γ q2q3

z2z3

)
1 + γ

(
q1q2

z1z2
+

q2q3

z2z3

)
������� =

���f1 (λ′1, λ
′
2, λ
′
3) − f1 (λ1, λ2, λ3)��� ≤ ϵ/2,

���� ZG,¬u,v (γ )

ZG,¬u,¬v (γ )

���� =
�������
γ

q3

z3

(
1 + γ q1q2

z1z2

)
1 + γ

(
q1q2

z1z2
+

q2q3

z2z3

)
������� =

���f3 (λ′1, λ
′
2, λ
′
3) − f3 (λ1, λ2, λ3)��� ≤ ϵ/2.

(49)

Combining (47), (48) and (49), we obtain that the bipartite graph G (with terminals u,v) imple-
ments the edge activity −(γ ′′)2 with accuracy ϵ/2. Since |γ ′ + (γ ′′)2 | ≤ ϵ/2, we therefore obtain
that G implements the edge activity γ ′ with accuracy ϵ , as wanted. This concludes the proof of
Lemma 4.3. �

To prove Lemma 5.4, we will first need to prove the following lemma.

Lemma 5.5. Let Δ ≥ 3 be an integer and γ < − 1
4(Δ−1) be a real number.

For every λ ∈ R and ϵ > 0, there is a bipartite graph G of maximum degree at most Δ that imple-

ments the vertex activity λ with accuracy ϵ .

5.3 Proof of Lemma 5.5

To prove Lemma 5.5, we will need to consider two cases for the value of γ . Namely, for an integer
Δ ≥ 3, the following subset of the negative reals will be relevant:

BΔ =

{
γ ∈ R | γ = − 1

4(Δ − 1) (cosθ )2
for some θ ∈ (0,π/2) which is a rational multiple of π

}
.

(50)

Lemma 5.6. Let Δ ≥ 3 be an integer andγ < − 1
4(Δ−1) . For an integern ≥ 0, letTn be the (Δ − 1)-ary

tree of height n rooted at ρn :
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(1) If γ � BΔ, then ZTn
(γ ) � 0 for all n ≥ 0. Moreover, for every λ ∈ R and ϵ > 0, there exists n

such that ����ZTn,¬ρn
(γ )

ZTn
(γ )

− λ
���� ≤ ϵ .

(2) Ifγ ∈ BΔ, there existsn such thatZTn
(γ ) = 0. Moreover, there exists a tree of maximum degree

at most Δ which implements either the edge activity γ ′ = −1 or the edge activity γ ′ = −1/4
(perfectly).

Proof. Fix arbitraryγ < − 1
4(Δ−1) and let θ ∈ (0,π/2) be such thatγ = − 1

4(Δ−1)(cos θ )2 . For integer
n ≥ 0, set

un = ZTn,¬ρn
(γ ), zn = ZTn

(γ ).

Note that u0 = z0 = 1, whereas for n ≥ 1 we have that

un =
(
zn−1)Δ−1, zn =

(
zn−1)Δ−1 + (Δ − 1)γ

(
zn−1

)Δ−2
un−1. (51)

Moreover, letWn := sin((n+1)θ )
sin((n+2)θ )

.

Proof of Item 1:γ � BΔ, i.e.,θ is not a rational multiple of π . In this case, we clearly have
thatWn � 0 for all n ≥ 0. We will show by induction on n that

zn � 0 and
un

zn
= (2 cosθ )Wn . (52)

Indeed, (52) holds for n = 0 (using the identity sin(2θ ) = 2 sinθ cosθ ). Now, let n ≥ 1 and suppose
that (52) holds for all integers less than n. We first show that zn � 0. From (51), we have that

zn = (zn−1)Δ−1
(
1 + (Δ − 1)γ

un−1

zn−1

)

= (zn−1)Δ−1
(
1 − 1

2 cosθ
Wn−1

)
. (53)

Dividing the identity 2 cosθ sin((n + 1)θ ) − sin(nθ ) = sin((n + 2)θ ) by 2 cosθ sin((n + 1)θ ) (note
that this is non-zero by our assumption on θ ), we obtain that

1 − 1

2 cosθ
Wn−1 =

1

(2 cosθ )Wn
.

From this and (53), we obtain that zn =
(zn−1 )Δ−1

(2 cos θ )Wn
. We therefore have that zn � 0. Moreover, (51)

yields that un/zn = (2 cosθ )Wn , therefore completing the proof of (52).
In light of (52), we immediately have thatZTn

(γ ) � 0 for all integers n ≥ 0, therefore proving the
first part of Item 1. For the second part, Galanis et al. [7, Proof of Lemma 11] show that the sequence
Wn is dense in R as n ranges over the positive integers. Since we have that un/zn = (2 cosθ )Wn

for all n ≥ 0 from (52), this immediately yields the second part of Item 1.

Proof of Item 2: γ ∈ BΔ, i.e., θ is a rational multiple of π . Since θ ∈ (0,π/2), we have that
sin(θ ), sin(2θ ) � 0. Letn0 be the smallest non-negative integer such that sin((n + 2)θ ) = 0. We first
show that ZTn0

(γ ) = 0.
Note first that Wn is well defined and non-zero for all non-negative integers < n0. As in the

preceding Case I, we obtain by induction on n that for all n = 0, 1 . . . ,n0 − 1, it holds that

zn � 0 and
un

zn
= (2 cosθ )Wn . (54)

Just as in (53), we then obtain that

zn0 = (zn0−1)Δ−1
(
1 − 1

2 cosθ
Wn0−1

)
.
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Now, using again the identity 2 cosθ sin((n + 1)θ ) − sin(nθ ) = sin((n + 2)θ ) for n = n0, we obtain
that 2 cosθ sin((n0 + 1)θ ) − sin(n0θ ) = 0, and dividing by 2 cosθ sin((n0 + 1)θ ), we obtain that 1 −

1
2 cos θ

Wn0−1 = 0. It follows that zn0 = 0, therefore proving that ZTn0
(γ ) = 0, as wanted.

To complete the proof of Item 2, it remains to show that there exists a tree of maximum degree at
most Δ which implements either the edge activity γ ′ = −1 or the edge activity γ ′ = −1/4 perfectly.
For γ = −1, the result follows by considering the path with four vertices (and using the endpoints
as terminals), so we assume γ � −1 in what follows.

To implement the desired edge activities for γ � −1, we will adapt the construction in the proof
of Lemma 4.3. Namely, for i ∈ {1, 2, 3}, let Hi be a tree of maximum degree Δ such that ZHi

(γ ) � 0
and suppose that yi is a vertex in Hi of degree ≤ Δ − 2. Let

qi := ZHi ,¬yi
(γ ), zi := ZHi

(γ ) � 0. (55)

Let G be the tree obtained by taking the disjoint union of H1,H2,H3, two new vertices u,v and
adding the edges (u,y1), (y1,y2), (y2,y3), (y3,v ). Note that the restriction of the degrees of yi ’s in
the graph Hi ’s ensures that G is a tree of maximum degree at most Δ. Then, we have that

ZG,u,v (γ ) = γ 2q1z2q3, ZG,¬u,¬v (γ ) = z1z2z3 + γ (q1q2z3 + z1q2q3),
ZG,u,¬v (γ ) = γq1 (z2z3 + γq2q3), ZG,¬u,v (γ ) = γq3 (z1z2 + γq1q2).

