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a b s t r a c t

The independent set polynomial is important in many areas of combinatorics, computer 
science, and statistical physics. For every integer � ≥ 2, the Shearer threshold is the 
value λ∗(�) = (� − 1)�−1/��. It is known that for λ < −λ∗(�), there are graphs G
with maximum degree � whose independent set polynomial, evaluated at λ, is at 
most 0. Also, there are no such graphs for any λ > −λ∗(�). This paper is motivated 
by the computational problem of approximating the independent set polynomial when 
λ < −λ∗(�). The key issue in complexity bounds for this problem is “implementation”. 
Informally, an implementation of a real number λ′ is a graph whose hard-core partition 
function, evaluated at λ, simulates a vertex-weight of λ′ in the sense that λ′ is the 
ratio between the contribution to the partition function from independent sets containing 
a certain vertex and the contribution from independent sets that do not contain that 
vertex. Implementations are the cornerstone of intractability results for the problem of 
approximately evaluating the independent set polynomial. Our main result is that, for any 
λ < −λ∗(�), it is possible to implement a set of values that is dense over the reals. The 
result is tight in the sense that it is not possible to implement a set of values that is 
dense over the reals for any λ > λ∗(�). Our result has already been used in a paper with 
Bezáková (STOC 2018) to show that it is #P-hard to approximate the evaluation of the 
independent set polynomial on graphs of degree at most � at any value λ < −λ∗(�). In 
the appendix, we give an additional incomparable inapproximability result (strengthening 
the inapproximability bound to an exponential factor, but weakening the hardness to NP-
hardness).

1. Introduction

The independent set polynomial is a fundamental object in computer science which has been studied with various 
motivations. From an algorithmic viewpoint, the evaluation of this polynomial is crucial for determining the applicability 
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of the Lovász Local Lemma and thus obtaining efficient algorithms for both finding [9] and approximately counting [5,8]
combinatorial objects with specific properties.

The independent set polynomial also arises in statistical physics, where it is called the hard-core partition function. Given 
a graph G , the value of the independent set polynomial of G at a point λ is equal to the value of the partition function of 
the hard-core model where the so-called “activity parameter” is equal to λ. We use the following notation. Given a graph G , 
let IG denote the set of independent sets in G . The weight of an independent set I ∈ IG is given by λ|I| . The hard-core 
partition function with parameter λ is defined as

ZG(λ) :=
∑
I∈IG

λ|I|. (1)

The evaluation of the hard-core partition function for λ < 0 has significant algorithmic interest due to its connection 
with the Lovász Local Lemma (LLL) and, more precisely, to the problem of checking when the LLL applies. Shearer, as part 
of his work [12] on the LLL, implicitly established that for every � ≥ 2, there is a threshold λ∗(�), given by λ∗(�) =
(� − 1)�−1/�� , such that

1. for all λ ≥ −λ∗(�), for all graphs G of maximum degree �, it holds that ZG (λ) > 0.
2. for all λ < −λ∗(�), there exists a graph G of maximum degree � such that ZG (λ) ≤ 0.

We refer to the point −λ∗(�) as the Shearer threshold. Scott and Sokal [11] were the first to realise the relevance of Shearer’s 
work to the phase transitions of the hard-core model, and to make explicit Shearer’s contribution in this context. From an 
algorithmic viewpoint, the Shearer threshold is tacitly present in most, if not all, applications of the (symmetric) LLL. In 
particular, Shearer [12] proved that λ∗(�) is the maximum value p such that in a probability space where each event 
occurs with probability at most p and each event is independent of all except at most � other events, there is a positive 
probability that no events occur.

A key concept in the hard-core model is that of “implementation”. A formal definition follows shortly. Informally, an im-
plementation of a real number λ′ is a graph whose hard-core partition function ZG(λ) simulates a vertex-weight of λ′ in the 
sense that λ′ is the ratio between the contribution to ZG(λ) from independent sets containing a certain vertex and the con-
tribution from independent sets that do not contain that vertex. Implementation is the cornerstone of all inapproximability 
results for the independence polynomial/hard-core partition function.

The main result of this paper (Theorem 1) is that if λ < −λ∗(�) then, for any real number λ′ and any desired error, 
there is a bipartite graph G of maximum degree at most � that implements the activity λ′ within the desired error.

We first give the necessary definitions, in order to state the result formally. We then describe the algorithmic conse-
quences.

1.1. Implementations

Let λ ∈R and let G = (V , E) be a graph. Given a vertex v ∈ V , define

Z in
G,v(λ) :=

∑
I∈IG ; v∈I

λ|I| and Z out
G,v(λ) :=

∑
I∈IG ; v /∈I

λ|I|.

Thus, Z in
G,v(λ) is the contribution to the partition function ZG(λ) from those independent sets I ∈ IG such that v ∈ I; 

similarly, Z out
G,v(λ) is the contribution to ZG (λ) from those I ∈ IG such that v /∈ I .

Definition 1 (Implementing an activity λ′). Fix λ ∈ R�=0. We say that the graph G implements the activity λ′ ∈ R with error 
ε > 0 if there is a vertex v in G such that Z out

G,v (λ) �= 0 and

1. v has degree one in G , and

2.
∣∣∣ Z in

G,v(λ)

Z out
G,v(λ)

− λ′
∣∣∣ ≤ ε .

We refer to the vertex v as the “terminal” of G .

Suppose that G implements λ′ with error 0 and that v is the terminal of G . It is clear from the definition that λ′ is 
the ratio between Z in

G,v(λ) and Z out
G,v(λ). To make use of this fact, reductions use the graph G as a “gadget” to simulate 

the activity λ′ . This technique is crucial in all inapproximability results for the hard-core partition function — the key to 
showing inapproximability for a fixed activity λ is to use λ to implement a dense set of activities λ′ . Our main result shows 
that this is possible for every λ below the Shearer threshold.
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Theorem 1. Let � ≥ 3 and λ < −λ∗(�). Then, for every λ′ ∈R, for every ε > 0, there exists a bipartite graph G of maximum degree 
at most � that implements λ′ with error ε .

Theorem 1 provides a sharp threshold in the sense that the theorem would be false for any λ > −λ∗(�). In particular, in 
the regime λ > −λ∗(�), Scott and Sokal [11] have shown that Z in

G,v (λ)/Z out
G,v(λ) > −1 for all graphs G of maximum degree 

� (and all vertices v in G).

1.2. Algorithmic consequences

Our Theorem 1 is a key ingredient in the work of [1] which demonstrates the intractability of approximating the inde-
pendent set polynomial all the way up to the Shearer threshold.

We first explain the result of [1] and then explain how it relies on our work. Taken together, Theorem 1 and Corollary 3 
of [1] show that, for any � ≥ 3 and λ < −λ∗(�), it is #P-hard to approximate the absolute value of ZG(λ) within a factor 
of 1.01, even when the input graph G , which has maximum degree at most �, is restricted to be bipartite.3 They show 
that, with the same restriction, it is also #P-hard to determine whether ZG (λ) is positive. As [1] explains, the value “1.01” 
in the statement of their Theorem 1 is not important — for any fixed ε > 0, Theorem 1 can be “powered up” to show that 
it is #P-hard to approximate |ZG(λ)| within a factor of 2n1−ε

, where n is the number of vertices of G .
The role of our current work in the result of [1] is that our Theorem, Theorem 1, is re-stated (and used) as Lemma 16 

of [1], and it is a key part of the proofs of those theorems.
One weakness of the results of [1] is that it is not known how to strengthen their theorems to show that it is #P-hard 

to approximate |ZG(λ)| within an exponential factor. However, this turns out to be the case, and is a result of our current 
work. In the appendix of this paper, we again use our main result, Theorem 1, to give another inapproximability result 
(Theorem 2) which shows that, with the same restrictions on �, λ and G , it is NP-hard to approximate |ZG(λ)| within an 
exponential factor.

Before turning to the proof of our main theorem, we briefly give the context of the algorithmic consequences. In addition 
to the Shearer threshold λ∗(�), there is another key threshold — the threshold of the uniqueness phase transition, which is 
given by λc(�) := (� − 1)�−1/(� − 2)� .

We have already noted that it is #P-hard to approximate the absolute value of ZG(λ) for λ < −λ∗(�). The following 
complementary results give a full characterisation of the complexity of this problem for real activities λ, apart from at the 
critical values −λ∗(�) and λc(�).

1. For −λ∗(�) < λ < λc(�), there is an FPTAS for approximating ZG(λ) on graphs G of maximum degree �; this follows by 
[7,10] for −λ∗(�) < λ < 0 (see also [14]) and by [15] for 0 < λ < λc(�).4

2. For λ > λc(�), it is NP-hard to approximate |ZG(λ)| on graphs G of maximum degree �, even within an exponential 
factor; this follows by [13].

2. Proof of the theorem

We start with some useful definitions. If a graph G implements an activity λ′ ∈ R with error 0 then we say that G
implements λ′ . We use the following definition to avoid explicit mention of the graph G .

Definition 2. Let � ≥ 2 be an integer and λ ∈R�=0. We say that (�, λ) implements the activity λ′ ∈R if there is a bipartite
graph G of maximum degree at most � which implements the activity λ′ . More generally, we say that (�, λ) implements a 
set of activities S ⊆R, if for every λ′ ∈ S it holds that (�, λ) implements λ′ .

Using this notation, Theorem 1 says is � ≥ 3 and λ < −λ∗(�) then (�, λ) implements a set of activities S which is 
dense in R.

2.1. Overview of the proof

In this section, we give an overview of the proof of Theorem 1. We also state the main lemmas that we need, and use 
them to prove the theorem. The remaining sections contain a proof of the main lemmas.

Consider a degree bound � ≥ 3. In order to prove Theorem 1, we will show that for any fixed λ < −λ∗(�), we can 
implement a dense set of activities using bipartite graphs of maximum degree �. At a very rough level, the proof of 
Theorem 1 splits into two regimes:

1. when λ < −λ∗(2) = −1/4,

3 The paper [1] also considered the case where λ is a complex number, but that is beyond the scope of this paper.
4 The case λ = 0 is trivial since ZG (λ) = 1 for all graphs G .
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2. when −1/4 ≤ λ < −λ∗(�).

Roughly, in regime 1, we will be able to use paths to implement a dense set of activities. In regime 2, we will first use a 
(� −1)-ary tree to implement an activity λ′ < −1/4. Then, using the activity λ′ , we will be able to use the path construction 
of the first regime to implement a dense set of activities.

Unfortunately, the actual proof is more intricate, since as it turns out there is a set B ⊂ R, dense in (−∞, −1/4), 
such that, if λ ∈ B, paths exhibit a periodic behaviour in terms of implementing activities (and thus can only be used to 
implement a finite set of activities). The following lemma will be important in specifying the set B and understanding this 
periodic behaviour. The proof is given in Section 2.2.

Lemma 1. Let λ < −1/4 and θ ∈ (0, π/2) be such that λ = −1/(2 cos θ)2 . Then, the partition function of the path Pn with n vertices 
is given by

Z Pn (λ) = sin((n + 2)θ)

2n(cos θ)n sin(2θ)
.

