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Abstract The sequential importance sampling (SIS) algorithm has gained consider-
able popularity for its empirical success. One of its noted applications is to the binary
contingency tables problem, an important problem in statistics, where the goal is to
estimate the number of 0/1 matrices with prescribed row and column sums. We give
a family of examples in which the SIS procedure, if run for any subexponential num-
ber of trials, will underestimate the number of tables by an exponential factor. This
result holds for any of the usual design choices in the SIS algorithm, namely the or-
dering of the columns and rows. These are apparently the first theoretical results on
the efficiency of the SIS algorithm for binary contingency tables. Finally, we present
experimental evidence that the SIS algorithm is efficient for row and column sums
that are regular. Our work is a first step in determining the class of inputs for which
SIS is effective.
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1 Introduction

Sequential importance sampling is a widely-used approach for estimating the cardi-
nality of a large set of combinatorial objects. It has been applied in a variety of fields,
such as protein folding [14], population genetics [9], and signal processing [12]. Bi-
nary contingency tables is an application where the virtues of sequential importance
sampling have been especially highlighted; see Chen et al. [7]. This is the subject of
this note. Given a set of non-negative row sums r = (r1, . . . , rm) and column sums
c = (c1, . . . , cn), let � = �r,c denote the set of m × n 0/1 tables with row sums r
and column sums c. Let N = ∑

i ri denote the number of edges in the corresponding
bipartite graphs.

Our focus is on algorithms for estimating |�|. There are algorithms [3, 11] for
estimating |�| (and sampling (almost) uniformly at random from �) which provably
run in time polynomial in n and m for any row/column sums. We discuss these algo-
rithms, which use Markov chain Monte Carlo (MCMC) methods, in more detail later
in the introduction. In this paper, we study a simpler method known as sequential
importance sampling (SIS).

SIS has several purported advantages over the more classical Markov chain Monte
Carlo (MCMC) method, such as:

Speed: Chen et al. [7] claim that SIS is faster than MCMC algorithms (their paper
shows, by experiment, that for the studied inputs, SIS is superior to the MCMC
algorithm of [2]; moreover the authors state that they are not aware of any MCMC-
based algorithm that achieves similar results in both accuracy and time as SIS). In
fact, Blanchet [5] recently proved that SIS requires O(N2) time when all of the row
and column sums are at most o(N1/4) (see Bayati et al. [1] for a related result for
a different algorithm). In contrast, we present a simple example where SIS requires
an exponentially large (in n,m) number of samples to give an approximately correct
answer. Note that, as mentioned earlier, a MCMC algorithm was presented in [3, 11]
which is guaranteed to require at most time polynomial in n,m for every input.

Convergence Diagnostic: One of the difficulties in MCMC algorithms is determin-
ing when the Markov chain of interest has reached the stationary distribution, unless
we have analytical bounds (as in the case of [3, 11]). SIS seemingly avoids such
complications since its output is guaranteed to be an unbiased estimator of |�|. Un-
fortunately, it is unclear how many estimates from SIS are needed before we have
a guaranteed close approximation of |�|. In our example for which SIS requires
exponential time, the estimator appears to converge, but it converges to a quantity
that is off from |�| by an exponential factor.

Before formally stating our results, we detail the sequential importance sampling
approach for contingency tables, following [7]. The general importance sampling
paradigm involves sampling from an ‘easy’ distribution μ over � that is, ideally,



close to the uniform distribution. At every round, the algorithm outputs a table T
along with μ(T). Since for any μ whose support is � one has

E[1/μ(T)] = |�|,
the algorithm takes many trials and outputs the average of 1/μ(T) as an estimate
of |�|. More precisely, let T(1), . . . ,T(t) denote the outputs from t trials of the SIS
algorithm. The final estimate is

Xt = 1

t

t∑

�=1

1

μ(T(�))
. (1)

One typically uses a heuristic to determine how many trials t are needed until the
estimator has converged to the desired quantity.