(46)

Among those treesT ′ of maximum degree Δ such thatZT ′ (γ ) = 0, letT be a tree with the minimum
number of vertices. Since γ � −1, we have that T has more than two vertices.

In the tree T (more generally, in any tree with more than two vertices), either there exists a
vertex p with at least two leaves as children or else there exists a leaf l whose parent p has degree
1 in the tree T \{l }. We consider the two cases separately:

(1) There exists a leaf l whose parent p has degree 1 in the tree T \{l }. Let T ∗ = T \{l }.
Since ZT (γ ) = 0, we have that ZT ,l (γ ) + ZT ,¬l (γ ) = 0. We have ZT ,l (γ ) = γZT ∗,¬p (γ ) and
ZT ,¬l (γ ) = ZT ∗ (γ ). Moreover, we have that ZT ∗ (γ ) � 0 from the choice of T . Hence,

γZT ∗,¬p (γ ) + ZT ∗ (γ ) = 0, ZT ∗ (γ ) � 0. (56)

Now we let H1,H3 be disjoint copies ofT ∗ and set y1, y3 to be the corresponding copies of
p. Let H2 be the single-vertex graph consisting only of the vertex y2. Then, we have that

q1 = q3 = ZT ∗,¬p (γ ), z1 = z3 = ZT ∗ (γ ), and q2 = z2 = 1,

so (46) yields that

ZG,u,¬v (γ ) = ZG,¬u,v (γ ) = 0 and
ZG,u,v (γ )

ZG,¬u,¬v (γ )
= −1.

Therefore, G with terminals u and v implements the edge activity γ ′ = −1.
(2) There exists a vertex p with at least two leaves as children, say l and l ′. Note that l and l ′

cannot be simultaneously matched in T , and therefore since ZT (γ ) = 0, we have that

ZT ,l,¬l ′ (γ ) + ZT ,¬l,l ′ (γ ) + ZT ,¬l,¬l ′ (γ ) = 0.

Let T ∗ = T \{l , l ′} and note that p has degree ≤ Δ − 2 in T ∗. We have

ZT ,l,¬l ′ (γ ) = ZT ,¬l,l ′ (γ ) = γZT ∗,¬p (γ ) and ZT ,¬l,¬l ′ (γ ) = ZT ∗ (γ ).

Moreover, we have that ZT ∗ (γ ) � 0 from the choice of T . Hence,

2γZT ∗,¬p (γ ) + ZT ∗ (γ ) = 0, ZT ∗ (γ ) � 0. (57)
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Now we let H1,H3 be disjoint copies ofT ∗ and set y1, y3 to be the corresponding copies of
p. Then, from (57), we have that

2γq1 + z1 = 2γq3 + z3 = 0, z1, z3 � 0.

Let H2 be the tree obtained from T ∗ by adding the vertex y2 and connecting it to p. Then,
we have that

q2 = ZH2,¬y2 (γ ) = ZT ∗ (γ ) and z2 = ZH2 (γ ) = ZT ∗ (γ ) + γZT ∗,¬p (γ ),

so from (57) we obtain that

−1

2
q2 + z2 = 0, z2 � 0.

Equation (46) then gives that

ZG,u,¬v (γ ) = ZG,¬u,v (γ ) = 0 and
ZG,u,v (γ )

ZG,¬u,¬v (γ )
= −1/4,

and therefore G with terminals u and v implements the edge activity γ ′ = −1/4.

This completes the proof of Item 2 in the lemma and therefore establishes Lemma 5.6. �

5.4 Handling the Edge Activities –1 and –1/4

The proof of the following lemma builds upon the techniques of Galanis et al. [7, Lemmas 21 &
22].

Lemma 5.7. Let γ = −1. Then, for every rational number λ, there exists a tree of maximum degree

Δ = 3 that implements the vertex activity λ.

Proof. Since the value of γ is fixed to −1, for this proof we will omit it from the notation of
partition functions, i.e., for a graph G, we will simply write ZG instead of ZG (γ ).

Consider the functions

f1 (x ) =
1

1 − x for x � 1 and f2 (x ) = − 1

x
for x � 0.

Let S be the set of all numbers s for which there exist an integer n ≥ 0 and indices i1, . . . , in ∈ {1, 2}
such that the sequence given by

x0 = −1, x j = fi j
(x j−1) for j ∈ {1, . . . ,n} (58)

satisfies xn = s (note that −1 ∈ S by taking n = 0). We will show the following:

(1) Let i1, . . . , in ∈ {1, 2} be arbitrary indices and consider the sequence x0,x1, . . . ,xn defined
in (58). Then, for every j ∈ {0, 1, . . . ,n}, there exists a treeG j of maximum degree at most

3 and a vertex uj in G j which has degree at most 2 such that
ZGj ,¬uj

ZGj
= x j .

(2) S = Q\{0}, i.e., S is the set of all non-zero rational numbers.

To conclude the lemma from these two Items, let λ be an arbitrary rational number. If λ = 0,
then we can implement the vertex activity λ with a three-vertex path and using as terminal one
of its endpoints. If λ = 1, then we can implement the vertex activity λ with a four-vertex path and
using as terminal one of its endpoints. For λ � 0, 1, let s = λ−1

λ
and note that s ∈ Q\{0}. Then, by

Item 2, there exists a sequence x1, . . . ,xn of the form (58) such that xn = s . Therefore, by Item 1,
there exists a treeG of maximum degree at most 3 and a vertex u inG which has degree at most 2
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such that
ZG,¬u

ZG
= s . Add a new vertexu ′ toG and connect it tou, and letG ′ be the resulting graph.

Then, we have that

ZG′,¬u′ = ZG and ZG′ = ZG′,¬u′ + ZG′,u′ = ZG + γZG,¬u = ZG − ZG,¬u . (59)

It follows that G ′ with terminal u ′ is a tree of maximum degree 3 that implements the vertex

activity
ZG′,¬u′

ZG′
=

ZG

ZG−ZG,¬u
= 1

1−s
= λ.

To prove Item 1, we use induction on j. For the base case j = 0, we can take the treeG0 to be the
path with three vertices and u0 to be the vertex in the middle of the path. So assume that j ≥ 1. To
obtain G j from G j−1, we consider cases on the value of i j :

(1) If i j = 1, we have x j = f1 (x j−1) and therefore x j−1 � 1. Let G j be the tree obtained from
G j−1 by adding a new vertex uj and joining it to uj−1. Then, analogously to (59), we obtain
that

ZG j ,¬uj
= ZG j−1 and ZG j

= ZG j−1 − ZG j−1,¬uj−1 � 0,

where the disequality follows from x j−1 =
ZGj−1,¬uj−1

ZGj−1
� 1. We therefore obtain that

ZGj ,¬uj

ZGj
=

ZGj−1

ZGj−1−ZGj−1,¬uj−1
= 1

1−x j−1
= f1 (x j−1) = x j , as wanted.