The “bad” set B of activities (for which paths exhibit a periodic behaviour) can be read off from Lemma 1. To make this 
precise, let

B :=
{
λ ∈R | λ = − 1

4(cos θ)2
for some θ ∈ (0,π/2) which is a rational multiple of π

}
. (2)

Note, for example, that −1, −1/2, −1/3 ∈ B (set θ = π/3, π/4, π/6, respectively). For λ < −1/4, it is not hard to infer 

from Lemma 1 that the ratio 
Z in

Pn ,v (λ)

Zout
Pn ,v (λ)

is equal to − 1
2 cos θ

sin(nθ)
sin((n+1)θ)

(cf. the upcoming equation (9)). Therefore, when λ ∈ B or 

equivalently θ is a rational multiple of π , the ratio is periodic in terms of the number of vertices n in the path. On the other 
hand, when λ < −1/4 and λ /∈ B, then we can show that the ratio is dense in R as n varies (this follows essentially from 
the fact that {nθ mod 2π | n ∈Z} is dense on the circle when θ is irrational) and hence we can use paths to implement a 
dense set of activities. This is the scope of the next lemma, which is proved in Section 2.2.

Lemma 2. Let λ < −1/4 be such that λ /∈ B. Let Pn denote a path with n vertices and let v be one of the endpoints of Pn. Then, for 
every λ′ ∈R, for every ε > 0, there exists n such that∣∣∣ Z in

Pn,v(λ)

Z out
Pn,v(λ)

− λ′
∣∣∣ ≤ ε.

When λ ∈ B, we can no longer use paths to implement a dense set of activities, as we explained earlier, and we need to 
use a more elaborate argument. A key observation is that, for λ ∈ B, the partition function of a path of appropriate length 
is equal to 0. In particular, we have the following simple corollary of Lemma 1.

Corollary 1. Let λ < −1/4 be such that λ ∈ B. Denote by Pn the path with n vertices. Then, there is an integer n ≥ 1 such that the 
partition function of the path Pn is zero, i.e., Z Pn (λ) = 0.

Proof. Since λ ∈ B, there exists θ ∈ (0, π/2) which is a rational multiple of π such that λ = −1/(2 cos θ)2. Write θ = p
q π

for positive integers p, q satisfying gcd(p, q) = 1. Note that q ≥ 3 since θ ∈ (0, π/2). By Lemma 1, we have that Z Pq−2 (λ) = 0, 
as wanted. �

Having a path P whose partition function equals 0 allows us to implement the activity −1: indeed, for an endpoint v

of the path P , we have that Z in
P ,v (λ) + Z out

P ,v(λ) = Z P (λ) = 0, and hence P , with terminal v , implements 
Z in

P ,v (λ)

Zout
P ,v (λ)

= −1 (note, 

we will later ensure that P is such that Z out
P ,v (λ) �= 0). Recall that −1 ∈ B, so the theorem doesn’t follow from Lemma 2. 

Instead, after generalising the partition function to allow non-uniform activities, and then using the given activity λ, and 
also the activity −1 that we have already implemented, a somewhat ad-hoc gadget (see Fig. 2) allows us to also implement 
the activity +1. Using these two implemented activities, −1 and +1, we then show how to implement all rational numbers 
using graphs whose structure resembles a caterpillar (the proof is inspired by the “ping-pong” lemma in group theory, used 
to establish free subgroups). We carry out this scheme in a more general setting where, instead of a path, we have a tree 
whose partition function is zero (this will also be relevant in the regime λ > −1/4). More precisely, we have the following 
lemma.

Lemma 3. Suppose that λ ∈R�=0 and that T is a tree with ZT (λ) = 0. Let d be the maximum degree of T and let � = max{d, 3}. Then, 
(�, λ) implements a dense set of activities in R.
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The proof of Lemma 3 is given in Section 2.4. It is immediate to combine Lemma 2, Corollary 1, and Lemma 3 to obtain 
the following.

Lemma 4. Let λ < −1/4. Then, for � = 3, (�, λ) implements a dense set of activities in R.

Proof. We may assume that λ ∈ B, otherwise the result follows directly from Lemma 2. For λ ∈ B, we have by Corollary 1
a path P such that Z P (λ) = 0. Since P has maximum degree 2, applying Lemma 3 gives the desired conclusion. �

Note that Lemma 4 applies only for values of λ which are far from the threshold −λ∗(�) for any � ≥ 3 and thus it 
should not be surprising that we can implement a dense set of activities using graphs of maximum degree 3. This highlights 
the next obstacle that we have to address: for general degree bounds � ≥ 3, to get all the way to the threshold −λ∗(�)

we need to use graphs with maximum degree � (rather than just 3) to have some chance of implementing a dense set of 
activities.

Analyzing more complicated graphs for � ≥ 3 and −1/4 ≤ λ < −λ∗(�) might sound daunting given the story for λ <
−1/4, but it turns out that all we need to do is construct a (bipartite) graph G of maximum degree � that implements 
an activity λ′ < −1/4. Then, to show that (�, λ) implements a dense set of activities, we only need to consider whether 
λ′ ∈ B. If λ′ /∈ B, we can argue by decorating the paths from Lemma 2 using the graph G . Otherwise, if λ′ ∈ B, we can 
first construct a tree T of maximum degree � such that Z T (λ) = 0 (by decorating the path from Corollary 1), and then 
invoke Lemma 3. Thus, we are left with the task of implementing an activity λ′ < −1/4. For that, we combine appropriately 
(� − 1)-ary trees of appropriate depth, which can be analysed relatively simply using a recursion. (A technical detail here 
is that, initially, we are not able to implement this boosted activity λ′ in the sense of Definition 2 since the terminal of the 
relevant tree has degree bigger than 1; nevertheless, the degree of the terminal is at most � − 2, so it can be combined 
with the paths without overshooting the degree bound �.)

Putting together these pieces yields the following lemma, which is proved in Section 2.5.

Lemma 5. Let � ≥ 3 and −1/4 ≤ λ < −λ∗(�). Then, (�, λ) implements a dense set of activities in R.

Using Lemmas 4 and 5, the proof of our main theorem, Theorem 1, is now immediate. We restate the theorem here for 
convenience.

Theorem 1. Let � ≥ 3 and λ < −λ∗(�). Then, for every λ′ ∈R, for every ε > 0, there exists a bipartite graph G of maximum degree 
at most � that implements λ′ with error ε .

Proof. If λ < −1/4, the lemma follows by Lemma 4. If −1/4 ≤ λ < −λ∗(�), the lemma follows by Lemma 5. �
In the remainder of this section, we give the proofs of Lemmas 1, 2, 3, and 5.

2.2. Using paths for implementing activities—proof of Lemmas 1 and 2

In this section, we prove Lemmas 1 and 2. We start with Lemma 1, which we restate here for convenience.

Lemma 1. Let λ < −1/4 and θ ∈ (0, π/2) be such that λ = −1/(2 cos θ)2 . Then, the partition function of the path Pn with n vertices 
is given by

Z Pn (λ) = sin((n + 2)θ)

2n(cos θ)n sin(2θ)
.

Proof. For n = −1, 0, . . . consider the sequence rn given by

rn := sin((n + 2)θ)

2n(cos θ)n sin(2θ)
.

Also, for n ≥ 1, let xn = Z Pn (λ) denote the partition function of the path Pn . It will be useful to extend the sequence xn for 
n = −1, 0 by setting x−1 = x0 = 1. We will show that

for integer n ≥ −1 it holds that xn = rn, (3)

which clearly yields the lemma (by restricting to n ≥ 1).
To prove (3), note that by considering whether the start of the path belongs to an independent set of Pn , we have that 

for all n ≥ 3 it holds that
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Z Pn (λ) = Z Pn−1(λ) + λZ Pn−2(λ), or equivalently xn = xn−1 + λxn−2. (4)

In fact, since Z P1 (λ) = 1 + λ and Z P2 (λ) = 1 + 2λ, our choice of x−1 = 1 and x0 = 1 ensures that the second equality in (4)
holds for all integer n ≥ 1. Using the identity sin(2θ) = 2 sin θ cos θ , we see that r−1 = r0 = 1, so (3) will follow by showing 
that for all n ≥ 1, it holds that

rn = rn−1 + λrn−2 = rn−1 − 1

4(cos θ)2
rn−2. (5)

The trigonometric identity sin(x + y) + sin(x − y) = 2 sin x cos y gives for x = (n + 1)θ , y = θ that

sin((n + 2)θ) = 2 sin((n + 1)θ) cos θ − sin(nθ).

By dividing this with 2n(cos θ)n sin(2θ) �= 0, we obtain (5), as wanted. �
To prove Lemma 2, we will use the following couple of technical lemmas.

Lemma 6. Let a1, b1, a2, b2 ∈R be such that a1b2 �= a2b1 and a2
2 + b2

2 = 1. Then, for every x ∈R, there exist u, t ∈R such that

a2u + b2t �= 0, x = a1u + b1t

a2u + b2t
, u2 + t2 = 1.

Proof. First, note that from a1b2 �= a2b1 we have that

for every x′ ∈R, at least one of a1 − a2x′ �= 0, b1 − b2x′ �= 0 holds, (6)

for every u′, t′ ∈ R with u′2 + t′2 = 1, at least one of a1u′ + b1t′ �= 0, a2u′ + b2t′ �= 0 holds. (7)

To see (6), assume for the sake of contradiction that for some x′ ∈ R we had a1 − a2x′ = b1 − b2x′ = 0. Then, we would 
have that a1b2 = (a2x′)b2 = a2(b2x′) = a2b1, contradicting a1b2 �= a2b1. To see (7), for the sake of contradiction, assume that 
for some u′, t′ ∈R with u′ 2 + t′ 2 = 1 we had a1u′ + b1t′ = a2u′ + b2t′ = 0. Since u′ 2 + t′ 2 = 1, we may assume w.l.o.g. that 
u′ �= 0. Then, we would have that a1b2 = (−b1t′/u′)b2 = (−b2t′/u′)b1 = a2b1, contradicting again a1b2 �= a2b1.

Let x ∈ R be arbitrary. By applying (6) to x′ = x, we may assume w.l.o.g. that a1 − a2x �= 0.5 Let u, t be such that 
u = − b1−b2x

a1−a2x t and u2 + t2 = 1. Such u, t clearly exist since, in the (u, t)-plane, the first equality is a line through the origin 
and the second is the unit circle. We claim that u, t satisfy the statement of the lemma. Indeed, the equality u = − b1−b2x

a1−a2x t
gives

x(a2u + b2t) = a1u + b1t. (8)

By (7), at least one of a1u + b1t �= 0, a2u + b2t �= 0 holds, so from (8), we obtain that a2u + b2t �= 0, yielding also that 
x = a1u+b1t

a2u+b2t , as claimed. �
Lemma 7. Let θ1, θ2 ∈ R be such that sin θ2 �= 0. There exist positive constants η, M such that for all φ with |φ| ≤ η, it holds that 
sin(θ2 + φ) �= 0 and∣∣∣∣ sin(θ1 + φ

)
sin

(
θ2 + φ

) − sin θ1

sin θ2

∣∣∣∣ ≤ M|φ|.

Proof. Let η > 0 be sufficiently small so that sin(θ2 + x) �= 0 for all x ∈ [−η, η] (such an η exists since sin θ2 �= 0). Consider 
the function f (x) = sin(θ1+x)

sin(θ2+x) defined on the interval I := [−η, η]. By the choice of η, the function f is well-defined through-
out the interval I and has continuous derivative. Set M := maxx∈I | f ′(x)|. Then, for all φ ∈ I , we have by the Mean Value 
theorem that | f (φ) − f (0)| ≤ M|φ|, as wanted. �

We are now ready to prove Lemma 2, which we restate here for convenience.

Lemma 2. Let λ < −1/4 be such that λ /∈ B. Let Pn denote a path with n vertices and let v be one of the endpoints of Pn. Then, for 
every λ′ ∈R, for every ε > 0, there exists n such that∣∣∣ Z in

Pn,v(λ)

Z out
Pn,v(λ)

− λ′
∣∣∣ ≤ ε.