The sequential importance sampling algorithm of Chen et al. [7] constructs the
table T in a column-by-column manner. It is not clear how to order the columns opti-
mally, but this will not concern us as our negative results will hold for any ordering of
the columns. Suppose the procedure is assigning column i conditional on an existing
assignment to columns 1, . . . , i − 1. For 1 ≤ j ≤ m, let r ′

j be equal to rj less the total
number of 1’s seen in row j in columns 1, . . . , i −1. Thus, r ′

1, . . . , r
′
m are the residual

row sums after taking into account the assignments in the first i − 1 columns.
The procedure of Chen et al. chooses column i from the following probability

distribution. The distribution is the projection onto column i of the uniform distri-
bution over assignments to columns i, . . . , n where the row sums are r ′

1, . . . , r
′
m and

column i sums to ci (but ignoring the column sums ci+1, . . . , cn). The distribution is
easy to describe in closed form. Let T1,i , . . . ,Tm,i ∈ {0,1}m denote the assignment to
column i, where

∑
j Tj,i = ci . Let n′ = n − i + 1 be the number of not yet assigned

columns. Clearly, Tj,i must be 0 for every j with r ′
j = 0, and Tj,i must be 1 for

every j with r ′
j = n′. Let J = {j ∈ {1, . . . ,m} | 0 < r ′

j < n′}, that is, J is the set of
rows whose entries are not forced to 0 or 1. Then, the probability of the assignment
Tj,i for j ∈ J is proportional to

∏

j∈J

(
r ′
j

n′ − r ′
j

)Tj,i

. (2)

Sampling from this distribution over assignments for column i can be done efficiently
by dynamic programming (see Sect. 3.1 of [7]).

Remark 1 The described procedure may “get stuck”, that is, run into a situation when
no valid assignment is possible for the i-th column. In such case, 1/μ(T(�)) is set to
zero in (1) for this trial and the procedure moves to the next trial. Chen et al. also de-
vised a more subtle sampling procedure for the i-th column which never gets stuck.
We do not describe this interesting modification of the procedure, as the two proce-
dures are equivalent for the input instances which we discuss in this paper. The reason
is that for our instances even for the distribution given by (2) SIS never gets stuck.



We now state our negative result. This is a simple family of examples where the
SIS algorithm will grossly underestimate |�| unless the number of trials t is expo-
nentially large. Our examples will have the form (1,1, . . . ,1, dr) for row sums and
(1,1, . . . ,1, dc) for column sums, where the number of rows is m + 1, the number of
columns is n + 1, and we require that m + dr = n + dc . An important feature of our
examples is that they are “bad” examples regardless of whether the SIS procedure
constructs the table column-by-column or row-by-row.

Theorem 2 Let β > 0, γ ∈ (0,1) be constants satisfying β �= γ and consider the
input instances r = (1,1, . . . ,1, �βm�), c = (1,1, . . . ,1, �γm�) with m+ 1 rows. Fix
any order of columns (or rows, if sequential importance sampling constructs tables
row-by-row) and let Xt be the random variable representing the estimate of the SIS
procedure after t trials of the algorithm, that is, Xt is given by (1). There exist
constants s1 ∈ (0,1) and s2 > 1 such that for every sufficiently large m and for any
t ≤ sm

2 ,

Pr
(

Xt ≥ |�r,c|
sm

2

)

≤ 3sm
1 .

We mentioned earlier that there are MCMC algorithms which provably run in
time polynomial in n and m for any row/column sums. In particular, Jerrum, Sinclair,
and Vigoda [11] presented a polynomial time algorithm for estimating the perma-
nent of a non-negative matrix. For the case of 0/1 matrices, their result corresponds
to a randomized algorithm, which for a bipartite graph G, estimates the number of
perfect matchings of G within a multiplicative factor (1 ± ε) in time polynomial in
|G| and 1/ε. The binary contingency tables problem studied in this paper can be
reduced to counting perfect matchings via a reduction of Tutte [13]. More recently,
Bezáková, Bhatnagar and Vigoda [3] presented a related simulated annealing algo-
rithm that works directly with binary contingency tables to solve the problem studied
in this paper for all row/column sums, and has an improved polynomial running time
compared with [11]. We note that, in addition to being formally asymptotically faster
than any exponential time algorithm, a polynomial time algorithm has additional the-
oretical significance in that it (and its analysis) implies non-trivial insight into the
structure of the problem.

As a side note, we remark that even though SIS grossly underestimates the
number of binary contingency tables for our examples with m + 1 rows with row
sums (1,1, . . . ,1, dr) and n + 1 = m + dr − dc + 1 columns with column sums
(1,1, . . . ,1, dc), it is possible to compute this number exactly using the formula(
m
dc

)(
n
dr

)
(m − dc)! +

(
m

dc−1

)(
n

dr−1

)
(m − dc + 1)!.