(2) If i j = 2, we have x j = f2 (x j−1) and therefore x j−1 � 0. Let G j be the tree obtained from
G j−1 by adding two new vertices uj ,w and joining uj to both uj−1 and w (note that w ’s
only neighbour is uj ). Then, analogously to (59), we obtain that

ZG j ,¬uj
= ZG j−1 and ZG j

= ZG j−1 + γ (ZG j−1 + ZG j−1,¬uj−1 ) = −ZG j−1,¬uj−1 � 0,

where the disequality follows from x j−1 =
ZGj−1,¬uj−1

ZGj−1
� 0. We therefore obtain that

ZGj ,¬uj

ZGj
= −

ZGj−1

ZGj−1,¬uj−1
= − 1

x j−1
= f2 (x j−1) = x j , as wanted.

This finishes the proof of Item 1.
To prove Item 2, first note that the inclusion S ⊆ Q\{0} is trivial, so it suffices to show that

Q\{0} ⊆ S . The following equalities will be useful:

f1 ( f1 ( f2 (x ))) = 1 + x for all x � 0,−1, (60)

f2 ( f1 ( f1 (x ))) =
x

1 − x for all x � 0, 1, (61)

f2 ( f1 ( f1 ( f2 ( f1 ( f1 ( f2 (x ))))))) = − 1

2 + x
for all x � 0,−1,−2. (62)

Establishing (60) and (61) is straightforward, and (62) follows by applying (60) after writing the
left-hand side as f2 (д(д(x ))) where д(x ) = f1 ( f1 ( f2 (x ))).

We next show that
(−1, 0) ∩Q ⊆ S . (63)

For the sake of contradiction, assume that there exists a rational number α ∈ (−1, 0) such that
α � S . Note that α = −p/q for some relative coprime positive integers p,q satisfying p < q; we
may assume that α is such that the sum p + q is minimised over all rational α ∈ (−1, 0) with α � S .
We consider three cases:

(1) q = 2p: Since p,q are coprime positive integers, this means that p = 1 and q = 2 and there-
fore α = −1/2. But −1/2 ∈ S since f2 ( f1 ( f1 (−1))) = −1/2.
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(2) q > 2p: Let p ′ = p, q′ = q − p and note that p ′,q′ are coprime positive integers satisfying
p ′ < q′. Since p ′ + q′ < p + q we conclude that the rational number α ′ = −p ′/q′ belongs

to S . But from (61) we have that f2 ( f1 ( f1 (α ′))) =
p′/q′

1+p′/q′ = −p/q = α , contradicting that
α � S .

(3) q < 2p: Let p ′ = 2p − q, q′ := p and note that p ′,q′ are coprime positive integers satisfying
p ′ < q′. Sincep ′ + q′ < p + q we conclude that the rational number α ′ = −p ′/q′ belongs to
S . But from (61) we have that f2 ( f1 ( f1 ( f2 ( f1 ( f1 ( f2 (α ′))))))) = − 1

2−p′/q′ = −p/q = α , con-
tradicting that α � S .

This finishes the proof of (63). From (63), we can conclude the desired inclusion Q\{0} ⊆ S as
follows. First, note that −1 ∈ S and, because f2 (−1) = 1, we have that 1 ∈ S as well. Let α � −1, 0, 1
be an arbitrary rational number, we will show that α ∈ S :

(1) If α ∈ (−1, 0), then α ∈ S from (63).
(2) If α ∈ (0, 1), let α ′ := α − 1 and note that α ′ ∈ (−1, 0) ∩Q. From (63), we have that α − 1 ∈

S . Since f1 ( f1 ( f2 (α ′))) = α from (60), we conclude that α ∈ S .
(3) If α � (−1, 1), then −1/α is a non-zero rational number in the interval (−1, 1) and hence
−1/α ∈ S from the preceding two cases. It follows that f2 (−1/α ) = α belongs to S as well.

This finishes the proof of Q\{0} ⊆ S and therefore establishes Item 2 in the beginning of the
proof, yielding Lemma 5.7. �

Lemma 5.8. Let γ = −1/4. Then, there exists a tree of maximum degree Δ = 3 that implements the

edge activity γ ′ = −1.

Proof. As in Lemma 5.7, we will omit the argument γ from the notation of partition functions
(since we will have γ = −1/4 fixed).

To prove the lemma, we will show that there exists a treeT of maximum degree at most 3 with
terminal u that implements the vertex activity λ = 4 and a tree T ′ of maximum degree at most
3 with terminal u ′ that implements the vertex activity λ′ = 1. From this, we can conclude that
there exists a tree that implements the edge activity γ ′ = −1 using the construction of Lemma 4.3.
Namely, let H1,H3 be disjoint copies of the tree T and y1,y3 be the corresponding copies of the
terminal u. Let H2 be the tree T ′, and let y2 denote the terminal u ′. Then, for i ∈ {1, 2, 3}, we set

qi := ZHi ,¬yi
, zi := ZHi

� 0, (64)

so that q1/z1 = q3/z3 = 4, q2/z2 = 1. Let G be the tree obtained by taking the disjoint union of
H1,H2,H3, two new vertices u,v, and adding the edges (u,y1), (y1,y2), (y2,y3), (y3,v ). Then, we
have that

ZG,u,v = γ
2q1z2q3, ZG,¬u,¬v = z1z2z3 + γ (q1q2z3 + z1q2q3),

ZG,u,¬v = γq1 (z2z3 + γq2q3), ZG,¬u,v = γq3 (z1z2 + γq1q2),
(46)

and hence we obtain that

ZG,u,¬v

ZG,¬u,¬v
=

ZG,¬u,v

ZG,¬u,¬v
= 0,

ZG,u,v

ZG,¬u,¬v
= −1.

Therefore, G with terminals u,v implements the edge activity γ ′ = −1, as desired.
It remains to implement the vertex activities λ = 4 and λ′ = 1 using trees of maximum degree

at most 3. Consider the functions

f1 (x ) =
1

1 − 1
4x

for x � 4, f2 (x ) =
2

1 − 1
2x

for x � 2.
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Analogously to Lemma 5.7, we will consider the set S of all numbers s for which there exist an
integer n ≥ 0 and indices i1, . . . , in ∈ {1, 2} such that the sequence given by

x0 = 0, x j = fi j
(x j−1) for j ∈ {1, . . . ,n}, (65)

satisfies xn = s (note that 0 ∈ S by taking n = 0). We will show that

for indices i1, . . . , in ∈ {1, 2}, for any term {x j }{j=0,1, ...,n } of the sequence in (58),
there exists a tree G j of maximum degree at most 3 and a vertex uj in G j such that
ZGj ,¬uj

ZGj
= x j and uj has degree 1 in G j if j = 0 or i j = 1, and degree 2 otherwise.

(66)

From this, the desired implementations follow by observing that

f1 ( f2 ( f1 ( f2 ( f2 ( f1 (0)))))) = 4, f1 (0) = 1.