5 If a1 − a2x = 0, then b1 − b2x �= 0 and in the subsequent argument one would take u, t such that t = − a1−a2 x
b −b x u and u2 + t2 = 1.
1 2
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Proof of Lemma 2. Let θ ∈ (0, π/2) be such that λ = −1/(2 cos θ)2; since λ < −1/4, θ exists and it is unique in the interval 
(0, π/2). From λ /∈ B, we have that θ is not a rational multiple of π .

For all integer n ≥ 3, it holds that

Z in
Pn,v(λ) = λZ Pn−2(λ), Z out

Pn,v(λ) = Z Pn−1(λ).

Since θ is not a rational multiple of π , by Lemma 1 we have that Z out
Pn,v(λ) �= 0. Hence, for all n ≥ 3, we have

Z in
Pn,v(λ)

Z out
Pn,v(λ)

= − 1

2 cos θ
Wn, where Wn := sin(nθ)

sin((n + 1)θ)
. (9)

In fact, it is not hard to see by explicit algebra that (9) is valid for n = 1, 2 as well (this can also be inferred from the proof 
of Lemma 1). Thus, to prove the lemma, we only need to show that, for all w ∈ R �=0, for all ε > 0, there exists a positive 
integer n such that |Wn − w| ≤ ε (the following argument can also account for w = 0, by modifying the choice of ε ′ below, 
but w ∈R�=0 is already sufficient for the density argument and hence we do not need to explicitly do so).

Consider an arbitrary w ∈ R�=0 and ε > 0. By Lemma 6 applied to a1 = 1, b1 = 0, a2 = cos θ, b2 = sin θ and x = w , there 
exist u, t such that u2 + t2 = 1 and

u cos θ + t sin θ �= 0, w = u

u cos θ + t sin θ
.

Since u2 + t2 = 1 and w �= 0, there is a unique θ∗ ∈ (0, 2π) such that u = sin θ∗ and t = cos θ∗ . For later use, note that with 
this parametrisation of u, t we have u cos θ + t sin θ = sin(θ + θ∗) and hence

sin(θ + θ∗) �= 0, w = sin θ∗

sin(θ + θ∗)
.

Let η, M > 0 be the constants in Lemma 7 obtained by setting θ1 = θ∗ and θ2 = θ + θ∗ . In particular, we have that for all 
φ satisfying |φ| ≤ η, it holds that sin(θ + θ∗ + φ) �= 0 and∣∣∣∣ sin(θ∗ + φ)

sin(θ + θ∗ + φ)
− sin θ∗

sin(θ + θ∗)

∣∣∣∣ ≤ M|φ|. (10)

Let ε′ := min{η, ε/M, θ∗, 2π − θ∗, 5θ/π} > 0. Using the fact that θ is not a rational multiple of π , we will show that there 
exist integers n ≥ 1, m ≥ 0 such that

|nθ − (2πm + θ∗)| ≤ ε′. (11)

Before proving this, let us first conclude that for n as in (11), it holds that |Wn − w| ≤ ε .
Set φ := nθ − (2πm + θ∗) and observe that

sin(nθ) = sin(θ∗ + φ), sin((n + 1)θ) = sin(θ + θ∗ + φ).

From (11) and the choice of ε′ , we have that |φ| ≤ η and |φ| ≤ ε/M , so using (10) we obtain that

|Wn − w| =
∣∣∣∣ sin(nθ)

sin((n + 1)θ)
− sin θ∗

sin(θ + θ∗)

∣∣∣∣ =
∣∣∣∣ sin(θ∗ + φ)

sin(θ + θ∗ + φ)
− sin θ∗

sin(θ + θ∗)

∣∣∣∣ ≤ M|φ| ≤ ε,

as wanted.
It remains to prove (11). By Dirichlet’s approximation theorem, there exist positive integers n′, m′ such that n′ ≤ ⌈

10/ε′⌉
and 

∣∣n′ θ
2π − m′| ≤ ε′/10. We thus have that∣∣n′θ − 2m′π | ≤ ε′.

Let z := n′θ − 2m′π and note that z �= 0 since θ is not a rational multiple of π . We consider two cases depending on the 
sign of z.

Case 1. z > 0. By the choice of ε′ , we have that ε′ ≤ θ∗ , and hence z ≤ θ∗ . Consider the positive integer

k := �θ∗/z� =
⌊ θ∗

n′θ − 2m′π

⌋
.

We claim that (11) holds with n = kn′ and m = km′ . Indeed, by the definition of k, n, m we have that

nθ − 2mπ ≤ θ∗ < nθ − 2mπ + z, so that |nθ − (2mπ + θ∗)| ≤ |z| ≤ ε′.
200



A. Galanis, L.A. Goldberg and D. Štefankovič
Case 2. z < 0. By the choice of ε′ , we have that ε′ ≤ 2π − θ∗ , and hence 0 < −z ≤ 2π − θ∗ . Consider the positive integer

k := �(θ∗ − 2π)/z� =
⌊ 2π − θ∗

2m′π − n′θ

⌋
.

We claim that (11) holds with n = kn′ and m = km′ − 1. Indeed, by the definition of k, n, m we have that

z < 2mπ + θ∗ − nθ ≤ 0, so that |nθ − (2mπ + θ∗)| ≤ |z| ≤ ε′.

This concludes the proof of (11) and hence the proof of Lemma 2. �
2.3. The ratio Rλ(G, v) and a simple way to implement activities

Let λ ∈ R�=0. To prove Lemmas 3 and 5, it will be sometimes more convenient to work with the ratio 
Zout

G,v (λ)

ZG (λ)
(rather 

than 
Z in

G,v (λ)

Zout
G,v (λ)

). Formally, let G = (V , E) be a graph such that ZG (λ) �= 0. Then, for a vertex v ∈ V , we will be interested in the 

quantity Rλ(G, v) defined as

Rλ(G, v) := Z out
G,v(λ)

ZG(λ)
.

The following simple lemma shows how to implement activities using the quantities Rλ(G, v).

Lemma 8. Let λ ∈R�=0 and r ∈ R. Let G ′ be a graph and u be a vertex of G ′ such that r = Rλ(G ′, u). Consider the graph G obtained 
from G ′ by adding a new vertex v whose single neighbour is the vertex u. Then,

Z out
G,v(λ) �= 0 and

Z in
G,v(λ)

Z out
G,v(λ)

= λr.

Proof. Note that Z out
G,v(λ) = ZG ′ (λ) �= 0, where the disequality follows from the fact that the quantity Rλ(G ′, u) is well-

defined. Then, observe that

Z in
G,v(λ)

Z out
G,v(λ)

= λZ out
G ′,u(λ)

ZG ′(λ)
= λ · Rλ(G ′, u) = λr. �

It is instructive at this point to note the following consequence of Lemma 8: to show that (�, λ) implements an activity 
λ′ , it suffices to construct a bipartite graph G with maximum degree at most � which has a vertex v whose degree is at 
most � − 1 such that Rλ(G, v) = λ′/λ.

2.4. The case where the partition function of some tree is zero — proof of Lemma 3

In this section, we prove Lemma 3. We start by defining a multivariate version of the hard-core partition function.

2.4.1. The hard-core model with non-uniform activities
Implementing activities can be thought of as constructing unary gadgets that allow modification of the activity at a 

particular vertex v . We will use the implemented activities to simulate a more general version of the hard-core model with 
non-uniform activities. In particular, let G = (V , E) be a graph and λ = {λv}v∈V be a real vector; we associate to every 
vertex v ∈ V the activity λv . The hard-core partition function with activity vector λ is defined as

ZG(λ) :=
∑
I∈IG

∏
v∈I

λv .

Note that the standard hard-core model with activity λ is obtained from this general version by setting all vertex activities 
equal to λ. For a vertex v ∈ V , we define Z in

G (λ) and Z out
G (λ) for the non-uniform model analogously to Z in

G (λ) and Z out
G (λ)

for the uniform model, respectively.
The following lemma connects the partition function ZG (λ) with non-uniform activities to the hard-core partition func-

tion with uniform activity λ. Roughly, whenever all the activities in the activity vector λ can be implemented, we can just 
stick graphs on the vertices of G which implement the corresponding activities in λ (if a vertex activity equals λ, no action 
is required).
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v1

(a) The graph G1 with terminal v1 implementing an activity λ′
1

v2

(b) The graph G2 with terminal v2 implementing an activity λ′
2

1

λ1 = λ′
1

2

λ2 = λ′
2

3

λ3 = λ

4

λ4 = λ′
1

(c) The graph G with activity vector λ

1 2 3 4

(d) The graph G ′ with uniform activity λ

Fig. 1. An illustrative depiction of the construction in the statement of Lemma 9. The graphs G1, G2 in Figs. 1a, 1b implement the activities λ′
1, λ′

2, respec-

tively, i.e., Z in
G1 ,v1

(λ)

Zout
G1 ,v1

(λ)
= λ′

1 and Z in
G2 ,v2

(λ)

Zout
G2 ,v2

(λ)
= λ′

2 for some λ′
1, λ′

2 ∈R. In Fig. 1c, we have a graph G with non-uniform activities {λi}i∈[4] such that λi ∈ {λ, λ′
1, λ′

2}
for i ∈ [4]. By sticking onto G the graphs G1, G2 as in Fig. 1d, we obtain the graph G ′ . Note that the vertex whose activity was equal to λ was not modified.

Lemma 9. Let λ ∈R�=0 , let t ≥ 1 be an arbitrary integer and let λ′
1, . . . , λ

′
t ∈R. Suppose that, for j ∈ [t], the graph G j with terminal 

v j implements the activity λ′
j , and let C j := Z out

G j ,v j
(λ). Then, the following holds for every graph G = (V , E) and every activity vector 

λ = {λv}v∈V such that λv ∈ {λ, λ′
1, . . . , λ

′
t} for every v ∈ V .

For j ∈ [t], let V j := {v ∈ V | λv = λ′
j}. Consider the graph G ′ obtained from G by attaching, for every j ∈ [t] and every vertex 

v ∈ V j , a copy of the graph G j to the vertex v and identifying the terminal v j with the vertex v (see Fig. 1). Then, for C := ∏t
j=1 C

|V j |
j , 

it holds that

ZG ′(λ) = C · ZG(λ), (12)

∀v ∈ V : Z in
G ′,v(λ) = C · Z in

G,v(λ), Z out
G ′,v(λ) = C · Z out

G,v(λ). (13)

Remark 1. Note that, in the construction of Lemma 9, every vertex v ∈ G with λv = λ maintains its degree in G ′ (in fact, 
the neighbourhood of such a vertex v is the same in G and G ′). The degree of every other vertex v in G gets increased by 
one. This observation will ensure in applications of Lemma 9 that we do not blow up the degree.

Note also that, if the graph G is bipartite and the graphs G j are bipartite for all j = 1, . . . , t , then the graph G ′ in the 
construction of Lemma 9 is bipartite as well. This observation will ensure in applications of Lemma 9 that we preserve the 
bipartiteness of the underlying graph G .

Proof of Lemma 9. For an independent set I of G , let 	I = {I ′ ∈ IG ′ | I ′ ∩ V = I}, i.e., 	I is the set of independent sets in G ′
whose restriction on G is the independent set I . We will show that

∑
I ′∈	I

λ|I ′| = C ·
∏
v∈I

λv , (14)

where C = ∏t
j=1 C

|V j |
j is as in the statement of the lemma. Note that the sets {	I }I∈IG are a partition of the set IG ′ of 

independent sets of G ′ , so summing (14) over I ∈ IG yields (12). Analogously, for any vertex v of the graph G , we may sum 
(14) over those I ∈ IG such that v ∈ I to obtain the first equality in (13); by summing over those I ∈ IG such that v /∈ I , we 
also obtain the second equality in (13). We thus focus on proving (14).