Some caveats are in order here. Firstly, the above results imply only that MCMC
outperforms SIS asymptotically in the worst case; for many inputs, SIS may well
be much more efficient. Secondly, the rigorous worst case upper bounds on the run-
ning time of the above MCMC algorithms are still far from practical. Chen et al. [7]
showed several examples where SIS outperforms MCMC methods. We present a
more systematic experimental study of the performance of SIS, focusing on examples
where all the row and column sums are identical as well as on the “bad” examples
from Theorem 2. Our experiments suggest that SIS is extremely fast on the balanced



examples, while its performance on the bad examples confirms our theoretical anal-
ysis. Understanding conditions under which SIS performs well is, perhaps, the most
interesting open problem in the area. Specific problems include extending the re-
sult of [5] to multiway contingency tables [8] and random graphs with prescribed
degrees [6].

We also note that the following simple modification of SIS may lead to better
performance. Rather than assigning entries in a column-by-column or row-by-row
manner, assign at each step either the row or the column with the largest residual
sum. It can easily be verified that this enhanced scheme does produce correct results
for the input instances in Theorem 2. However, we provide experimental evidence that
there are input instances for which even this enhanced strategy fails. These inputs are
similar in flavor to those in Theorem 2, but slightly more complicated.

We begin in Sect. 2 by presenting a few basic lemmas that are used in the analysis
of our negative example. In Sect. 3 we present our main example where SIS is off
by an exponential factor, thus proving Theorem 2. Finally, in Sect. 4 we summarize
some experimental results for SIS that support our theoretical analysis.

2 Preliminaries

We will continue to let μ(T) denote the probability that a table T ∈ �r,c is gener-
ated by sequential importance sampling algorithm. We let π(T) denote the uniform
distribution over �r,c, which is the desired distribution.

Before beginning our main proofs we present two straightforward technical lem-
mas which are used at the end of the proof of the main theorem. The first lemma
claims that if a large set of binary contingency tables gets a very small probability un-
der SIS, then SIS is likely to output an estimate which is not much bigger than the size
of the complement of this set, and hence very small. For S ⊂ �r,c, let S = �r,c \ S

denote its complement.

Lemma 3 Let p ≤ 1/2 and let S ⊆ �r,c be such that μ(S) ≤ p. Then for any a > 1,
and any t , we have

Pr
(
Xt ≤ a|S|) ≥ 1 − pt − 2/a.

Proof The probability that all t SIS trials are not in S is at least

(1 − p)t ≥ 1 − pt.

(This well-known inequality valid for p ≥ 0 follows by induction on t .)
Let T(1), . . . ,T(t) be the t tables constructed by SIS. Then, with probability at least

1 − pt , we have T(�) ∈ S for all �, 1 ≤ � ≤ t . Notice that for a table T constructed by
SIS from S, we have

E
(

1

μ(T)

∣
∣
∣
∣T ∈ S

)

= |S|
μ(S)

.



Let F denote the event that T(�) ∈ S for all �, 1 ≤ � ≤ t ; hence,

E (Xt | F ) = |S|
μ(S)

.

We can use Markov’s inequality to estimate the probability that SIS returns an
answer which is more than a factor of a worse than the expected value, conditioned
on the fact that no SIS trial is from S:

Pr
(
Xt > a|S| ∣∣ F

) ≤ Pr

(

Xt > (a/2)
|S|

μ(S)

∣
∣
∣
∣ F

)

≤ 2

a
,

where in the first inequality we used μ(S) ≥ 1/2.
Finally, removing the conditioning we get:

Pr
(
Xt ≤ a|S|) ≥ Pr

(
Xt ≤ a|S| ∣∣ F

)
Pr (F )

≥
(

1 − 2

a

)

(1 − pt)

≥ 1 − pt − 2

a
. �

The second technical lemma shows that if in a row with large sum (linear in m)
there exists a large number of columns (again linear in m) for which the SIS probabil-
ity of placing a 1 at the corresponding position differs significantly from the correct
probability, then in any subexponential number of trials the SIS estimator will very
likely exponentially underestimate the correct answer.