To prove (66), we proceed by induction on j. For the base case j = 0, consider the binary tree of
height 2 and connect its root to a new vertex u0; denote by G0 the tree thus obtained. Then, we
have that ZG0,¬u0 = 1 + 6γ + 8γ 2 = 0 and ZG0 = ZG0,¬u0 + γ (1 + 2γ )2 � 0, soG0,u0 establish (66) in
the case j = 0. For the inductive step, assume that j ≥ 1. To obtainG j fromG j−1, we consider cases
on the value of i j :

(1) If i j = 1, we have x j = f1 (x j−1) and therefore x j−1 � 4. Let G j be the graph obtained from
G j by adding a new vertex uj and joining it to uj−1. Then,

ZG j ,¬uj
= ZG j−1 and ZG j

= ZG j−1 −
1

4
ZG j−1,¬uj−1 � 0,

where the disequality follows from x j−1 =
ZGj−1,¬uj−1

ZGj−1
� 4. We therefore obtain that

ZGj ,¬uj

ZGj
=

ZGj−1

ZGj−1−
1
4 ZGj−1,¬uj−1

= 1
1− 1

4 x j−1
= f1 (x j−1) = x j , as wanted.

(2) If i j = 2, we have x j = f2 (x j−1) and therefore x j−1 � 2. Let S be a star with three leaves,
one of which is called ρ. Then ZS,¬ρ = 1 + 2γ = 1/2 and ZS = 1 + 3γ = 1/4. To obtain G j ,
we add toG j−1 the star S and a new vertex uj which is connected to both uj−1 and the leaf
ρ of S . Then, we have that

ZG j ,¬uj
= ZG j−1ZS = ZG j−1/4,

ZG j
= ZG j−1ZS + γ (ZG j−1,¬uj−1ZS + ZG j−1ZS,¬ρ ) = ZG j−1/8 − ZG j−1,¬uj−1/16 � 0,

where the disequality follows from x j−1 =
ZGj−1,¬uj−1

ZGj−1
� 2. We therefore obtain that

ZG j ,¬uj

ZG j

=
ZG j−1/4

ZG j−1/8 − ZG j−1,¬uj−1/16
=

2

1 − 1
2

ZGj−1,¬uj−1

ZGj−1

=
2

1 − 1
2x j−1

= f2 (x j−1) = x j ,

as wanted.

This finishes the proof of (66), therefore completing the proof of Lemma 5.8. �

5.5 Concluding the Proof of Lemma 5.5

In this section, we conclude the proof of Lemma 5.5. We will need the following technical facts.

Lemma 5.9. Let γ � 0 be a real number and suppose that the sequence {xn }n≥0 is dense in R. Then,

for every real λ and ϵ > 0, there exists n such that xn � −1/γ and | 1
1+γ xn

− λ | ≤ ϵ .

Proof. Consider the function f (x ) = 1/(1 + γx ) for x � −1/γ . Fix arbitrary real λ and ϵ > 0,
and let I be a closed subinterval of [λ − ϵ, λ + ϵ] that has non-zero length and does not contain
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the point 0. Let д(x ) be the inverse function of f , i.e., д(x ) = (1 − x )/(γx ) for x � 0, and note that
f (д(x )) = x for all x � 0. Since 0 � I , д is continuous on the closed interval I and therefore д(I )
is also an interval that has non-zero length (from γ � 0). Since the sequence {xn }n≥0 is dense in
R, there exists n such that xn � −1/γ and xn ∈ д(I ). It follows that f (xn ) ∈ I ⊆ [λ − ϵ, λ + ϵ], as
needed. �

Lemma 5.10. Let γ be a real number. LetG be a graph with terminals u and v that implements the

edge activity γ ′ (cf. Definition 4.1).

For a graphH = (VH ,EH ), let Ĥ be the graph obtained by replacing every edge e ofH with a distinct

copy of the graph G and identifying the endpoints of e with the corresponding copies of the terminals

u and v . Then, for C := (ZG,¬u,¬v (γ )) |EH | and any two vertices w, z of H , it holds that C � 0 and

Z
Ĥ,w (γ ) = C · ZH,w (γ ′), Z

Ĥ,¬w
(γ ) = C · ZH,¬w (γ ′), (67)

and
Z

Ĥ,w,z (γ ) = C · ZH,w,z (γ ′), Z
Ĥ,¬w,¬z

(γ ) = C · ZH,¬w,¬z (γ ′),

Z
Ĥ,w,¬z

(γ ) = C · ZH,w,¬z (γ ′), Z
Ĥ,¬w,z (γ ) = C · ZH,¬w,z (γ ′).

(68)

Proof. The proof is a simpler version of an analysis appearing in the last part of the proof of
Theorems 1.1 and 1.2. Namely, for a matching M̂ of Ĥ , we will consider the phase of the matching
M̂ , which we will denote by Y (M̂ ). This is a 0-1 vector indexed by pairs (e,x ) such that e is an
edge of H and x is an endpoint of e; we set the (e,x ) entry of Y (M̂ ) equal to 1 if x is matched in
the matching M̂ by edges in the copy of G corresponding to the edge e (and 0 otherwise).

Let P be the set consisting of all phases, i.e., the values of Y (M̂ ) as M̂ ranges over matchings
of Ĥ . Fix a possible phase Y ∈ P and let ΩY be the set of matchings M̂ of Ĥ such that Y (M̂ ) = Y .
The aggregate weight of matchings in ΩY is given by

WY :=
∏

e=(x,y )∈EH

t (Y(e,x ),Y(e,y ) ), (69)

where
t (0, 0) := ZG,¬u,¬v (γ ), t (1, 1) := ZG,u,v (γ ),
t (0, 1) := ZG,¬u,v (γ ), t (1, 0) := ZG,u,¬v (γ ).

Note that since the graph G with terminals u,v implements the activity γ ′, we have t (0, 1) =
t (1, 0) = 0 and t (1, 1)/t (0, 0) = γ ′. Let P1 be the set of phases Y in P such that there exists an edge
e = (x ,y) ∈ E such that Y(e,x ) � Y(e,y ) , and let P2 = P\P1. Then, for all Y ∈ P1, we have from (69)
thatWY = 0. However, for Y ∈ P2, we have that the set of edges MY := {e ∈ EH | Y(e,x ) = Y(e,y ) =

1} is a matching in H andWY = (ZG,u,v (γ )) |M | (ZG,¬u,¬v (γ )) |EH |− |M | = C · (γ ′) |M | .
We can now conclude (67) and (68). For (67), consider an arbitrary vertexw of H and recall that,

for a matching M , ver(M ) denotes the set of matched vertices in M . Then,

Z
Ĥ,w (γ ) =

∑
M̂ ∈M

Ĥ
;w ∈ver(M̂ )

γ |M̂ | =
∑

Y ∈P2;w ∈ver(MY )

WY = C
∑

M ∈MH ;w ∈ver(M )

(γ ′) |M | = C · ZH,w (γ ′),

Z
Ĥ,¬w

(γ ) =
∑

M̂ ∈M
Ĥ

;w�ver(M̂ )

γ |M̂ | =
∑

Y ∈P2;w�ver(MY )

WY = C
∑

M ∈MH ;w�ver(M )

(γ ′) |M | = C · ZH,¬w (γ ′).