Let V 0 = V \(V 1 ∪ · · · Vt), i.e., V 0 consists of all the vertices in G such that λv = λ. Further, for each j ∈ [t] and v ∈ V j , 
denote by G v

j the copy of the graph G j which is attached to v . Consider the product

P := λ|V 0∩I|
t∏

j=1

∏
v∈V j∩I

Z in
G v

j ,v(λ)
∏

v∈V j\I

Z out
G v

j ,v(λ).

We claim that P = ∑
I ′∈	I

λ|I ′| . Indeed, using the definition of Z in
G v ,v(λ) and Z out

G v ,v(λ), we can rewrite P as

j j
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v

λv = λ

1

λ1 = −1

2

λ2 = −1

3

λ3 = λ

4

λ4 = λ

5

λ5 = −1

6

λ6 = −1

7

λ7 = λ

8

λ8 = −1

Fig. 2. The bipartite graph G with nonuniform activities λ used in Lemma 10 to prove that we can implement the activity +1. We show that Z in
G,v (λ) =

Zout
G,v (λ) = −λ2, see (15). By invoking Lemma 9, we obtain a bipartite graph G ′ with uniform activities equal to λ and whose terminal is the vertex v such 

that Z in
G′ ,v

(λ)

Zout
G′ ,v

(λ)
= Z in

G,v (λ)

Zout
G,v (λ)

= +1. It follows that G ′ implements the activity +1.

P = λ|V 0∩I|
t∏

j=1

∏
v∈V j∩I

( ∑
I ′∈IG v

j
;v∈I ′

λ|I ′|
) ∏

v∈V j\I

( ∑
I ′∈IG v

j
;v /∈I ′

λ|I ′|
)

.

By multiplying out the last expression, we recover precisely the sum 
∑

I ′∈	I
λ|I ′| .

To prove (14), it thus remains to massage P into the r.h.s. of (14). Let j ∈ [t] and v ∈ V j . By construction, G v
j is a copy of 

G j and v has been identified with the terminal v j of G j , so Z in
G v

j ,v(λ) = Z in
G j ,v j

(λ) and Z out
G v

j ,v(λ) = Z out
G j ,v j

(λ). Recall also that 

G j implements λ′
j and, in particular, λv = λ′

j = Z in
G j ,v j

(λ)/Z out
G j ,v j

(λ). It follows that for every j ∈ [t] it holds that

∏
v∈V j∩I

Z in
G v

j ,v(λ)
∏

v∈V j\I

Z out
G v

j ,v(λ) =
∏

v∈V j∩I

Z in
G j ,v j

(λ)
∏

v∈V j\I

Z out
G j ,v j

(λ) = C
|V j |
j (λv)|V j∩I|,

where we recall that C j = Z out
G j ,v j

(λ). By multiplying this over j ∈ [t], we obtain that P = C · ∏v∈I λv , as wanted. This proves 
(14) and completes the proof of Lemma 9. �
2.4.2. The proof of Lemma 3

Having extended the hard-core model to have non-uniform activities, we proceed with the proof of Lemma 3. We start 
with the following lemma.

Lemma 10. Let λ ∈R�=0 and d ≥ 2 be a positive integer. Suppose that there is a tree T with maximum degree d such that Z T (λ) = 0. 
Then, for � = max{d, 3}, we have that (�, λ) implements the activities −1 and +1.

Proof. Part I. We first prove that (�, λ) implements the activity −1.
If λ = −1, we have that the path P with length 3 implements the activity −1, since for an endpoint u of P it holds 

that Z out
P ,u(λ) = 1 + 3λ + λ2 = −1 and Z in

P ,u(λ) = λ(1 + 2λ) = 1. (The reason that we use a path of length 3 rather than a 
single-vertex path is to ensure that the terminal of the path has degree 1, as Definition 2 requires. This will be technically 
convenient in the upcoming proof of Lemma 11.)

We will therefore assume that λ �= −1. By assumption, there exists a tree T of maximum degree d satisfying Z T (λ) = 0. 
Among the trees T of maximum degree at most d satisfying Z T (λ) = 0, let T ∗ be a tree which has the minimum number of 
vertices. Since the partition function of a single-vertex graph is 1 +λ �= 0, we have that the tree T ∗ has at least two vertices. 
We thus conclude that for every leaf u of T it holds that Z out

T ∗,u(λ) �= 0: if not, the tree T ∗\u satisfies ZT ∗\u(λ) = Z out
T ∗,u(λ) = 0, 

contradicting the minimality of T ∗ .
Let u be an arbitrary leaf of the tree T ∗ . Since

0 = ZT ∗(λ) = Z in
T ∗,u(λ) + Z out

T ∗,u(λ) and Z out
T ∗,u(λ) �= 0,

we have that the tree T ∗ (with terminal u) implements the activity 
Z in

T ∗,u(λ)

Zout
T ∗,u(λ)

= −1. This completes the proof that (�, λ)

implements the activity −1.
Part II. We next show that (�, λ) implements the activity +1.
We will make use of the hard-core model with non-uniform activities, cf. Section 2.4.1. In particular, consider the (bipar-

tite) graph G in Fig. 2, with vertex activities that are also given in the figure. We will use λ to denote the activity vector on 
G . By enumerating the independent sets I of G , we compute
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Z in
G,v(λ) = λvλ3(1 + λ5 + λ7 + λ8 + λ5λ7)

+ λv(1 + λ2)(1 + λ4 + λ5 + λ6 + λ7 + λ8

+ λ4λ6 + λ4λ7 + λ4λ8 + λ5λ6 + λ5λ7 + λ6λ8 + λ4λ6λ8)

= −λ2,

Z out
G,v(λ) = λ3(1 + λ1)(1 + λ5 + λ7 + λ8 + λ5λ7)

+ (1 + λ1 + λ2)(1 + λ4 + λ5 + λ6 + λ7 + λ8

+ λ4λ6 + λ4λ7 + λ4λ8 + λ5λ6 + λ5λ7 + λ6λ8 + λ4λ6λ8)

= −λ2.

(15)

Since (�, λ) implements the activity −1 by the first part of the proof, we may invoke Lemma 9 (see also Remark 1) to 
obtain a bipartite graph G ′ = (V ′, E ′) of maximum degree � such that v ∈ V ′ and

Z in
G ′,v(λ)

Z out
G ′,v(λ)

= Z in
G,v(λ)

Z out
G,v(λ)

= +1.

Further, by the construction in Lemma 9, v continues to have degree 1 in G ′ . It follows that G ′ (with terminal v) implements 
the activity +1, as wanted. This completes the proof of Lemma 10. �

The following functions f+ and f− will be important in what follows:

f+ : R\{−1} �→ R\{0}, given by f+(x) = 1

1 + x
for all x �= −1,

f− : R\{+1} �→ R\{0}, given by f−(x) = 1

1 − x
for all x �= +1.

Definition 3. Let S ⊆ R be the set of real numbers defined as follows: z ∈ S iff for some integer n ≥ 0, there exists a 
sequence x0, . . . , xn such that x0 = 0, xn = z and for all i = 0, . . . , n − 1 it holds that

either xi+1 = f+(xi) or xi+1 = f−(xi).

In other words, the set S in Definition 3 can be obtained by the following recursive procedure. Initialise S0 = {0}. For 
h = 0, 1, . . ., define Sh+1 by first letting S+

h+1 = f+(Sh) and S−
h+1 = f−(Sh) and then setting Sh+1 = S+

h+1 ∪ S−
h+1. The set S

can then be recovered by taking the union of the sets Sh , i.e., S = ∪∞
h=0 Sh .

Our interest in the set S is justified by the following lemma.

Lemma 11. Let � ≥ 3 and λ < 0. Suppose that (�, λ) implements the activities −1 and +1. Then, (�, λ) also implements the set of 
activities {λz | z ∈ S}, where S ⊆R is given in Definition 3.

Proof. For simplicity, we drop the λ’s from notation, i.e., we will just write ZG , Z out
G,v , Z in

G,v instead of ZG (λ), Z out
G,v(λ), Z in

G,v(λ).
Since (�, λ) implements the activities −1 and +1, we have that there exist bipartite graphs G+, G− of maximum degree 

at most � with terminals v+, v− , respectively, such that

Z out
G+,v+ �= 0 and

Z in
G+,v+

Z out
G+,v+

= +1, Z out
G−,v− �= 0 and

Z in
G−,v−

Z out
G−,v−

= −1.

Recall also (from Definitions 1 and 2) that v+, v− have degree 1 in G+ and G− , respectively.
Consider an arbitrary z ∈ S . Then, there exists a sequence x0, . . . , xn such that x0 = 0, xn = z and for all i = 0, . . . , n − 1 it 

holds that

either xi+1 = f+(xi) or xi+1 = f−(xi).

For i = 0, . . . , n, we will construct inductively a bipartite graph Gi of maximum degree � and specify a vertex ui in Gi with 
degree at most 2 such that R(Gi, ui) = xi . Using this for i = n in conjunction with Lemma 8 yields that (�, λ) implements 
λz, as wanted.

We begin with the base case i = 0. Consider the graph G obtained by adding a new vertex u to the graph G− and 
connecting u and v− with an edge. Note that G is bipartite and has maximum degree at most �; also, u has degree 1 in 
G . Further, we have
204



A. Galanis, L.A. Goldberg and D. Štefankovič
Z out
G,u = ZG− = Z in

G−,v− + Z out
G−,v− = 0,

ZG = Z in
G,u + Z out

G,u = Z in
G,u = λ · Z out

G−,v− �= 0.

It follows that R(G, u) = Z out
G,u/ZG = 0, which completes the proof for i = 0 by setting G0 = G and u0 = u.

For the induction step, let i be an integer satisfying 0 ≤ i ≤ n − 1 and assume that Gi is a bipartite graph of maximum 
degree at most � such that R(Gi, ui) = xi for some vertex ui whose degree is at most two. Let s ∈ {+, −} be such that 
xi+1 = f s(xi).

Let G be the bipartite graph obtained as follows: take a copy of Gs , a copy of Gi and connect the vertices vs and ui with 
an edge. Note that G has maximum degree � since the only vertices whose degree has increased (by one) are the vertices 
ui and vs; the vertex vs has degree two in G and ui has degree at most three.

We next show that R(G, vs) = xi+1 which establishes the induction step by setting Gi+1 = G and ui+1 = vs . We have 
that

Z out
G,vs

= Z out
Gs,vs

ZGi , Z in
G,vs

= Z in
Gs,vs

Z out
Gi ,ui

, ZG = Z in
G,vs

+ Z out
G,vs

,

so that

R(G, vs) = Z out
G,vs

ZG
= Z out

Gs,vs
ZGi

Z out
Gs,vs

ZGi + Z in
Gs,vs

Z out
Gi ,vi

= 1

1 + Z in
Gs ,vs

Zout
Gs ,vs

xi

= f s(xi) = xi+1.

This concludes the proof of Lemma 11. �
It is simple to see that all numbers in the set S of Definition 3 are rationals. Somewhat surprisingly, the following lemma 

asserts that S is in fact the set Q of all rational numbers.

Lemma 12. Let S ⊆R be the set in Definition 3. Then, S =Q, i.e., S is the set of all rational numbers.