Let Ai−1 denote the set of all assignments of 0/1 to columns 1, . . . , i − 1 such
that the column sums are satisfied and none of the row sums are exceeded. Thus,
A ∈ Ai−1 denotes that A is a specific assignment of 0/1 to the first i − 1 columns.
Finally, for A ∈ Ai−1, we use the following notation:

π
(
Tj,i = 1 |Ti−1 = A

) = π
(
S′′)

π (S′)
,

where

S′ = {T ∈ �r,c : the first i − 1 columns of T are the same as A},
and

S′′ = {T ∈ S′ : Tj,i = 1}.
Similarly, we use

μ
(
Tj,i = 1 |Ti−1 = A

) = μ(S′′)
μ(S′)

. (3)

As we mentioned in Remark 1, SIS will never get stuck for our input instances.
For such input instances, (3) is the same as the probability that SIS assigns 1 to Tj,i ,
given that the first i − 1 columns are filled with A.



Lemma 4 Let α < β be positive constants. Consider a class of instances of the bi-
nary contingency tables problem, parameterized by m, with m + 1 row sums, the last
of which is �βm�. The remaining row sums and column sums can be arbitrary as long
as the SIS procedure never gets stuck. Suppose that there exist constants f < g and
a set I of cardinality �αm� > 0 such that one of the following statements is true:

(i) for every i ∈ I and any A ∈ Ai−1,

π(Tm+1,i = 1 | Ti−1 = A) ≤ f < g ≤ μ(Tm+1,i = 1 | Ti−1 = A),

(ii) for every i ∈ I and any A ∈ Ai−1,

μ(Tm+1,i = 1 | Ti−1 = A) ≤ f < g ≤ π(Tm+1,i = 1 | Ti−1 = A).

Then there exists a constant b1 ∈ (0,1) such that for any constant 1 < b2 < 1/b1 and
any sufficiently large m, for any t ≤ bm

2 ,

Pr
(

Xt ≥ |�r,c|
bm

2

)

≤ 3(b1b2)
m.

Proof We will analyze case (i); the other case follows from analogous arguments.
Let U1, . . . ,Un be the entries in the last row of a uniformly random contingency

table with the prescribed row and column sums. (Note that U1, . . . ,Un are random
variables.) Similarly, let V1, . . . , Vn be the entries in the last row of a contingency
table with the prescribed row and column sums generated by SIS.

The random variable Ui is dependent on Uj for j < i and Vi is dependent on Vj

for j < i. However, for every i ∈ I , Ui is stochastically dominated by U ′
i , where U ′

i ,
i ∈ I is a set of independent Bernoulli random variables that take value 1 with prob-
ability f . Similarly, for every i ∈ I , Vi stochastically dominates V ′

i , where V ′
i , i ∈ I

is a set of independent Bernoulli random variables that take value 1 with probabil-
ity g.

Now we may use the Chernoff bound (see, e.g., [10], Theorem 1.1). Let k = �αm�.
Then

Pr

(
∑

i∈I

U ′
i − kf >

g − f

2
k

)

≤ exp(−(g − f )2k/2)

and

Pr

(

kg −
∑

i∈I

V ′
i >

g − f

2
k

)

≤ exp(−(g − f )2k/2).

Let S be the set of all tables which have less than kf + (g−f )k/2 = kg− (g−f )k/2
ones in the last row of the columns in I . Let b1 := exp(−(g − f )2α/4) ∈ (0,1).
Then exp(−(g − f )2k/2) ≤ bm

1 for m ≥ 1/α. Thus, by the first inequality, under the
uniform distribution over all binary contingency tables the probability of the set S is
at least 1 − bm

1 . However, by the second inequality, SIS constructs a table from the
set S with probability at most bm

1 .



We are ready to use Lemma 3 with S as defined above and p = bm
1 . Since under

the uniform distribution the probability of S is at least 1 − bm
1 , we have that |S| ≥

(1 − bm
1 )|�r,c|. Let b2 ∈ (1,1/b1) be any constant and consider t ≤ bm

2 SIS trials.
Let a = (b1b2)

−m. Then, by Lemma 3, with probability at least 1 − pt − 2/a ≥
1 − 3(b1b2)

m the SIS procedure outputs a value which is at most an abm
1 = b−m

2
fraction of |�r,c|. �

3 Proof of Main Theorem

In this section we prove Theorem 2. Before we analyze the input instances from
Theorem 2, we first consider the following simpler class of inputs.

3.1 Row Sums (1,1, . . . ,1, d) and Column Sums (1,1, . . . ,1)

The row sums are (1, . . . ,1, d) and the number of rows is m + 1. The column sums
are (1, . . . ,1) and the number of columns is n = m + d . We assume that sequential
importance sampling constructs the tables column-by-column. If SIS constructed the
tables row-by-row, starting with the row with sum d , then it would in fact output
the correct number of tables exactly. However, in the next subsection we will use
this simplified case as a tool in our analysis of the input instances (1, . . . ,1, dr),
(1, . . . ,1, dc), for which SIS must necessarily fail regardless of whether it works
row-by-row or column-by-column, and regardless of the order it chooses.