The proof of (68) is completely analogous, therefore concluding the proof of the lemma. �

We are now ready to prove Lemma 5.5, which we restate here for convenience.

Lemma 5.5. Let Δ ≥ 3 be an integer and γ < − 1
4(Δ−1) be a real number.
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For every λ ∈ R and ϵ > 0, there is a bipartite graph G of maximum degree at most Δ that imple-

ments the vertex activity λ with accuracy ϵ .

Proof. Fix arbitrary λ ∈ R and ϵ > 0. We consider the cases γ ∈ BΔ and γ � BΔ separately
(where BΔ is given in (50)).

Case I: γ � BΔ. For an integer n ≥ 0, letTn be the (Δ − 1)-ary tree of height n rooted at ρn . By

Item 1 of Lemma 5.6, we have that ZTn
(γ ) � 0 and therefore the sequence xn =

ZTn ,¬ρn (γ )

ZTn (γ ) is well

defined (for all n ≥ 0). Moreover, again by Item 1 of Lemma 5.6, we have that the sequence {xn }n≥0

is dense in R and therefore, from Lemma 5.9, there exists n such that

xn � −1/γ and
���� 1

1 + γxn
− λ

���� ≤ ϵ . (70)

Let T ′n be the tree obtained from Tn by adding a new vertex ρ ′n and connecting it to ρn . Then,

ZT ′n,¬ρ′n (γ ) = ZTn
(γ ) and ZT ′n (γ ) = ZTn

(γ ) + γZTn,¬ρn
(γ ) � 0,

where the disequality follows from
ZTn ,¬ρn (γ )

ZTn (γ ) = xn � −1/γ . We also have that
ZT ′n ,¬ρ′n (γ )

ZT ′n (γ ) = 1
1+γ xn

.

Therefore, from (70), we obtain that T ′n with terminal ρ ′n implements the vertex activity λ with
accuracy ϵ .

Case II: γ ∈ BΔ. We first show that there exists a tree T of maximum degree at most Δ with
terminals u,v that implements the edge activity −1. By Item 1 of Lemma 5.6, we have that there
exists a tree T1 of maximum degree at most Δ with terminals u1,v1 that implements either the
edge activity −1 or the edge activity −1/4. In the former case, we are clearly done (and we can
take T = T1), so consider the latter case. Then, we have that

ZT1,u1,¬v1 (γ ) = ZT1,¬u1,v1 (γ ) = 0,
ZT1,u1,v1 (γ )

ZT1,¬u1,¬v1 (γ )
= −1/4.

By Lemma 5.8, there exists a tree T2 of maximum degree at most 3 with terminals u2,v2 such that

ZT2,u2,¬v2 (−1/4) = ZT2,¬u2,v2 (−1/4) = 0,
ZT2,u2,v2 (−1/4)

ZT2,¬u2,¬v2 (−1/4)
= −1.

We letT be the tree obtained by replacing every edge e ofT1 by a distinct copy ofT2 and identifying
the endpoints of e with the corresponding copies of the terminals u2 and v2. We let the terminals
u,v ofT be the terminalsu1,v1 inT1. Note that sinceu2,v2 have degree 1 inT2 andT2 has maximum
degree at most 3, the maximum degree of T is at most Δ and u,v have degree 1 in T . Moreover,
Lemma 5.10 gives that

ZT ,u,¬v (γ ) = ZT ,¬u,v (γ ) = 0,
ZT ,u,v (γ )

ZT ,¬u,¬v (γ )
=

ZT2,u2,v2 (−1/4)

ZT2,¬u2,¬v2 (−1/4)
= −1,

and so the tree T implements the edge activity −1, as claimed.
Now, to implement the (real) vertex activity λ with accuracy ϵ > 0, note that by Lemma 5.7 there

exists a tree H of maximum degree at most 3 with terminal w such that ZH (−1) � 0 and����ZH,¬w (−1)

ZH (−1)
− λ

���� ≤ ϵ .

(H perfectly implements a rational that is close to λ.) We let G be the tree obtained by replacing
every edge e ofH by a distinct copy ofT and identifying the endpoints of e with the corresponding
copies of the terminals u and v in T . We let the terminal u of G be the terminal w of H . As before,
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we have thatG has maximum degree at most Δ and that u has degree 1 inG. Further, Lemma 5.10
gives that ZG (γ ) � 0 and

ZG,¬u (γ )

ZG (γ )
=

ZH,¬w (−1)

ZH (−1)
,

and so the tree G implements the vertex activity λ with accuracy ϵ , as needed.
This finishes the proof of Lemma 5.5. �

5.6 Implementing Activities with Exponential Precision

In this section, we bootstrap Lemma 5.5 to obtain the exponential precision required in Lemma 5.4.
The following lemma lies at the heart of the argument and is based on the “contracting maps that
cover” technique of Bezáková et al.[4].

Lemma 5.11. Let γ < 0 be a rational number. Then, there exist rationals x0 and r ,δ > 0 and re-

als λ∗1, . . . , λ
∗
t (for some positive integer t ) such that the following holds for all rational λ1, . . . , λt

satisfying |λi − λ∗i | ≤ δ for i ∈ [t].
Let I := [x0 − r ,x0 + r ] and, for i ∈ [t], consider the map Φi : x 
→ 1

1+γ (λi+x ) for x � −(1 + γλi )/γ .

There is an algorithm which, on input (i) a starting pointy0 ∈ I ∩Q, (ii) a targety ∈ I ∩Q, and (iii) a

rational ϵ > 0, outputs in poly (size(y0,y, ϵ )) time a number ŷ ∈ I ∩Q and a sequence i1, i2, . . . , ik ∈
[t] such that

ŷ = Φik
(Φik−1 (· · ·Φi1 (y0) · · · )) and |ŷ − y | ≤ ϵ .

Proof. Let x1,x2 be rationals such that γx1x2 = −1 and x1 � ±x2. Let λ be such that 1 + γλ =
−γ (x1 + x2). Then, the fixpoints of the map Φ : x 
→ 1

1+γ (λ+x ) are x1 and x2, and at least one of the

two points is attracting.8 Denote by x0 the attracting fixpoint of Φ so that x0 satisfies Φ(x0) = x0

and 0 < |Φ′(x0) | < 1. By Lemma 5.2, there exists η > 0 such that for all x ∈ [x0 − η,x0 + η] and all
λ′ ∈ [λ − η, λ + η], it holds that

1 + γ (λ′ + x ) � 0 and
����� γ

(1 + γ (λ′ + x ))2
− γ

(1 + γ (λ + x0))2

����� ≤ 1

2
min

{
|Φ′(x0) |, 1 − |Φ′(x0) |

}
. (71)

Let r := |Φ
′(x0 ) |
4 η, δ := (r/4), and let λ∗1, . . . , λ

∗
t form a δ -covering of the interval [λ − η/2, λ + η/2].

Let λ1, . . . , λt be arbitrary rationals satisfying |λi − λ∗i | ≤ δ . For i ∈ [t], consider the maps Φi : x 
→
1

1+γ (λi+x ) . Finally, let I be the interval [x0 − r ,x0 + r ]. We will show the following properties:

Property 1: The maps {Φi }i ∈[t ] are contracting on the interval I , and
Property 2: I ⊆ Φ1 (I ) ∪ · · · ∪ Φt (I ).

