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An edge in a drawing of a graph is called even if it intersects every other edge of the graph an even number of times.
Pach and Tóth proved that a graph can always be redrawn such that its even edges are not involved in any intersections.
We give a new, and significantly simpler, proof of a slightly stronger statement. We show two applications of this
strengthened result: an easy proof of a theorem of Hanani and Tutte (not using Kuratowski’s theorem), and the result
that the odd crossing number of a graph equals the crossing number of the graph for values of at most 3. We begin
with a disarmingly simple proof of a weak (but standard) version of the theorem by Hanani and Tutte.
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1 The Hanani and Tutte Theorem
In 1970 Tutte published his paper “Toward a Theory of Crossing Numbers” (12) containing the following
beautiful theorem.

In any planar drawing of a non-planar graph there are two non-adjacent edges that cross an
odd number of times. In other words: if a graph can be drawn such that every pair of non-
adjacent edges intersects an even number of times, then the graph is planar.

Tutte acknowledges earlier proofs of the same result, including the paper “Über wesentlich unplättbare
Kurven im drei-dimensionalen Raume” (4) published in 1934 by Chaim Chojnacki (who later changed his
name to Haim Hanani). While there is general agreement that the result itself is “remarkable” (9; 2), and
“nice” (1), the same cannot be said for its proofs. Both Hanani and Tutte took the same general approach
using Kuratowski’s theorem: If the graph is non-planar it contains a subdivision of K3,3 or K5, so they
only have to show that any drawing of these graphs contains two non-adjacent edges that cross an odd
number of times. Hanani opts for a more topological approach, while Tutte develops an algebraic theory
of crossing numbers.

We want to present a very intuitive and entirely geometric proof of the result which, furthermore, does
not use Kuratowski’s theorem. We begin by proving a slightly weaker result.

Let us call an edge in a drawing even if it intersects every other edge an even number of times.

Theorem 1.1 (Hanani and Tutte, weak version) If G can be drawn in the plane such that all its edges
are even, then G is planar.



Proof We may assume that G is connected, since components may be redrawn arbitrarily far apart. Fix
a plane drawing D of G in which every pair of edges intersects an even number of times. We prove the
result by induction on the number of edges in G. To make the inductive step work, we keep track of
the rotation of each vertex, that is, the cyclic order in which edges leave the vertex in the drawing. The
mapping from the vertices of G to their rotations is called the rotation system of D. We will prove the
following stronger statement:

If D is a drawing of a multigraph G such that any pair of edges intersects an even number of
times in D, then G is planar and can be drawn without changing the rotation system.

We begin with the inductive step: if there are at least two vertices in G, then there is an even edge e = uv.
Pull v towards u as shown in the left part of Figure 1.

u

v

⇒

u

v

⇒

u = v

Fig. 1: Pulling an endpoint (left) and contracting the edge (right).

Since e was an even edge, the edges incident to v remain even. The pulling move will introduce self-
intersections in curves that intersect e and are adjacent to v. Since drawings are typically defined not to
have self-intersections, we remove them by using the move shown in Figure 2 (although we could preserve
self-intersections and instead modify the analysis slightly).

⇒

Fig. 2: Removing a self-intersection.

Now that uv no longer has any intersections, we contract it to obtain a new graph G′ in which the
rotations of u and v are combined appropriately (see the right part of Figure 1).

By the inductive assumption, there is a planar drawing of G′ respecting the rotation system. In such a
drawing, we can simply split the vertex corresponding to u and v, reintroducing the edge e between them
without any intersections. Hence G is planar respecting the rotations of all its vertices.



If G contains only a single vertex, then it might have several loops attached to it. Since all the loops
are even edges, it cannot happen that we find edges leaving in order a, b, a, b since this would force an
odd number of intersections between a and b. Hence, if we consider the regions enclosed within the two
loops in a small enough neighborhood of the vertex, either they are disjoint or one region contains the
other. Then it is easy to show that there must be a loop whose ends are consecutive in the rotation system.
Removing this edge we obtain a smaller graph G′ which, by inductive assumption, can be drawn without
intersections and with the same rotation system. We can then reinsert the missing loop at the right location
in the rotation system by making it small enough.

In the base case, we simply draw a single vertex with no edges. 2

We can restate the result in terms of crossing numbers. The crossing number of a drawing of a graph
is the total number of crossings of each pair of edges. The crossing number of G, cr(G), is the smallest
crossing number of any drawing of G. The odd crossing number of a drawing is the number of pairs of
edges that cross an odd number of times. The odd crossing number of G, ocr(G), is the smallest odd
crossing number of any drawing of G. It follows from the definition that

ocr(G) ≤ cr(G).