Lemma 5 Let β > 0, and consider an input of the form (1, . . . ,1, d), (1, . . . ,1) with
m + 1 rows where d = �βm�. Then there exists a constants s > 1, such that for any
sufficiently large m, for any t ≤ sm,

Pr
(

Xt ≥ |�r,c|
sm

)

≤ 3(1/2)m.

The idea for the proof of the lemma is straightforward. By the symmetry of the
column sums, for large m and d and α ∈ (0,1) a uniform random table will have about
αd ones in the first αn cells of the last row, with high probability. We will show that
for some α ∈ (0,1) and d = βm, sequential importance sampling is very unlikely to
put this many ones in the first αn columns of the last row. Therefore, since with high
probability sequential importance sampling will not construct any table from a set
that is a large fraction of all legal tables, it will likely drastically underestimate the
number of tables.

Before we prove the lemma, let us first compare the column distributions arising
from the uniform distribution over all binary contingency tables with the SIS dis-
tributions. We refer to the column distributions induced by the uniform distribution
over all tables as the true distributions. The true probability of 1 in the first column
and last row can be computed as the number of tables with 1 at this position divided
by the total number of tables. For the sequence of row and column sums specified
in the statement of Lemma 5, let Z(m,d) denote the total number of tables with
these row/column sums. Note, Z(m,d) = (

n
d

)
m! = (

m+d
d

)
m!, since a table is uniquely



specified by the positions of ones in the last row and the permutation matrix in the
remaining rows and corresponding columns. Therefore,

π(Tm+1,1 = 1) = Z(m,d − 1)

Z(m,d)
=

(
m+d−1

d−1

)
m!

(
m+d

d

)
m! = d

m + d
.

On the other hand, by the definition of sequential importance sampling,
Pr

(
Ti,1 = 1

) ∝ ri/(n − ri), where ri is the row sum in the i-th row. Therefore,

μ(Tm+1,1 = 1) =
d

n−d

d
n−d

+ m 1
n−1

= d(m + d − 1)

d(m + d − 1) + m2
.

Observe that if d ≈ βm for some constant β > 0, then for sufficiently large m we
have

μ(Tm+1,1 = 1) > π(Tm+1,1 = 1).

As we will see, this will be true for a linear number of columns, which turns out
to be enough to prove that in polynomial time sequential importance sampling ex-
ponentially underestimates the total number of binary contingency tables with high
probability.

Proof of Lemma 5 We will find a constant α such that for every column i < αm we
will be able to derive an upper bound on the true probability and a lower bound on
the SIS probability of 1 appearing at the (m + 1, i) position.

For a partially filled table with columns 1, . . . , i −1 assigned, let di be the remain-
ing sum in the last row and let mi be the number of other rows with remaining row
sum 1 (note that this determines the contents A ∈ Ai−1 of the first i − 1 columns, up
to permutation). Then the true probability of 1 in the i-th column and last row can be
bounded as

π(Tm+1,i = 1 | Ti−1 = A) = di

mi + di

≤ d

m + d − (i − 1)
=: f (d,m, i),

while the probability under SIS can be bounded as

μ(Tm+1,i = 1 | Ti−1 = A) = di(mi + di − 1)

di(mi + di − 1) + m2
i

≥ (d − (i − 1))(m + d − i)

d(m + d − 1) + m2

=: g(d,m, i).

Observe that for fixed m,d , the function f is increasing and the function g is de-
creasing in i, for i < d .

Recall that we are considering a family of input instances parameterized by m with
d = �βm�, for a fixed β > 0. We will consider i < αm for some α ∈ (0, β). Let



f ∞(α,β) := lim
m→∞f (d,m,αm) = β

1 + β − α
; (4)

g∞(α,β) := lim
m→∞g(d,m,αm) = (β − α)(1 + β − α)

β(1 + β) + 1
; (5)