Proof. As noted earlier, it is simple to see that S ⊆Q. Thus, we only need to argue that Q ⊆ S .
Since 0 ∈ S (by taking n = 0 in Definition 3) and f+(0) = 1, we have that 0, 1 ∈ S . Note that

f−( f−( f+(x))) = −x for x �= −1,0. (16)

It follows that −1 ∈ S . Observe also that 1
2 , 2 ∈ S since f+( f+(0)) = 1/2 and f−( f+( f+(0))) = 2.

Let T := {−1, 0, 1/2, 1, 2}; the arguments above established that T ⊆ S . Consider an arbitrary ρ ∈Q such that ρ /∈ T . To 
prove the lemma, we need to show that ρ ∈ S .

We will show that, for some integer n ≥ 0, there is a sequence {ρi}n
i=0 such that

(i) ρ0 = ρ , ρn = −1.
(ii) ρi /∈ {0, 1/2, 1} for i = 0, . . . , n − 1.

(iii) ρi+1 = f+(ρi) or ρi+1 = f−(ρi) for i = 0, . . . , n − 1.

Before proving the existence of such a sequence, we first show how to conclude that ρ ∈ S . To do this, let xi := ρn−i for 
i = 0, . . . , n. Properties (i)–(iii) of the sequence {ρi}n

i=0 translate into the following properties of the sequence {xi}n
i=0:

(a) x0 = −1, xn = ρ .
(b) xi /∈ {0, 1/2, 1} for i = 1, 2, . . . , n.
(c) xi = f −1+ (xi−1) or xi = f −1− (xi−1) for i = 1, 2, . . . , n.

We show by induction on i that xi ∈ S for all i = 0, . . . , n, which for i = n gives that ρ ∈ S (since by Item (a) we have 
xn = ρ). For the base case i = 0, we have that x0 = −1 by Item (a) and hence x0 ∈ S . For the induction step, assume that 
xi ∈ S for some integer 0 ≤ i ≤ n − 1, our goal is to show that xi+1 ∈ S . The main observation is that the inverses of the 
functions f− and f+ can be obtained by composing appropriately the functions f− and f+ . Namely, we have that

f −1− (x) = x − 1

x
= f−( f−(x)) for x �= 0,1, (17)

f −1+ (x) = 1 − x

x
= f−( f−( f+( f−( f−(x)))))) for x �= 0, 1

2 ,1. (18)

(17) is proved by just making the substitutions. (18) is obtained from (16) and (17), and checking when f−( f−(x)) = x−1
x

equals −1 and 0. Since by Items (a) and (b) we have that x j �= 0, 1/2, 1 for all 0 ≤ j ≤ n and xi ∈ S by the induction 
hypothesis, it follows by Item (c) and (17), (18) that xi+1 ∈ S , as wanted.
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It remains to establish the existence of the sequence {ρi}n
i=0 with the properties (i)–(iii). Consider the following set Sρ , 

which is defined analogously to the set S with the only difference that the starting point for Sρ is the point ρ (instead of 
0 that was used in the definition of S). Formally, z ∈ Sρ iff for some integer n ≥ 0, there exists a sequence {ρi}n

i=0 such that 
ρ0 = ρ , ρn = z and for all i = 0, . . . , n − 1 it holds that either ρi+1 = f+(ρi) or xi+1 = f−(ρi). For convenience, we will call 
such a sequence a certificate that z ∈ Sρ and we will refer to n as the length of the certificate.

We will show that, for any ρ ∈Q such that ρ /∈ T = {−1, 0, 1/2, 1, 2}, it holds that

0,1 /∈ Sρ, −1 ∈ Sρ. (19)

Prior to that, let us use (19) to establish the existence of the desired sequence. Among all certificates that −1 ∈ Sρ , consider 
one with the smallest possible length, which we will denote by {ρi}n

i=0. (The existence of such a certificate is guaranteed by 
(19).) We claim that the sequence {ρi}n

i=0 has all of the required properties (i), (ii), and (iii). By the definition of a certificate 
and since ρn = −1, we have that the sequence {ρi}n

i=0 satisfies automatically properties (i) and (iii). To prove property (ii), 
we argue that ρi /∈ {0, 1/2, 1} for all integers 0 ≤ i ≤ n. We cannot have an i such that ρi = 0 or ρi = 1 since this would 
contradict that 0, 1 /∈ Sρ (by (19)). Suppose then that ρi = 1/2 for some i. We have that i > 0 since ρ0 = ρ �= 1/2. Thus, it 
must be that either ρi = f+(ρi−1) or ρi = f−(ρi−1); in the former case, we have that ρi−1 = 1, contradicting that 1 /∈ Sρ , 
and in the latter case, we have that ρi−1 = −1, contradicting that {ρi}n

i=0 was a certificate of smallest length certifying that 
−1 ∈ Sρ .

To complete the proof, we only need to establish (19). First, we show that 0, 1 /∈ Sρ . Observe that ρ �= 0, 1, so any 
certificate that 0, 1 ∈ Sρ must have nonzero length. Further, the range of the functions f+, f− excludes 0, which implies 
that 0 /∈ Sρ . Moreover, the only way that we can have 1 ∈ Sρ is if for some x ∈ Sρ it holds that f+(x) = 1 or f−(x) = 1. Both 
of these mandate that x = 0, but 0 /∈ Sρ as we just showed.

The remaining bit of (19), i.e., that −1 ∈ Sρ , will require more effort to prove. As a starting point, note that from ρ ∈Q, 
we have that Sρ ⊆ Q. Also, Sρ is nonempty since ρ ∈ Sρ . Thus, there exists z∗ ∈ Sρ such that z∗ = p/q where p, q are 
integers such that |p| + |q| is minimum. Since |p| + |q| is minimum, it must be the case that gcd(p, q) = 1.

We first prove that z∗ ∈ T ; note, we already know that z∗ �= 0, 1 since 0, 1 /∈ Sρ and z∗ ∈ Sρ , but keeping the values 0, 1
into consideration will be convenient for the upcoming argument. Namely, for the sake of contradiction, assume that z∗ /∈ T , 
which implies in particular that z∗ �= 0, −1. Since z∗ ∈ Sρ , by (16), we obtain that −z∗ ∈ Sρ as well. By switching to −z∗
if necessary, we may thus assume that z∗ is positive and hence that p, q > 0, i.e., that both p, q are positive integers. Since 
z∗ �= 1 (from z∗ /∈ T ), we have that p �= q. For each of the cases p > q and p < q, we obtain a contradiction to the minimality 
of p + q by constructing z′ = p′/q′ ∈ Sρ with p′, q′ positive integers such that 0 < p′ + q′ < p + q.

Case 1. p > q. Since z∗ �= 1, 2 (from z∗ /∈ T ), we have that p/q �= 1 and f−(p/q) = q
q−p �= 0, −1, so by (16) we have that

f−( f−( f+( f−(p/q)))) = q

p − q
.

Thus, letting p′ = q and q′ = p − q yields z′ = p′/q′ ∈ Sρ with p′ > 0, q′ > 0 and 0 < p′ + q′ < p + q.
Case 2. p < q. Since z∗ �= 0, 1/2, 1 (from z∗ /∈ T ), by (18) we have that

f−( f−( f+( f−( f−(p/q)))))) = q − p

p
.

Thus, letting p′ = q − p and q′ = p yields z′ = p′/q′ ∈ Sρ with p′ > 0, q′ > 0 and 0 < p′ + q′ < p + q.

This concludes the proof that z∗ ∈ T . In fact, we can now deduce easily that −1 ∈ Sρ . As noted earlier, we have that z∗ �= 0, 1
as a consequence of 0, 1 /∈ Sρ , so in fact z∗ ∈ {−1, 1/2, 2}. If z∗ = −1, then we automatically have that −1 ∈ Sρ since z∗ was 
chosen to be in Sρ . If z∗ = 2, then we have that 2 ∈ Sρ and hence f−(2) = −1 ∈ Sρ as well. Finally, if z∗ = 1/2, we have 
that 1/2 ∈ Sρ and hence f−( f−(1/2)) = −1 ∈ Sρ . Thus, it holds that −1 ∈ Sρ , which completes the proof of (19).

This concludes the proof of Lemma 12. �
We are now ready to prove Lemma 3.

Lemma 3. Suppose that λ ∈R�=0 and that T is a tree with ZT (λ) = 0. Let d be the maximum degree of T and let � = max{d, 3}. Then, 
(�, λ) implements a dense set of activities in R.

Proof of Lemma 3. By Lemma 10, (�, λ) implements the activities −1 and +1. Thus, by Lemma 11, we have that (�, λ)

also implements the set of activities {λz | z ∈ S}, where S ⊆ R is given in Definition 3. By Lemma 12, we have that S = Q
and hence (�, λ) implements a dense set of activities in R, as wanted (since λ �= 0). �
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2.5. Proof of Lemma 5

In this section, we give the proof of Lemma 5, which is the final missing piece that was used in the proof of Theorem 1.
Recall from Section 2.3 that the ratio Rλ(G, v) is defined as Z out

G,v (λ)/ZG(λ), whenever ZG(λ) �= 0. The following standard 
lemma gives a recursive procedure to compute Rλ(G, v) and will thus be useful in studying the activities that (�, λ)

implements.

Lemma 13. Let λ ∈ R�=0 . Let G be a connected graph and let v be a vertex all of whose neighbours are in different components of 
G\v. Denote by G1, . . . , Gd the connected components of G\v and by v1, . . . , vd the neighbours of v in G1, . . . , Gd. Assume that 
ZG1 (λ), . . . , ZGd (λ) �= 0.

Then, ZG(λ) = 0 iff 
∏d

i=1 Rλ(Gi, vi) = −1/λ. Further, if ZG(λ) �= 0, it holds that

Rλ(G, v) = f
(

Rλ(G1, v1), . . . , Rλ(Gd, vd)
)
, where f (x1, . . . , xd) := 1

1 + λ
∏d

i=1 xi

.

Proof. For convenience, we drop the λ’s from notation. Using that ZG1 , . . . , ZGd �= 0, we have that

ZG = Z in
G,v + Z out

G,v = λ

d∏
i=1

Z out
Gi ,vi

+
d∏

i=1

ZGi =
( d∏

i=1

ZGi

)(
λ

d∏
i=1

R(Gi, vi) + 1
)
,

and thus ZG = 0 iff 
∏d

i=1 R(Gi, vi) = −1/λ. Also, we have

R(G, v) = Z out
G,v

Z in
G,v + Z out

G,v

=
∏d

i=1(Z in
Gi ,vi

+ Z out
Gi ,vi

)

λ
∏d

i=1 Z out
Gi ,vi

+ ∏d
i=1(Z in

Gi ,vi
+ Z out

Gi ,vi
)

= 1

1 + λ
∏d

i=1 R(Gi, vi)
. �

We will also need the following technical lemma.

Lemma 14. Let λ ∈R. Then, for all x �= −1, there exist positive constants η, M > 0 such that for all x′ with |x − x′| ≤ η, it holds that∣∣∣ λ

1 + x
− λ

1 + x′
∣∣∣ ≤ M|x − x′|.

Proof. We may assume that λ �= 0, otherwise the result is trivial. The proof is analogous to that of Lemma 7. In particular, 
since x �= −1, there exists η > 0 such that 1 + x′ �= 0 for all x′ such that |x − x′| ≤ η. Consider the function f (y) = λ/(1 + y)

for y in the interval I = [x′ − η, x′ + η]. Then, f ′(y) is well-defined and continuous in the interval I , so by letting M =
maxy∈I | f ′(y)|, we obtain the result. �

We are now ready to prove Lemma 5, which we restate here for convenience.

Lemma 5. Let � ≥ 3 and −1/4 ≤ λ < −λ∗(�). Then, (�, λ) implements a dense set of activities in R.