Theorem 1.1 shows that ocr(G) = 0 implies cr(G) = 0 (that is, G is planar). The original result by
Hanani and Tutte draws the same conclusion under the weaker assumption that all pairs of non-adjacent
edges intersect an even number of times. This suggests the concept of the independent odd crossing
number, iocr(G), as the smallest number of pairs of non-adjacent edges of G that intersect an odd number
of times in any drawing of G. The original Hanani and Tutte result (4; 12) can then be stated as follows.

Theorem 1.2 (Hanani and Tutte, strong version) If iocr(G) = 0, then cr(G) = 0.

We will return to this theorem in the next section.

Remark 1 There have been several proofs of both the weak and the strong version of the Hanani and
Tutte theorem.

Let us begin with proofs of the strong version. Two papers in 1976, one by Kleitman (6), the other by
Harborth (5) showed that the parity of iocr(G) is independent of the drawing of G if G is either K2j+1

or K2j+1,2j+1. Norine (7) supplies a different proof of this result, and observes, that it implies the strong
version of the theorem of Hanani and Tutte by an application of Kuratowski’s theorem. Székely (11)
shows that iocr(K3,3) = iocr(K5) = 1 simplifying Tutte’s algebraic approach. Again, an application of
Kuratowski’s theorem yields the strong version of the Hanani and Tutte theorem.

The weak version was proved by Pach and Tóth (9), strengthening it in a different direction by allowing
the presence of edges that are not even. In Section 2 we will show how to obtain their version of the result
using our methods. There also is a proof by Cairns and Nikolayevsky (3, Lemma 3) using homology
which shows that the weak version is true on surfaces of any genus.

2 The Pach-Tóth Result and Applications
Pach and Tóth (9, Theorem 1) generalized the weak version of the Hanani and Tutte theorem by showing
that one can redraw even edges without crossings (even in the presence of odd edges). Their proof is a



nontrivial extension of Tutte’s and Hanani’s approach of extending Kuratowski’s theorem. We show that
our inductive approach gives a much simpler proof of the Pach-Tóth result. In fact, it yields the stronger
conclusion that we can perform the redrawing without adding pairs of edges that intersect an odd number
of times; in particular the odd crossing number does not increase.

Theorem 2.1 If D is a drawing of G in the plane, and E0 is the set of even edges in D, then G can be
drawn in the plane such that no edge in E0 is involved in an intersection and there are no new pairs of
edges that intersect an odd number of times.

The proof is in the same spirit as the proof of Theorem 1.1, involving some additional geometric trans-
formations. We mention two applications of our strengthened version of the result by Pach and Tóth.
First, we can give an easy proof of Theorem 1.2, which, as far as we know, is the first direct and geometric
proof not making use of Kuratowski’s theorem. The core idea of the proof is to locate cycles in the graph,
make its edges even, and then redraw the cycle without intersections, applying Theorem 2.1. Repeating
this process in the right manner will eventually remove all intersections.

The second result is related to the odd crossing number. When applying Theorem 2.1 to draw conclu-
sions about the odd crossing number, we proceed as follows: Draw G to minimize odd crossing number
ocr(G) (call pairs that intersect an odd number of times odd pairs, and edges that belong to an odd pair
is odd; the remaining edges are even). Using Theorem 2.1, we can redraw the even edges so they are not
involved in any intersections and such that the new drawing still has odd crossing number ocr(G). Now
the even edges form a plane graph G′ and each odd edge lies entirely within some face of G′. We can now
process the odd edges within each face separately to obtain results on crossing numbers.

Example 2.2 For example, let us reconstruct the argument by Pach and Tóth which shows that cr(G) ≤
2 ocr(G)2. Consider a subgraph H of G drawn in the plane consisting of the (odd) edges within a face of
G′ and the (even) edges on the boundary of the face. We can redraw the odd edges of H such that each
pair intersects at most once; after the redrawing we have at most

(|E(H)|
2

)
crossings within that face of G′.

If we do the same for every face of G′ we can conclude that cr(G) is at most the sum of
(|E(H)|

2

)
where H

ranges over the odd subgraphs in the faces of G′. Furthermore, we know that there are at most 2 ocr(G)
odd edges in total, hence cr(G) ≤

(
2 ocr(G)

2

)
≤ 2 ocr(G)2. �

This approach turns out to be successful when the odd crossing number is small. Recall that by defini-
tion ocr(G) ≤ cr(G), and that by the result of Hanani and Tutte, ocr(G) = 0 implies cr(G) = 0. This
suggests that perhaps ocr(G) = cr(G) for all graphs G (see (8; 9; 13; 1)). While this conjecture turns out
to be false (10), we can show, using our approach, that ocr(G) = cr(G) if ocr(G) is small enough.

Theorem 2.3 If G is a graph with ocr(G) ≤ 3, then ocr(G) = cr(G).
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