�β := g∞(0, β) − f ∞(0, β) = β2

(1 + β)(β(1 + β) + 1)
> 0, (6)

and observe that for fixed β , f ∞ is increasing in α and g∞ is decreasing in α, for
α < β . Let α, 0 < α < β be such that g∞(α,β) − f ∞(α,β) ≥ �β/2. Such an α

exists by continuity (we only need to take a small enough α).
By the above, for any ε > 0 and sufficiently large m, and for any i < αm,

the true probability is upper-bounded by f ∞(α,β) + ε and the SIS probability is
lower-bounded by g∞(α,β) − ε. For our purposes it is enough to fix ε = �β/8.
Now we can use Lemma 4 with α and β defined as above, f = f ∞(α,β) + ε

and g = g∞(α,β) − ε (notice that all these constants depend only on β), and
I = {1, . . . , �αm�}. Let b1 ∈ (0,1) be the constant guaranteed by Lemma 4 and let
b2 = 1/(2b1). This finishes the proof of the lemma with s = b2. �

Remark 6 Notice that every contingency table with row sums (1,1, . . . ,1, d) and
column sums (1,1, . . . ,1) is binary. Thus, this instance proves that the column-based
SIS procedure for general (non-binary) contingency tables [7] has the same flaw as
the binary SIS procedure. We expect that the negative example used for Theorem 2
also extends to general (i.e., non-binary) contingency tables, but the analysis becomes
more cumbersome.

3.2 Row Sums (1,1, . . . ,1, dr ) and Column Sums (1,1, . . . , dc)

We will now prove our main result, using ideas from the proof of Lemma 5.

Proof of Theorem 2 Recall that we are working with row sums (1,1, . . . ,1, dr),
where the number of rows is m + 1, and column sums (1,1, . . . ,1, dc), where the
number of columns is n + 1 = m + 1 + dr − dc. We will eventually fix dr = �βm�
and dc = �γm�, but to simplify our expressions we work with dr and dc for now.

The theorem claims that the SIS procedure fails for an arbitrary order of columns
with high probability. We first analyze the case when the SIS procedure starts with
columns of sum 1; we shall address the issue of arbitrary column order later. As
before, under the assumption that the first column has sum 1, we compute the
probabilities of 1 being in the last row for uniform random tables and for SIS re-
spectively. For the true probability, the total number of tables can be computed as(
m
dc

)(
n
dr

)
(m − dc)! +

(
m

dc−1

)(
n

dr−1

)
(m − dc + 1)!, since a table is uniquely determined

by the positions of ones in the dc column and dr row and a permutation matrix on the
remaining rows and columns. Thus we have



π(Tm+1,1 = 1) =
(
m
dc

)(
n−1
dr−1

)
(m − dc)! +

(
m

dc−1

)(
n−1
dr−2

)
(m − dc + 1)!

(
m
dc

)(
n
dr

)
(m − dc)! +

(
m

dc−1

)(
n

dr−1

)
(m − dc + 1)!

= dr(n − dr + 1) + dcdr(dr − 1)

n(n − dr + 1) + ndcdr

=: f2(m,dr , dc);

μ(Tm+1,1 = 1) =
dr

n−dr

dr

n−dr
+ m 1

n−1

= dr(n − 1)

dr(n − 1) + m(n − dr)
=: g2(m,dr , dc).

Let dr = �βm� and dc = �γm� for some constants β > 0, γ ∈ (0,1) (notice that this
choice guarantees that n ≥ dr and m ≥ dc, as required). Then, as m tends to infinity,
f2 approaches

f ∞
2 (β, γ ) := β

1 + β − γ
,

and g2 approaches

g∞
2 (β, γ ) := β(1 + β − γ )

β(1 + β − γ ) + 1 − γ
.

Notice that f ∞
2 (β, γ ) = g∞

2 (β, γ ) if and only if β = γ . Moreover, f ∞
2 (β, γ ) <

g∞
2 (β, γ ) if and only if β > γ . Suppose that β > γ , that is, f ∞

2 (β, γ ) < g∞
2 (β, γ )

(the opposite case follows analogous arguments and uses the second part of
Lemma 4). As in the proof of Lemma 5, we can define α such that if the impor-
tance sampling does not choose the column with sum dc in its first αm choices, then
in any subexponential number of trials it will exponentially underestimate the total
number of tables with high probability. Formally, we derive an upper bound on the
true probability of 1 being in the last row of the i-th column, and a lower bound on the
SIS probability of the same event (both conditioned on the fact that the dc column is
not among the first i −1 columns assigned). Assume that we already assigned the first
i − 1 columns of the table. Let d