Once these two properties of the maps {Φi }i ∈[t ] are proved, the algorithm in the statement of
the lemma and its analysis are almost identical to those of Bezáková et al. [4, Proof of Lemmas 12
& 26]. The only difference here is that the maps {Φi }i ∈[t ] have different expressions. The fact that
we need about the expression of the maps is that, for i ∈ [t] and for every rational x , Φ−1

i (x ) can
be computed in time poly (size(x , λi ,γ )). This is clear since Φ−1

i (x ) = 1
γ

( 1
x
− 1) − λi .

Proof of Property 1. Fix i ∈ [t]. We will show that Φi is contracting on the interval I . Ob-
serve that r < η/4 since |Φ′(x0) | < 1 and therefore δ < η/4 as well. Then, we have by the triangle
inequality that

|λi − λ | ≤ |λi − λ∗i | + |λ∗i − λ | ≤ δ + η/2 < η.

8To see this, note that Φ(x ) = x is equivalent to x (1 + γ λ) + γ x 2 = 1 and therefore x1 and x2 are (the only) fixpoints of Φ.
Moreover, we have that Φ′(x ) = − γ

(1+γ (λ+x ))2 and hence Φ′(x1) = −γ x 2
1 , Φ′(x2) = −γ x 2

2 . Therefore, |Φ′(x1) | � |Φ′(x2) |

and 1 = |γ x1x2 | =
√
|Φ′(x1) | |Φ′(x2) |. Therefore, either |Φ′(x1) | < 1 or |Φ′(x2) | < 1.
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Therefore, we can apply (71) to λ′ = λi and x ∈ I . Observe that Φ′(x ) = −γ/(1 + γ (λi + x ))2 and
Φ′(x0) = −γ/(1 + γ (λi + x0))2, and hence we obtain that for all x ∈ I , it holds that

|Φ′i (x ) | ≤ 1

2
(1 + |Φ′(x0) |) < 1.

It follows that the maps Φi are contracting on the interval I for all i ∈ [t].
Proof of Property 2. It suffices to consider an arbitrary y ∈ I and show that there exists j ∈ [t]

such that Φ−1
j (y) ∈ I . To do this, we set J to be the interval [x0 − η/2,x0 + η/2] and consider the

map Φ on the interval J . Then, (71) for λ′ = λ and x ∈ J gives that

0 <
1

2
|Φ′(x0) | ≤ |Φ′(x ) |,

and therefore, by the mean value theorem, for z,w ∈ J we have that

1

2
|Φ′(x0) | · |z −w | ≤ |Φ(z) − Φ(w ) |. (72)

We thus have that

|Φ(x0 + η/2) − x0 | = |Φ(x0 + η/2) − Φ(x0) | ≥ η |Φ′(x0) |/4 = r ,
|Φ(x0 − η/2) − x0 | = |Φ(x0 − η/2) − Φ(x0) | ≥ η |Φ′(x0) |/4 = r .

Since Φ is monotonically increasing and continuous on the interval J , we therefore obtain that I ⊆
Φ(J ). Thus, for arbitrary y ∈ I , it holds that Φ−1 (y) ∈ J , and hence from (72) applied to z = Φ−1 (y)
and w = Φ−1 (x0), we obtain that

|Φ−1 (y) − x0 | = |Φ−1 (y) − Φ−1 (x0) | ≤ (2/|Φ′(x0) |) (y − x0) ≤ η/2.

Since λ∗1, . . . , λ
∗
t is a δ -covering of the interval [λ − η/2, λ + η/2], it follows that there exists j ∈ [t]

such that ���λ + Φ−1 (y) − x0 − λ∗j
��� ≤ δ = r/4.

Now, observe that Φ−1
j (y) = 1

γ

(
1
y
− 1

)
− λj and Φ−1 (y) = 1

γ

(
1
y
− 1

)
− λ, so we have that

���Φ−1
j (y) − x0

��� = ����� 1γ
( 1

y
− 1

)
− λj − x0

����� = |λ + Φ−1 (y) − x0 − λj |

≤ |λ + Φ−1 (y) − x0 − λ∗j | + |λj − λ∗j | ≤ r/4 + r/4 = r/2.

It follows thaty ∈ Φj (I ), and therefore, sincey was arbitrary, we have that I ⊆ Φ1 (I ) ∪ · · · ∪ Φt (I ).
This completes the proof of Properties 1 and 2, and hence the proof of Lemma 5.11. �

We are now ready to give the proof of Lemma 5.4, which we restate here for convenience.

Lemma 5.4. Let Δ ≥ 3 be an integer and γ < − 1
4(Δ−1) be a rational number.

There is an algorithm which, on input a rational number λ and ϵ > 0, outputs in poly (size(λ, ϵ ))
time a bipartite graph G of maximum degree at most Δ that implements the vertex activity λ with

accuracy ϵ .

Proof of Lemma 5.4. Let x0,δ , r and λ∗1, λ
∗
2, . . . , λ

∗
t be the constants from Lemma 5.11. (x0, r and

δ are rationals with r ,δ > 0 and λ∗1, λ
∗
2, . . . , λ

∗
t are reals, for some positive integer t . These depend

on γ but they do not depend on λ and ϵ , which are the inputs to the algorithm described in this
lemma.) Set δ ′ = min{δ , r/2}. Let also λ∗0 be the rational number given by

1 + γ + γλ∗0 + γx0 = 0. (73)
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By Lemma 5.5, for i = 0, 1, . . . , t , there exists a bipartite graph Gi of maximum degree Δ which
implements the vertex activity λ∗i with accuracy δ ′ (once again, the size and time to con-

struct Gi is independent of λ and ϵ). Let vi be the terminal of Gi and set λi =
ZGi ,¬vi (γ )

ZGi (γ ) so that

λi ∈ [λ∗i − δ ′, λ∗i + δ ′]. Similarly, let H0 with terminal w0 be a bipartite graph of maximum de-

gree Δ which implements the vertex activity x0 with accuracy δ ′, and set y0 =
ZH0,¬w0 (γ )

ZH0 (γ ) so that

y0 ∈ [x0 − δ ′,x0 + δ
′].

Now, suppose that we are given inputs λ, ϵ ∈ Q with ϵ > 0 and we want to output in
poly (size(λ, ϵ )) time a bipartite graph of maximum degree Δ that implements the vertex activity λ
with accuracy ϵ . We will consider two cases for the range of λ.

Case I (λ away from 1). |λ − 1| ≥ 2/r . Let y be the rational given by

y = −
( 1

γ
+ λ0 + 1 +

1

λ − 1

)
so that

1 + γ (λ0 + y)

1 + γ (1 + λ0 + y)
= λ. (74)

From (73), we have that x0 = −( 1
γ
+ λ∗0 + 1), so using the triangle inequality we have that

|y − x0 | ≤ |λ0 − λ∗0 | +
1

|λ − 1| ≤ r/2 + r/2 = r .