Proof. For convenience, let d := � − 1. Also, let A := −λ so that A > 0; in fact, the condition −1/4 ≤ λ < −λ∗(�) translates 
into the bounds 1/4 ≥ A > dd/(d + 1)d+1.

For an integer h ≥ 0, let Th denote the d-ary tree of height h and denote the root of the tree by ρ . For all h such that 
ZTh (λ) �= 0, let xh = Rλ(Th, ρ).

Part I. We show that there exists an h such that ZTh (λ) �= 0 and xh ≥ (1/A)1/d .
For the sake of contradiction, assume otherwise. Then,

for all h ≥ 0, either ZTh (λ) = 0 or xh < (1/A)1/d. (20)

In the following, we first exclude the possibility that Z Th (λ) = 0 for some h, so that we can use the recursion from Lemma 13
to study the range of the sequence {xh}∞h=0. In particular, assuming (20), we first prove by induction that, for all h ≥ 0, the 
following hold. ((21) is just used for the proof of (22), later we will only appeal to (22).)

ZTh (λ) �= 0, (21)

xh ∈ [0, (1/A)1/d), xh+1 = f (xh) where f (x) = 1

1 − Axd
. (22)

For h = 0, we have that T0 is the single vertex graph, so ZT0 (λ) = 1 +λ �= 0 and hence x0 = 1/(1 +λ) = 1/(1 − A) ≥ 0. Since 
ZT0 (λ) �= 0, (20) yields that x0 < (1/A)1/d . For the induction step, assume that (21) and (22) hold for some integer h, we 
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will prove them for h + 1 as well. Since Th+1\ρ consists of d disconnected copies of Th and ZTh (λ) �= 0 by (21), we may 
apply Lemma 13. In particular, since (1/A)1/d > xh ≥ 0 by (22), we have that −1/λ = 1/A > (xh)d and hence the first part of 
Lemma 13 yields that ZTh+1 (λ) �= 0, so that xh+1 is well-defined. Further, by (20), we obtain that xh+1 < (1/A)1/d . Now, we 
note that the second part of Lemma 13 applies, so that xh+1 = f (xh) where the function f is as in (22). Since xh < (1/A)1/d , 
this in turn implies that xh+1 ≥ 0 as well. This completes the induction.

Thus, assuming (20), we have established that the values xh are well-defined for all h and that they satisfy the recursion 
in (22). We will reach a contradiction to (20) by showing that the sequence xh shoots over (1/A)1/d . To do this, we will use 
that the sequence xh is increasing by proving that, for all A > dd/(d + 1)d+1, it holds that

f (x) > x for all x ∈ [0, (1/A)1/d). (23)

To see this, note that

f (x) − x = 1 − x + Axd+1

1 − Axd
,

and hence to show (23) it suffices to show that g(x) := 1 − x + Axd+1 > 0 for all x ∈ [0, (1/A)1/d). Note that g′(x) =
(d + 1)Axd − 1, so g(x) ≥ g(z0) where z0 satisfies Azd

0 = 1/(d + 1). Then

g(z0) = 1 + z0(Azd
0 − 1) = 1 − dz0

d + 1
= 1 − d

A1/d(d + 1)(d+1)/d
> 0,

where in the last inequality we used that A > dd/(d + 1)d+1. By (22) and (23), we obtain that the sequence xh is strictly 
increasing. Since xh ∈ [0, (1/A)1/d) it must converge to a limit x∗ ∈ [0, (1/A)1/d] satisfying f (x∗) = x∗ . By (23), it must be 
the case that x∗ = (1/A)1/d which is a contradiction to (22) since f (x) ↑ ∞ as x ↑ (1/A)1/d . Thus, our assumption (20) is 
false and, in particular, there is an integer h ≥ 0 such that Z Th (λ) �= 0 and xh ≥ (1/A)1/d .

Part II. We next show how to use Part I to conclude the proof of the lemma. Let ̂λ := λ(xh)d−1. The key observation that 
will allow us to use the analysis of the paths is that ̂λ < −1/4. Indeed, we have that

λ̂ ≤ −A(1/A)(d−1)/d = −A1/d < − d

(d + 1)(d+1)/d
< −1/4, (24)

where the last inequality holds for all d ≥ 2. To utilise this, we need to construct graphs that simulate the hard core model 
with activity ̂λ on paths.

In particular, let Pn = (V , E) denote the path with n vertices and v be one of the endpoints of Pn . Let Gn = (Vn, En)

be the tree obtained from Pn as follows. For each vertex w ∈ V of the path, take d − 1 distinct copies of the tree Th and 
connect w to the roots of these trees. Note that the degree of the vertex v in Gn is d = � − 1, while every other vertex of 
Pn which is not an endpoint has degree d + 1 = � in Gn .

We claim that

Z out
Pn,v

(̂
λ
) = Z out

Gn,v(λ)(
ZTh (λ)

)(d−1)n
, Z in

Pn,v

(̂
λ
) = Z in

Gn,v(λ)(
ZTh (λ)

)(d−1)n
, Z Pn

(̂
λ
) = ZGn(λ)(

ZTh (λ)
)(d−1)n

. (25)

Indeed, let I be an independent set of Pn and consider the set 	I of independent sets of Gn whose restriction on V
coincides with I . Then, we have that∑

I ′∈	I

λ|I ′| =
∏
u∈I

λ
(

Z out
Th,ρ(λ)

)d−1 ∏
u /∈I

(
ZTh (λ)

)d−1 = (
ZTh (λ)

)(d−1)n (̂
λ
)|I|

. (26)

Observe also that the sets {	I }I∈IPn
form a partition of the set IGn of independent sets of Gn . Thus, summing (26) over 

all I ∈ IPn such that v /∈ I yields the first equality in (25), summing (26) over all I ∈ IPn such that v ∈ I yields the second 
equality in (25), and, finally, summing (26) over all I ∈ IPn yields the third equality in (25).

Using the fact that λ̂ < −1/4 by (24) and equation (25), we can now complete the proof of the lemma, by considering 
cases whether ̂λ ∈ B.

Case 1. λ̂ ∈ B. By Corollary 1, there exists an integer n ≥ 1 such that Z Pn

(̂
λ
) = 0. Using the third equality in (25), we have 

that Gn is a tree of maximum degree � such that ZGn (λ) = 0. It follows by Lemma 3 that (�, λ) implements a dense set of 
activities in R as wanted.

Case 2. λ̂ /∈ B. In this case, we have that for all n ≥ 1 it holds that Z Pn

(̂
λ
) �= 0 (this follows from Lemma 1 and the definition 

(2) of the set B; note that for λ < −1/4, there is a unique value of θ ∈ (0, π/2) such that λ = −1/(2 cos θ)2). Hence, we 
also have that Z out

Pn,v

(̂
λ
) = Z Pn−1

(̂
λ
) �= 0.6 It follows from (25) that ZGn (λ), Z out

Gn,v(λ) �= 0 as well.

6 For n = 1, we have Zout
P ,v

(̂
λ
) = 1 (the only independent set I of P1 such that v /∈ I is the empty one).
n
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In this case, our goal is to apply the path implementation of Lemma 2 in combination with (25). Note however that the 
degree of v in Gn is � − 1 instead of one that is required for implementations, so we will add to the graph Gn a new vertex 
v ′ whose single neighbour is the vertex v . We denote this graph by G ′

n , and note that, just as Gn , G ′
n is a tree of maximum 

degree �. For all integers n ≥ 1, using that ZGn (λ), Z out
Gn,v(λ) �= 0, we have that

Z in
G ′

n,v ′(λ)

Z out
G ′

n,v ′(λ)
= λZ out

Gn,v(λ)

Z out
Gn,v(λ) + Z in

Gn,v(λ)
= λ

1 + Z in
Gn ,v (λ)

Zout
Gn ,v (λ)

.

Let λg be an activity that we wish to implement with error ε > 0. From the definition of a dense set, we may assume that 
λg �= λ. Let λ′ = (λ − λg)/λg and note that λ′ /∈ {−1, 0}. Let η, M > 0 be the constants in Lemma 14 when applied to x = λ′ , 
so that for all x′ ∈ [λ′ − η, λ′ + η] it holds that∣∣∣ λ

1 + x′ − λ

1 + λ′
∣∣∣ =

∣∣∣ λ

1 + x′ − λg

∣∣∣ ≤ M|x′ − λ′|. (27)

Further, let ε′ := min{η, ε/M}. By the path implementation of Lemma 2, there exists n such that

∣∣∣ Z in
Pn,v

(̂
λ
)

Z out
Pn,v

(̂
λ
) − λ′

∣∣∣ ≤ ε′, and hence by (25) we obtain
∣∣∣ Z in

Gn,v(λ)

Z out
Gn,v(λ)

− λ′
∣∣∣ ≤ ε′.

Since ε′ ≤ η and ε′ ≤ ε/M , by (27) we obtain

∣∣∣ Z in
G ′

n,v ′(λ)

Z out
G ′

n,v ′(λ)
− λg

∣∣∣ =
∣∣∣ λ

1 + Z in
Gn ,v (λ)

Zout
Gn ,v (λ)

− λ

1 + λ′
∣∣∣ ≤ M

∣∣∣ Z in
Gn,v(λ)

Z out
Gn,v(λ)

− λ′
∣∣∣ ≤ ε.

Thus, G ′
n with terminal v ′ implements the activity λg with error ε > 0, as desired.

This completes the proof of Lemma 5. �
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Appendix A. Application — an intractability result

Section 1.2 already discussed one intractability result that uses our Theorem 1. In particular, [1, Theorem 1] shows that, 
for any ε > 0, � ≥ 3 and λ < −λ∗(�), it is #P-hard to approximate the absolute value of ZG(λ) within a factor of 2n1−ε

, 
where n is the number of vertices of G (which is bipartite and has maximum degree at most �). In this appendix, we again 
use Theorem 1 to obtain an incomparable hardness result, Theorem 2, which shows that, with the same restrictions on �, 
λ and G , it is NP-hard to approximate |ZG(λ)| within an exponential factor.7

A.1. Preliminaries on antiferromagnetic 2-spin systems on �-regular graphs

In our setting, where every vertex has degree at most �, an implementation consumes one of the � slots that a vertex 
has available to connect to other vertices. This is particularly problematic for the case where � = 3. In the following we 
circumvent this problem by constructing suitable binary gadgets, so that we can use inapproximability results for computing 
the partition function of antiferromagnetic 2-spin systems on �-regular graphs.

An antiferromagnetic 2-spin system (without an external field) is specified by two parameters β, γ > 0 such that βγ < 1. 
Let M = {Mij}i, j∈{0,1} be the matrix 

[ β 1
1 γ

]
. For a graph H = (V , E), configurations of the 2-spin system are assignments 

σ : V → {0, 1} and the weight of a configuration σ is given by w H,β,γ (σ ) = ∏
{u,v}∈E Mσ(u),σ (v) . The partition function of H

is then given by

Z H,β,γ =
∑

σ :V →{0,1}
w H,β,γ (σ ) =

∑
σ :V →{0,1}

∏
{u,v}∈E

Mσ (u),σ (v).

For positive parameters β, γ and c > 1, we consider the following computational problem, where the input is a 3-regular 
graph H .

7 Note also the earlier NP-hardness result of [6, Theorem 4.4] which shows, for � ≥ 62 and λ < −39/�, that a PTAS would imply NP=RP.
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Name #2Spin(β, γ , c).
Instance An n-vertex graph H which is 3-regular.
Output A number Ẑ such that c−n Z H,β,γ ≤ Ẑ ≤ cn Z H,β,γ .