(i)
r be the current residual sum in the last row (that is,

d
(i)
r is dr less the number of ones assigned to the last row of columns 1, . . . , i − 1),

mi be the remaining number of rows with sum 1, and ni the remaining number of
columns with sum 1 (note that this determines the contents A ∈ Ai−1 of the first i −1
columns, up to permutation). Notice that ni = n − i + 1, m ≥ mi ≥ m − i + 1, and
dr ≥ d

(i)
r ≥ dr − i + 1. Then

π(Tm+1,i = 1 | Ti−1 = A)

= d
(i)
r (ni − d

(i)
r + 1) + dcd

(i)
r (d

(i)
r − 1)

ni(ni − d
(i)
r + 1) + nidcd

(i)
r

≤ dr(n − dr + 1) + dcd
2
r

(n − i + 1)(n − i − dr + 2) + (n − i + 1)dc(dr − i + 1)

≤ dr(n − dr + 1) + dcd
2
r

(n − i)(n − i − dr) + (n − i)dc(dr − i)

=: f3(m,dr , dc, i);



μ(Tm+1,i = 1 | Ti−1 = A) = d
(i)
r (ni − 1)

d
(i)
r (ni − 1) + mi(ni − d

(i)
r )

≥ (dr − i)(n − i)

drn + m(n − dr)

=: g3(m,dr , dc, i).

As before, notice that if we fix m,dr, dc > 0 satisfying dc < m and dr < n, then f3 is
an increasing function and g3 is a decreasing function in i, for i < min{n − dr, dr}.
Recall that n − dr = m − dc.

Let α be a number such that 0 < α < min{1 − γ,β} (we will further specify how
α is chosen shortly—it will be small enough to satisfy (9) and (10) below). Suppose
that i ≤ αm < min{m − dc, dr}. Thus, the upper bound on f3 in this range of i is
f3(m,dr , dc,αm) and the lower bound on g3 is g3(m,dr , dc,αm). If dr = �βm� and
dc = �γm�, then the upper bound on f3 converges to

f ∞
3 (α,β, γ ) := lim

m→∞f3(m,dr , dc,αm) = β2

(1 + β − γ − α)(β − α)
(7)

and the lower bound on g3 converges to

g∞
3 (α,β, γ ) := lim

m→∞g3(m,dr , dc,αm) = (β − α)(1 + β − γ − α)

β(1 + β − γ ) + 1 − γ
. (8)

Let

�β,γ := g∞
3 (0, β, γ ) − f ∞

3 (0, β, γ ) = g∞
2 (β, γ ) − f ∞

2 (β, γ ) > 0.

We set α > 0 to satisfy

g∞
3 (α,β, γ ) − f ∞

3 (α,β, γ ) ≥ �β,γ /2. (9)

(Small enough α will work, by the continuity of (7) and (8) for α ∈ (0,min{1−γ,β}.)
Now we can conclude this part of the proof identically to the last paragraph of the

proof of Lemma 5.
It remains to deal with the case when sequential importance sampling picks the

dc column within the first �αm� columns. Suppose dc appears as the k-th column. In
this case we focus on the subtable consisting of the last n + 1 − k columns with
sum 1, m′ rows with sum 1, and one row with sum d ′, an instance of the form
(1,1, . . . ,1, d ′), (1, . . . ,1). We will use arguments similar to the proof of Lemma 5.

First we express d ′ as a function of m′. The number of rows with row sum 1
decreased by at least dc −1 = �γm�−1 ≥ γm−2, and at most by (α +γ )m. Hence,
(1−α−γ )m ≤ m′ ≤ (1−γ )m+2. Similarly, dr −αm ≤ d ′ ≤ dr where dr = �βm� ≥
βm − 1. Let β ′ be such that d ′ = β ′m′. Thus, (β − α − 1/m)/(1 − γ + 2/m) ≤ β ′ ≤
β/(1 − α − γ ).

Now we find α′ such that for any i ≤ α′m′ we will be able to derive an upper
bound on the true probability and a lower bound on the SIS probability of 1 appearing
at position (m′ + 1, i) of the (n + 1 − k) × m′ subtable, no matter how the first k

columns were assigned.