Therefore,y belongs to the interval I := [x0 − r ,x0 + r ]. Note also that 1 + γ (1 + λ0 + y) =
γ

λ−1 � 0.
By Lemma 5.2, there exists ϵ ′ with size poly (size(y, ϵ )) = poly (size(λ, ϵ )) such that for all x

satisfying |x − y | ≤ ϵ ′, it holds that

1 + γ (1 + λ0 + x ) � 0 and
���� 1 + γ (λ0 + x )

1 + γ (1 + λ0 + x )
− 1 + γ (λ0 + y)

1 + γ (1 + λ0 + y)

���� ≤ ϵ . (75)

For i = 0, 1, . . . , t , let Φi be the map x 
→ 1
1+γ (λi+x ) for x � −(1 + γλi )/γ . Then, since each λi is a

rational in the interval [λ∗i − δ , λ∗i + δ] and y,y0 are rationals in the interval [x0 − r ,x0 + r ], using
the algorithm of Lemma 5.11 we obtain in time poly (size(y0,y, ϵ

′)) = poly (size(λ, ϵ )) a number ŷ
and a sequence i1, . . . , ik ∈ {1, . . . , t } such that

ŷ = Φik
(Φik−1 (· · ·Φi1 (y0) · · · )) and |ŷ − y | ≤ ϵ ′. (76)

Recall that H0 with terminal w0 implements the vertex activity y0. For j = 1, . . . ,k , we will de-
fine a graph Hj and a vertex w j in Hj which has degree 2 as follows. Take the graph Hj−1 and
a (new) copy of the graph Gi j

(that implements the vertex activity λi j
) and add a new vertex w j

whose neighbours are the vertex w j−1 of Hj−1 and the terminal vi j
of Gi j

. Since H0,G1, . . . ,Gt are
bipartite graphs with maximum degree Δ, we have that H1, . . . ,Hk are bipartite graphs with max-
imum degree Δ as well (using that Δ ≥ 3 and that w0,v1, . . . ,vt have degree 1 in H0,G1, . . . ,Gt ,
respectively). We will show by induction that for all j = 0, 1, . . . ,k , it holds that

ZHj
(γ ) � 0 and

ZHj ,¬w j
(γ )

ZHj
(γ )

= yj , where, for j ≥ 1, yj := Φi j
(Φi j−1 (· · ·Φi1 (y0) · · · )). (77)

Since H0 with terminal w0 implements y0, (77) is immediate for j = 0. Suppose that (77) holds for
some j ∈ {0, . . . ,k − 1}. Observe that

ZHj+1,¬w j+1 (γ ) = ZHj
(γ )ZGij

(γ ),

ZHj+1 (γ ) = ZHj
(γ )ZGij

(γ ) + γZHj ,¬w j
(γ )ZGij

(γ ) + γZHj
(γ )ZGij ,¬vij

(γ ).

Moreover, we have that yj+1 = Φi j
(yj ), which implies (using the definition of Φi j

) that yj � −(1 +
γλi j

)/γ . It follows that

ZHj+1 (γ ) = ZHj
(γ )ZGij

(γ )
(
1 + (γλi j+1 + yj )

)
� 0,
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and therefore
ZHj+1,¬wj+1 (γ )

ZHj+1 (γ ) = 1
1+γ (λij+1+yj ) = Φi j+1 (yj ) = yj+1. This completes the proof of (77).

From (77) with j = k and (76), we obtain that

ZHk
(γ ) � 0 and

ZHk ,¬wk
(γ )

ZHk
(γ )

= ŷ. (78)

Recall that G0 with terminal v0 implements the vertex activity λ0. Let G be the bipartite graph
obtained by taking the disjoint union of Hk and G0, connecting wk ,v0 to a new vertex z, and
connecting z to a new vertex v . Then, we have that

ZG,¬v (γ ) = ZHk
(γ )ZG0 (γ ) + γZHk ,¬wk

(γ )ZG0 (γ ) + γZHk
(γ )ZG0,¬v0 (γ ),

ZG (γ ) = ZG,¬v (γ ) + ZG,v (γ ) = ZG,¬v (γ ) + γZHk
(γ )ZG0 (γ ).

(79)

Using (78) and (79), it follows that

ZG (γ ) = ZHk
(γ )ZG0 (γ ) (1 + γ (1 + λ0 + ŷ)) � 0,

where the disequality follows from ZG0 (γ ) � 0 and the disequalities in (75) and (78) (the former is
applied for x = ŷ; (76) guarantees that (75) indeed applies). We thus obtain that G with terminal v

implements the vertex activity
ZG,¬v (γ )

ZG (γ ) =
1+γ (λ0+ŷ )

1+γ (1+λ0+ŷ ) which from (75) is within distance ϵ from λ,
as required.

Case II (λ close to 1). |λ − 1| < 2/r . We first consider the case where λ � 1. We can compute
rational numbers y1,y2 in time poly (size(λ)) such that |y1 − 1|, |y2 − 1| ≥ 2/r and

y1 + y2 = −
1

γ
− λ

λ − 1
, so that

1 + γ (y1 + y2)

1 + γ (1 + y1 + y2)
= λ. (80)

By Lemma 5.2, there exists ϵ ′ with size poly (size(y1,y2, ϵ )) = poly (size(λ, ϵ )) such that for all x1,x2

satisfying |x1 − y1 |, |x2 − y2 | ≤ ϵ ′, it holds that

1 + γ (1 + x1 + x2) � 0 and
���� 1 + γ (x1 + x2)

1 + γ (1 + x1 + x2)
− 1 + γ (y1 + y2)

1 + γ (1 + y1 + y2)

���� ≤ ϵ . (81)

By Case I, for i = 1, 2 we can construct a bipartite graph Ji of maximum degree Δ with terminal ui

that implements the vertex activityyi with accuracy ϵ ′ in time poly (size(yi , ϵ
′)) = poly (size(λ, ϵ )).

Let ŷi =
Z Ji ,¬ui (γ )

Z Ji
so that |ŷi − yi | ≤ ϵ ′. Therefore, from (80) and (81), we obtain that

1 + γ (1 + ŷ1 + ŷ2) � 0 and
���� 1 + γ (ŷ1 + ŷ2)

1 + γ (1 + ŷ1 + ŷ2)
− λ

���� ≤ ϵ . (82)

The rest of the argument is completely analogous to the last part of the argument in Case I. Namely,
let G be the bipartite graph of maximum degree Δ obtained by taking the disjoint union of J1 and
J2, connecting their terminals u1,u2 to a new vertex z, and connecting z to a new vertex u. Then,
we have that

ZG,¬u (γ ) = Z J1 (γ )Z J2 (γ ) + γZ J1,¬u1 (γ )Z J2 (γ ) + γZ J1 (γ )Z J2,¬u2 (γ ),

ZG (γ ) = ZG,¬u (γ ) + ZG,u (γ ) = ZG,¬u (γ ) + γZ J1 (γ )Z J2 (γ ).