The case β = γ < 1 corresponds to the well-known (antiferromagnetic) Ising model. As a corollary of results of Sly and 
Sun [13] (see also [4]), it is known that, for 0 < β = γ < 1/3, there exists c > 1 such that #2Spin(β, β, c) is NP-hard, 
i.e., approximating the partition function ZG,β,β of the Ising model on 3-regular graphs H is NP-hard, even within an 
exponential factor.8 The following lemma is somewhat less known but follows easily from the results of [13].

Lemma 15. Let � = 3 and β, γ be such that 0 < β, γ < 1/3. Then, there exists c > 1 such that #2Spin(β, γ , c) is NP-hard.

Proof. Sly and Sun [13] give a sufficient condition on the range of β, γ such that the conclusion of the lemma holds (the 
condition is in fact tight apart, perhaps, from certain boundary cases). Our goal is thus to verify that all β, γ in the square 
0 < β, γ < 1/3 lie within the range where the result of [13] applies.

The condition in [13] asks that, for the 2-spin system specified by β and γ , the 3-regular tree exhibits non-uniqueness. 
This is somewhat implicit for our purposes, so we will instead use the following algebraic criterion which is well-known in 
the area (see, e.g., [2, Section 3.1] for a detailed discussion). The 3-regular tree has non-uniqueness (for the 2-spin system 
specified by β, γ ) iff the equations

x =
(β y + 1

y + γ

)2
, y =

(βx + 1

x + γ

)2
(28)

admit a solution x, y > 0 with x �= y (note, there is always a solution with x = y > 0). To verify this, consider the quadratic 
equation

Az2 + Bz + C = 0, where

A := (β2 + γ )2, B := −1 + (β2 + 2γ )(2β + γ 2), C := (β + γ 2)2.
(29)

We will show that for all 0 < β, γ < 1/3, the quadratic equation admits two solutions z1, z2 > 0 with z1 �= z2. Then, we 
will show that x = z1 and y = z2 satisfies (28), thus verifying the condition of non-uniqueness on the 3-regular tree and, 
consequently, proving the lemma by applying the result of [13].

So, suppose that β, γ are such that 0 < β, γ < 1/3. Note that the discriminant of the equation (29) is strictly positive, 
since

B2 − 4AC = (1 − βγ )2(1 − 4β3 − 6βγ − 3β2γ 2 − 4γ 3) > 0,

where the last inequality follows from 0 < β, γ < 1/3. Since A > 0, B < 0, C > 0, we conclude that (29) has two positive 
solutions z1, z2 > 0 which satisfy z1 �= z2.

It remains to show that z1, z2 satisfy (28). We only need to show the first equality since the second follows by swapping 
the roles of z1, z2. Note that z1 + z2 = −B/A, so we only need to show that

− B

A
− z1 =

(βz1 + 1

z1 + γ

)2
or, by multiplying out, Az1(z1 + γ )2 + A(βz1 + 1)2 + B(z1 + γ )2 = 0.

Using the values of A, B, C in (29) and in particular that A + Bγ 2 = C(β2 + 2γ ) and A(2β + γ 2) = C + Bβ2, we obtain the 
factorisation (z1 + β2 + 2γ )(Az2

1 + Bz1 + C) = 0, which is clearly true since z1 is a root of (29).
This concludes the proof of Lemma 15. �
The following lemma will be used in the proof of Theorem 2 to specify the activities that we need to implement to 

utilise the inapproximability result of Lemma 15. It allows us to use the graph in Fig. 3 as a binary gadget to simulate a 
2-spin system with parameters β, γ .

Lemma 16. Let λ < 0. Then, there exist λ′
1, λ

′
2 such that

−2 − 1

3
|λ|1/3 < λ′

1 < min
{

− 2,−2 − |λ|2/3 − 1

3|λ|1/3 + 1

}
, −1 < λ′

2 < −1 − λ′
1(λ

′
1 + 2 + 1

3 |λ|1/3)

1 + 1
3 |λ|1/3

. (30)

For all λ′
1, λ

′
2 satisfying (30), the following parameters β, γ (defined in terms of λ, λ′

1, λ
′
2)

8 The inapproximability result for the Ising model holds for general degrees � ≥ 3 in the regime 0 < β = γ < (� − 2)/�. While we do not prove it here 
(since we only need the result for � = 3), Lemma 15 also holds for general degrees � ≥ 3 in the square 0 < β, γ < (� − 2)/�.
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β = − (λ′
1 + 1)2 + λ′

2

|λ|1/3
(
1 + λ′

1 + λ′
2

) , γ = −|λ|1/3(1 + λ′
2)

1 + λ′
1 + λ′

2
, (31)

satisfy 0 < β, γ < 1/3.

Proof. Note that for all λ < 0, we have

−2 − 1

3
|λ|1/3 < −2, −2 − 1

3
|λ|1/3 < −2 − |λ|2/3 − 1

3|λ|1/3 + 1
, (32)

so the interval

I1 :=
(

− 2 − 1

3
|λ|1/3,min

{
− 2,−2 − |λ|2/3 − 1

3|λ|1/3 + 1

})
, (33)

has nonzero length. Thus, choosing any λ′
1 ∈ I1 satisfies the first inequality in (30). Also, for λ′

1 ∈ I1 we have that λ′
1 < 0

and λ′
1 + 2 + 1

3 |λ|1/3 > 0, so the interval

I2 :=
(

− 1,−1 − λ′
1(λ

′
1 + 2 + 1

3 |λ|1/3)

1 + 1
3 |λ|1/3

)
(34)

has nonzero length as well. Thus, by first choosing λ′
1 ∈ I1 and then λ′

2 ∈ I2, we see that λ′
1, λ

′
2 satisfy (30).

Next, we show that the parameters β, γ in (31) satisfy the desired inequalities whenever λ′
1 ∈ I1 and λ′

2 ∈ I2. We first 
prove that β, γ > 0 by showing the following inequalities:

(λ′
1 + 1)2 + λ′

2 > 0, (35)

1 + λ′
2 > 0, (36)

1 + λ′
1 + λ′

2 < 0. (37)

The inequality in (36) is an immediate consequence of λ′
2 ∈ I2. Inequality (35) follows from the expansion

(λ′
1 + 1)2 + λ′

2 = λ′
1(λ

′
1 + 2) + λ′

2 + 1, (38)

and noting that λ′
1(λ

′
1 + 2) > 0 (from λ′

1 ∈ I1) and λ′
2 + 1 > 0 (from λ′

2 ∈ I2). Finally, for (37), we have that λ′
2 + 1 <

− λ′
1(λ′

1+2+ 1
3 |λ|1/3)

1+ 1
3 |λ|1/3 (from λ′

2 ∈ I2) and hence

1 + λ′
1 + λ′

2 < λ′
1

(
1 − λ′

1 + 2 + 1
3 |λ|1/3

1 + 1
3 |λ|1/3

)
= − λ′

1(λ
′
1 + 1)

1 + 1
3 |λ|1/3

< 0,

where the last inequality follows from λ′
1 < −2. Thus, we have shown that β, γ > 0.

Next, we show that β, γ < 1/3. To show that β < 1/3, using (37), we only need to show that

(λ′
1 + 1)2 + λ′

2 < −1

3
|λ|1/3(1 + λ′

1 + λ′
2), or equivalently (λ′

2 + 1)(1 + 1

3
|λ|1/3) < −λ′

1(λ
′
1 + 2 + 1

3
|λ|1/3),

which is true since λ′
2 ∈ I2. To show that γ < 1/3, using (37) again, we see that the inequality γ < 1/3 is equivalent to

−3|λ|1/3(1 + λ′
2) > 1 + λ′

1 + λ′
2, or equivalently λ′

2 < −1 − λ′
1

1 + 3|λ|1/3
.

Since λ′
1 < 0 and λ′

2 < −1 − λ′
1(λ′

1+2+ 1
3 |λ|1/3)

1+ 1
3 |λ|1/3 , we only need to show that

λ′
1 + 2 + 1

3 |λ|1/3

1 + 1
3 |λ|1/3

<
1

1 + 3|λ|1/3
, or (λ′

1 + 2)(1 + 3|λ|1/3) + 1

3
|λ|1/3(1 + 3|λ|1/3) < 1 + 1

3
|λ|1/3,

which is true since, from λ′
1 ∈ I1, we have (λ′

1 + 2)(1 + 3|λ|1/3) < −(|λ|2/3 − 1).
Thus, we have shown that 0 < β, γ < 1/3, thus completing the proof of Lemma 16. �
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v1

λv1 = −|λ|1/3

v2

λv2 = −|λ|1/3

z λz = λ′
2

x

λx = λ′
1

y

λy = λ′
1

Fig. 3. The binary gadget B = (U , F ) used in Lemma 17 to simulate an antiferromagnetic 2-spin system on 3-regular graphs. The gadget B is used to encode 
the edges of a 3-regular graph H . In particular, every edge e = {h1, h2} of H gets replaced by a distinct copy of B , with the vertices v1, v2 of B getting 
identified with the vertices h1, h2 of H , respectively.

A.2. The reduction

The reduction to obtain Theorem 2 uses a binary gadget to simulate an antiferromagnetic 2-spin system on 3-regular 
graphs, i.e., we will replace every edge of a 3-regular graph H with a suitable graph B which has two special vertices to 
encode the edge. The gadget B is given in Fig. 3, the two special vertices are v1, v2. Note that the gadget B has nonuniform 
activities but this will be compensated for later by invoking Lemma 9.

Lemma 17. Let λ < 0 and λ′
1, λ

′
2 ∈ R satisfy (30). Then, for β, γ as in (31), the following holds. For every 3-regular graph H =

(V H , E H ) we can construct in linear time a bipartite graph G = (V G , EG) of maximum degree 3 and specify an activity vector λ =
{λv}v∈V on G such that

1. Z H,β,γ = ZG(λ)/C |E H | , where C := −|λ|1/3
(
λ′

1 + λ′
2 + 1

)
> 0.9

2. For every vertex v of G, it holds that λv ∈ {λ, λ′
1, λ

′
2}. Moreover, if λv �= λ, then v has degree two in G.

Proof. Let H = (V H , E H ) be a 3-regular graph.
To construct the graph G , we will use the graph B = (U , F ) in Fig. 3; the vertices v1, v2 of B will be used for connec-

tions. Roughly, the graph G = (V G , EG) is constructed by replacing every edge {h1, h2} of H with a distinct copy of B and 
identifying the vertex v1 of B with the vertex h1 of H and the vertex v2 of B with the vertex h2 of H . The identification 
of the vertices v1, v2 with the vertices h1, h2 is done so that V H ⊆ V G , i.e., vertices in H retain their labelling in G . Note 
that B is symmetric with respect to v1, v2 and hence the ordering of the vertices v1, v2 and h1, h2 does not matter in the 
construction.

To give explicitly the construction of the graph G , for every edge e = {h1, h2} ∈ E H , take a distinct copy of B . We will 
denote by B(e) = (U (e), F (e)) the copy of B corresponding to the edge e of H and, for a vertex u ∈ U , we denote by u(e) the 
copy of the vertex of u in the copy B(e) . As noted earlier, we relabel v(e)

1 to h1 and v(e)
2 to h2. The graph G = (V G , EG) is 

then given by

V G =
⋃

e∈E H

U (e), EG =
⋃

e∈E H

F (e).