By the derivation in the proof of Lemma 5 (see expressions (4) and (5)), as m′ (and
thus also m) tends to infinity, the upper bound on the true probability approaches

f ∞(α′, β ′) = lim
m→∞

β ′

1 + β ′ − α′

≤ lim
m→∞

β
1−α−γ

1 + β−α− 1
m

1−γ+ 2
m

− α′

=
β

1−α−γ

1 + β−α
1−γ

− α′

=: f ∞
4 (α,β, γ,α′)

and the lower bound on the SIS probability approaches

g∞(α′, β ′) = lim
m→∞

(β ′ − α′)(1 + β ′ − α′)
β ′(1 + β ′) + 1

≥ lim
m→∞

(
β−α− 1

m

1−γ+ 2
m

− α′)(1 + β−α− 1
m

1−γ+ 2
m

− α′)
β

1−α−γ
(1 + β

1−α−γ
) + 1

= (
β−α
1−γ

− α′)(1 + β−α
1−γ

− α′)
β

1−α−γ
(1 + β

1−α−γ
) + 1

=: g∞
4 (α,β, γ,α′).

Let us evaluate f ∞
4 and g∞

4 for α = α′ = 0:

f ∞
4 (0, β, γ,0) =

β
1−γ

1 + β
1−γ

and

g∞
4 (0, β, γ,0) =

β
1−γ

(1 + β
1−γ

)

β
1−γ

(1 + β
1−γ

) + 1
.

Substituting x for β/(1 − γ ), we can see that f ∞
4 (0, β, γ,0) < g∞

4 (0, β, γ,0) since
β/(1 − γ ) ≥ 0.

Now let �′
β,γ := g∞

4 (0, β, γ,0) − f ∞
4 (0, β, γ,0) > 0. By continuity, for small

enough α,α′ > 0 we have

g∞
4 (α,β, γ,α′) − f ∞

4 (α,β, γ,α′) ≥ �′
β,γ /2. (10)

Now we proceed in a fashion similar to the last paragraph of the proof of
Lemma 5. More precisely, let ε := �′

β,γ /8 and let f := f ∞
4 (α,β, γ,α′) + ε and



g := g∞
4 (α,β, γ,α′) − ε be the upper bound (for sufficiently large m) on the true

probability and the lower bound on the SIS probability of 1 appearing at the position
(m + 1, i) for i ∈ I := {k + 1, . . . , k + �α′m′�}. Therefore Lemma 4 with parameters
α′, β , I of size |I | = �α′m′�, f , and g implies the statement of the theorem.

Finally, if the SIS procedure constructs the tables row-by-row instead of column-
by-column, symmetrical arguments hold. This completes the proof of Theorem 2. �

4 Experiments and Alternation of Rows and Columns

We performed several experimental tests which show sequential importance sam-
pling to be a promising approach for certain classes of input instances. In particular,
we tried the SIS algorithm on regular instances where all row and column sums are
equal (we used instances with 5, 10, �5 logn�, and �n/2�-regular row and columns
sums with number of rows and columns ranging from 10 to 100). We stopped the
computation if all of the last k(n + m) estimates fell within a (1 ± ε) multiplicative
factor of the current estimate, for some fixed constants k and ε (we chose k = 5 and
ε = 0.01). On these input instances, the SIS algorithm appears to converge to the
correct estimate, and our stopping heuristic appears to work well.

In contrast, for the negative examples from Theorem 2 (we tried different values of
m, β , and γ ), the SIS algorithm appears to converge but it converges to an incorrect
value. However, the bad input instances from Theorem 2 can be efficiently handled
by an enhanced SIS approach which considers both rows and columns for updating.
More precisely, the enhanced SIS algorithm assigns entries to the row or column with
the largest residual sum.

We believe there are input instances for which this enhanced SIS algorithm re-
quires exponential time, but proving such a result appears to be technically dif-
ficult. Specifically, we conjecture that for the family of inputs of the form r =
(1,1, . . . ,1, �m/2�, �m/2�, . . . , �m/2�) and c = (1,1, . . . ,1, �m/2�, �m/2�, . . . ,
�m/2�), where m denotes the overall number of rows and there are �m/2� rows
with sum �m/2� and �m/2� columns with sum �m/2�, the enhanced SIS strategy
fails to converge quickly to an accurate estimate of |�|. A theoretical analysis of the
performance on this family of inputs is difficult because, unlike the simpler instances
of Theorem 2, the true row and column distributions are apparently rather hard to
estimate in this case. Our experiments for m = 100 suggest that even the enhanced
SIS algorithm is inefficient for this class of inputs. In particular, the results obtained
from 12 independent runs differ significantly and we believe that the values produced
by the enhanced SIS algorithm are substantial underestimates of the true value of |�|;
however, since we know of no feasible method for accurately estimating |�| on these
examples, we cannot compare the experimental estimates to the true value of |�|.
Details on our experimental results are available at [4].
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