It follows that

ZG (γ ) = Z J1 (γ )Z J2 (γ )
(
1 + γ (1 + ŷ1 + ŷ2)

)
� 0,

where the disequality follows from Z J1 (γ )Z J2 (γ ) � 0 (since J1, J2 implement ŷ1, ŷ2) and the dise-

quality in (82). We thus obtain that G with terminal u implements the vertex activity
ZG,¬u (γ )

ZG (γ ) =

1+γ (ŷ1+ŷ2 )
1+γ (1+ŷ1+ŷ2 ) which from (82) is within distance ϵ from λ, as required.
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To finish Case II, it remains to consider the case where λ = 1. Then we set ϵ ′ = min{2/r , ϵ }
and use the preceding method to implement the activity 1 + 1

2ϵ
′ � 1 with accuracy ϵ ′/2 in time

poly (size(ϵ ′)) = poly (size(ϵ )). The implemented vertex activity λ̂ satisfies by the triangle inequal-
ity |λ̂ − 1| ≤ ϵ ′ ≤ ϵ , as needed.

This completes the description and analysis of the algorithm in all cases, thus completing the
proof of Lemma 5.4. �

6 HARDNESS FOR BOUNDED CONNECTIVE CONSTANT

In this section, we prove Theorem 1.4. The basic idea is to take an instanceG with a parameter γ ∗

from a bounded-degree regime where hardness is already established and add gadgets that do
not change the connective constant so that the partition function of G may be deduced from the
partition function of a new instance G ′ with small connective constant, using the desired value
of γ .

Proof of Theorem 1.4. Recall that for an integer d ≥ 3, the set Bd is given by

Bd =

{
γ ∈ R | γ = − 1

4(d − 1) (cos θ )2
for some θ ∈ (0, π /2) which is a rational multiple of π

}
. (50)

Let S =
⋃

d ≥3 Bd , then we have that S is dense on the negative real axis. Henceforth, fix γ ∈ S
and fix arbitrary real numbers Δ > 1 and a, c > 0. We will next establish that Items 1 and 2 in the
statement of the theorem hold.

Let γ ∗ = −1. For each integer k ≥ 0, we will display a tree Tk with terminals uk ,vk that imple-
ments the edge activityγ ∗ = −1, whose terminalsuk andvk have distance at leastk inTk . Assuming
this for the moment, we can conclude the #P-hardness results of Items 1 and 2 as follows.

By Theorems 1.1 and 1.2, #BipMatchings(γ ∗, 3, 1.01) and #SignMatchings(γ ∗, 3) are #P-hard.
Set k ′ =

⌈
10 log2 Δ

⌉
, and set for convenience T ′ = Tk ′ , u ′ = uk ′ and v ′ = vk ′ . Denote also by n′ the

number of vertices in T ′. Let G = (V ,E) be a graph of maximum degree 3 and suppose that the
number of vertices |V | is sufficiently large such that 24(n′!)2 ≤ cΔa log2 ((n′−2) |V |) . Let G ′ = (V ′,E ′)
be the graph obtained from G by replacing each edge (z,w ) of G by a new copy of the treeT ′ and
identifying z and w with the terminals u ′ and v ′ of T ′. Note that |V ′ | ≥ (n′ − 2) |V |. Moreover, by
Lemma 5.10, we have that

ZG′ (γ ) = (ZT ′,¬u′,¬v ′ (γ )) |E | · ZG (γ ∗).

Using the #P-hardness results of Theorems 1.1 and 1.2, we therefore obtain that, to conclude Items 1
and 2, it only suffices to show that G ′ belongs to the family FΔ,a,c of graphs with connective
constant at most Δ and profile (a, c ). To do this, we will map a path P ′ of G ′ to a path P of G by
just considering the vertices ofG that the path P ′ traverses (recall from the preceding construction
that the terminals of the copies of the tree T ′ are identified to vertices of G). Since the terminals
u ′ and v ′ of T ′ are at distance ≥ k ′ in T ′, for a path P ′ of G with � edges we have that its image P
under the map has at most �/k ′ edges. Conversely, every path P inG is the image of at most 4(n′!)
paths P ′ in G ′ under the map (since T ′ is a tree, for every edge of P , the path P ′ must traverse the
unique path connecting the terminals u ′ andv ′ of the corresponding copy ofT ′; the only freedom
is for the choice of the starting and ending subpaths of P ′ which must be paths ofT ′, and there are
crudely at most 4(n′!)2 such paths). For any vertex v of G, there are at most 3 · 2�−1 paths with �
edges starting from v , so for any vertex w of G ′ we have that

�∑
i=1

NG′ (w, i ) ≤ 12(n′!)2
�∑

i=1

2 �i/k ′ �−1 ≤ 24(n′!)22�/k ′ ≤ cΔ� for all � ≥ a log |V ′ |.
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It follows that G ′ ∈ FΔ,a,c , completing the reduction assuming the existence of the sequence of
trees Tk implementing the edge activity γ ∗ = −1.

To construct the sequence of trees Tk , first note that since γ ∈ S , we have that γ ∈ Bd for some
d ≥ 3. In the proof of Lemma 5.5, we showed that for any such γ there exists a treeT of maximum
degree d with terminals u and v that implements the edge activity γ ∗ = −1 (perfectly), cf. the
relevant Lemmas 5.6 and 5.8. We will now bootstrap this construction as follows. For k ≥ 1, let Pk

be a path with k vertices (and k − 1 edges) and let uk ,vk be the endpoints of the path. Obtain the
tree T ′

k
from Pk by replacing every edge (z,w ) of the path Pk with a new copy of the tree T and

identifying the endpoints z and w of the edge with the terminals u and v of T . We will show that
for any integer k ≥ 0, the tree T ′6k+5 implements the edge activity γ ∗ = −1; the desired sequence
Tk is obtained by taking Tk = T

′
6k+5.

To prove that the treeT ′6k+5 implements the edge activityγ ∗ = −1, set for conveniencen = 6k + 5
and note that sinceT implements the edge activity γ ∗ = −1, it suffices by Lemma 5.10 to show that

ZPn,un,vn
(γ ∗)

ZPn,¬un,¬vn
(γ ∗)

= −1, ZPn,¬un,vn
(γ ∗) = ZPn,un,¬vn

(γ ∗) = 0. (83)

Using ZPi
(γ ∗) = ZPi−1 (γ ∗) + γ ∗ZPi−2 (γ ∗) for integer i ≥ 2, we obtain by induction on k that

ZP6k+1 (γ ∗) = 1,ZP6k+2 (γ ∗) = 0,ZP6k+3 (γ ∗) = −1,ZP6k+4 (γ ∗) = −1,ZP6k+5 (γ ∗) = 0,ZP6k+6 (γ ∗) = 1,

and therefore

ZPn,un,vn
(γ ∗) = (γ ∗)2ZPn−4 (γ ∗) = 1, ZPn,¬un,¬vn

(γ ∗) = ZPn−2 (γ ∗) = −1,
ZPn,¬un,vn

(γ ∗) = γ ∗ · ZPn−3 (γ ∗) = 0, ZPn,un,¬vn
(γ ∗) = γ ∗ · ZPn−3 (γ ∗) = 0.

This proves (83), and hence, for each integer k ≥ 0, the tree T ′6k+5 with terminals u3k+5,v3k+5 im-
plements the edge activity −1, completing the proof. �
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