We next specify an activity vector λ on G . Every vertex v ∈ V G\V H is the image of a vertex u in B , and inherits the activity 
from its image u in B (cf. Fig. 3 for the specification of the activities in B). Every vertex h ∈ V H is the image of three vertices 
whose activities in the graph B were equal to −|λ|1/3; since these three vertices were identified with h, we set the activity 
of the vertex h to equal (−|λ|1/3)3 = λ (our argument later will formally justify that multiplying the activities is indeed the 
right way to account for the effect of identification). Formally, the activity vector λ = {λv}v∈V G is given by

∀h ∈ V H : λh = λ,

∀e ∈ E H : λx(e) = λy(e) = λ′
1, λz(e) = λ′

2,

where recall that the activities λ′
1, λ′

2 satisfy (30). It is now immediate that the graph G has maximum degree three and 
that the activity vector λ satisfies Item 2 of the lemma statement. Moreover, G is bipartite (every cycle in G corresponds to 
a cycle in H ; further, every cycle in H maps to an even-length cycle in G since the edge gadget B is an even-length path).

To finish the proof of the lemma, it remains to establish Item 1, i.e., to connect the partition functions Z H,β,γ and ZG (λ), 
where the parameters β, γ are given in (31).

9 The fact that C is positive follows from (37).
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Let σ : V H → {0, 1} be a {0, 1}-assignment to the vertices of H . Let 	σ ⊆ IG be the set of independent sets of G whose 
restriction on H coincides with the set of vertices which are assigned the spin 1 under σ , i.e.,

	σ := {I ∈ IG | V H ∩ I = σ−1(1)}.
We will show that

w H,β,γ (σ ) =
∑

I∈	σ

∏
v∈I λv

C |E H | , where C = −|λ|1/3(λ′
1 + λ′

2 + 1
)
> 0. (39)

Note that the sets {	σ }σ :V →{0,1} form a partition of the set IG , so adding (39) over all σ : V H → {0, 1} gives that Z H,β,γ =
ZG(λ)/C |E H | , as wanted for Item 2. Thus, we focus on proving (39).

To calculate the aggregate weight of independent sets in 	σ , we first observe that the graph induced by V G\V H consists 
of |E H | disconnected copies of the graph B\{v1, v2}. Thus, for each edge e ∈ E H , we need to calculate the weight of inde-
pendent sets that are consistent with the assignment σ on the vertices v(e)

1 , v(e)
2 of B(e) . Then, to compute the aggregate 

weight of independent sets in 	σ , we only need to multiply these quantities over all e ∈ E H . Note that, for an independent 
set I in 	σ , a vertex h in V H such that σ(h) = 1 contributes a factor of λ in the weight of I; a convenient way to account 
for this factor λ is to split it into the three edges incident to h by setting the activities of v(e)

1 , v(e)
2 in B(e) equal to −|λ|1/3. 

Then, when we multiply over e ∈ E H , h contributes in total a factor (−|λ|1/3)3 = λ, just as it should. In light of this, let

Z00 =
∑

I∈IB ; v1 /∈I,v2 /∈I

∏
v∈I

λv , Z11 =
∑

I∈IB ; v1∈I,v2∈I

∏
v∈I

λv

Z01 =
∑

I∈IB ; v1 /∈I,v2∈I

∏
v∈I

λv , Z10 =
∑

I∈IB ; v1∈I,v2 /∈I

∏
v∈I

λv

Note that Z01 = Z10 since the graph B is symmetric with respect to v1, v2. Now, denote by e00, e11, e01 the number of 
edges {h1, h2} ∈ E H such that σ(h1) = σ(h2) = 0, σ(h1) = σ(h2) = 1, and σ(h1) �= σ(h2), respectively. Then, we have that

∑
I∈	σ

∏
v∈I

λv = (Z00)
e00(Z11)

e11(Z01)
e01 = (Z01)

|E H |( Z00

Z01

)e00( Z11

Z01

)e11
.

Equation (39) will thus follow by showing that for β, γ as in (31) and C as in (39), it holds that

Z01 = C, β = Z00

Z01
, γ = Z11

Z01
. (40)

We will justify (40) by giving explicit expressions for Z00, Z11, Z01 in terms of λ, λ′
1, λ

′
2; we give the derivation for Z00, the 

other quantities can be handled similarly (refer to Fig. 3 for the following). For Z00, we need only to consider independent 
sets I ∈ IB such that v1, v2 /∈ I . Then, we consider cases whether x, y ∈ I . If x, y ∈ I , then z /∈ I and therefore the aggregate 
weight of independent sets I with x, y ∈ I (and v1, v2 /∈ I) is given by λxλy . Similarly, the weight of independent sets I such 
that x ∈ I but y /∈ I is given by λx . The remaining cases (x /∈ I, y ∈ I and x /∈ I, y /∈ I) can be computed analogously. In this 
way, we obtain

Z11 = λv1λv2(λz + 1) = |λ|2/3(1 + λ′
2),

Z01 = λv2

(
λx + λz + 1

) = −|λ|1/3(λ′
1 + λ′

2 + 1
) = C,

Z00 = λxλy + λx + λy + λz + 1 = (λ′
1 + 1)2 + λ′

2.

To conclude the validity of (40), it remains to juxtapose these expressions with the expressions of β, γ given in (31) and 
verify that they are identical, which is indeed the case.

This completes the proof of (39) and thus the proof of Lemma 17. �
A.3. The inapproximability result

To formally state our result, we define the following problem which has three parameters—the activity λ, a degree bound 
�, and a value c > 1 which specifies the desired accuracy of the approximation.

Name #BipHardCore(λ, �, c).
Instance An n-vertex bipartite graph G with maximum degree at most �.
Output A number Ẑ such that c−n|ZG(λ)| ≤ ∣∣ Ẑ

∣∣ ≤ cn|ZG(λ)|.
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Theorem 2. Let � ≥ 3 and λ < −λ∗(�). Then there exists a constant c > 1 such that #BipHardCore(λ, �, c) is NP-hard, i.e., it is 
NP-hard to approximate |ZG(λ)| on bipartite graphs G of maximum degree at most �, even within an exponential factor.

Proof. We first specify two activities λ′
1, λ

′
2 that (�, λ) implements, which further satisfy the condition (30) of Lemma 16. 

Let I1 be the following interval (which was considered in the proof of Lemma 16)

I1 :=
(

− 2 − 1

3
|λ|1/3,min

{
− 2,−2 − |λ|2/3 − 1

3|λ|1/3 + 1

})
, (33)

and recall that I1 has nonzero length for all λ < 0, cf. (32). Hence, there exist l1 ∈ I1 and ε > 0 such that [l1 − ε, l1 + ε] ⊂ I1. 
By our main result, Theorem 1, there is a bipartite graph G1 of maximum degree � with terminal v1 that implements l1
with accuracy ε . Let λ′

1 := Z in
G1,v1

(λ)/Z out
G1,v1

(λ), so that G1 with terminal v1 implements λ′
1. Since [l1 − ε, l1 + ε] ⊂ I1, we 

have that λ′
1 ∈ I1. Note that λ′

1 can be computed by brute force in constant time (since G1 is a fixed graph). Let I2 be the 
following interval (which was also considered in the proof of Lemma 16)

I2 :=
(

− 1,−1 − λ′
1(λ

′
1 + 2 + 1

3 |λ|1/3)

1 + 1
3 |λ|1/3

)
. (34)

By an analogous argument (the fact that I2 has nonzero length for λ′
1 ∈ I1 is proved in Lemma 16), we can specify a bipartite 

graph G2 of maximum degree � with terminal v2 that implements an activity λ′
2 ∈ I2. By construction, the bipartite graphs 

G1, G2 implement the activities λ′
1, λ

′
2, respectively, and λ′

1, λ
′
2 satisfy the condition (30) of Lemma 16, as wanted. For later 

use, set

C1 := Z out
G1,v1

(λ), C2 := Z out
G2,v2

(λ), (41)

and note that C1, C2 are also explicitly computable constants.
Let β, γ be the parameters given by (31). By Lemma 16, it holds that 0 < β, γ < 1/3. Thus, by Lemma 15, there exists c >

1 such that #2Spin(β, γ , c) is NP-hard. We will use Lemmas 9 and 17 to reduce #2Spin(β, γ , c) to #BipHardCore(λ, �, c′)
for some constant c′ > 1.

Let H be a 3-regular graph which is an input graph to the problem #2Spin(β, γ , c). By Lemma 17, we can construct in 
linear time a bipartite graph G of maximum degree 3 and specify an activity vector λ = {λv}v∈V on G such that

1. Z H,β,γ = ZG(λ)/C |E H | , where C := −|λ|1/3
(
λ′

1 + λ′
2 + 1

)
> 0.

2. For every vertex v of G , it holds that λv ∈ {λ, λ′
1, λ

′
2}. Moreover, if λv �= λ, then v has degree two in G .

Using the bipartite graphs G1, G2 that implement λ′
1, λ

′
2 respectively, we obtain from Lemma 9 that we can construct in 

linear time a bipartite graph G ′ = (V G ′ , EG ′) of maximum degree at most � such that

ZG ′(λ) = Cn1
1 Cn2

2 · ZG(λ),

where n1, n2 are the number of vertices in G whose activity equals λ′
1, λ

′
2, respectively. Note, the fact that G ′ is a bipartite 

graph whose maximum degree is at most � follows from the construction of Lemma 9 and Item 2 (see also Remark 1).
It follows that

Z H,β,γ = ZG ′(λ)/
(
C |E H |Cn1

1 Cn2
2

)
. (42)

Since the size of G ′ is bigger than the size of H only by a constant factor, there exists a constant c′ > 1 (depending 
only on λ) such that an approximation to |ZG ′ (λ)| within a multiplicative factor (c′)|V G′ | yields via (42) an estimate to 
|Z H,β,γ | = Z H,β,γ within a multiplicative factor c|V H | . It follows that #BipHardCore(λ, �, c′) is NP-hard. This completes the 
proof of Theorem 2. �
References

[1] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Daniel Stefankovic, Inapproximability of the independent set polynomial in the complex plane, 
in: SICOMP, 2020, in press (conference version in STOC 2018), https://epubs .siam .org /doi /10 .1137 /18M1184485.

[2] Andreas Galanis, Leslie Ann Goldberg, The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs, Inf. 
Comput. 251 (2016) 36–66.

[3] Andreas Galanis, Leslie Ann Goldberg, Daniel Stefankovic, Inapproximability of the independent set polynomial below the Shearer threshold, in: Ioannis 
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, Anca Muscholl (Eds.), 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, 
July 10-14, 2017, Warsaw, Poland, in: LIPIcs, vol. 80, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 28:1–28:13.

[4] Andreas Galanis, Daniel Štefankovič, Eric Vigoda, Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models, 
Comb. Probab. Comput. 25 (4) (2016) 500–559.

[5] Heng Guo, Mark Jerrum, Jingcheng Liu, Uniform sampling through the Lovász local lemma, J. ACM 66 (3) (2019) 18.
[6] Nicholas J.A. Harvey, Piyush Srivastava, Jan Vondrák, Computing the independence polynomial in Shearer’s region for the LLL, CoRR, arXiv:1608 .02282

[abs], 2016.
214

https://epubs.siam.org/doi/10.1137/18M1184485
http://refhub.elsevier.com/S0304-3975(22)00635-1/bibB6B2B8D54B49EA9C8C64B620318B1B2Bs1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bibB6B2B8D54B49EA9C8C64B620318B1B2Bs1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bib8038C64B3B104D5FC820BCCCACACD017s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bibA4D20E77582914BF1099ADE8012319F3s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bibA4D20E77582914BF1099ADE8012319F3s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bib415DC7C2DA258A32E1F5E8DAAEF365DFs1
http://refhub.elsevier.com/S0304-3975(22)00635-1/bib415DC7C2DA258A32E1F5E8DAAEF365DFs1


A. Galanis, L.A. Goldberg and D. Štefankovič
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