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Abstract. In a drawing of a graph, two edges form an odd pair if they
cross each other an odd number of times. A pair of edges is independent if
they share no endpoint. For a graph G, let ocr(G) be the smallest number
of odd pairs in a drawing of G and let iocr(G) be the smallest number of
independent odd pairs in a drawing of G. We construct a graph G with
iocr(G) < ocr(G), answering a question by Székely, and—for the first
time—giving evidence that crossings of adjacent edges may not always
be trivial to eliminate.

The graph G is based on a separation of iocr and ocr for monotone
drawings of ordered graphs. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line
contains at most one vertex. A graph is ordered if each of its vertices
is assigned a distinct x-coordinate. We construct a family of ordered
graphs such that for x-monotone drawings, the monotone variants of ocr
and iocr satisfy mon-iocr(G) < O(mon-ocr(G)1/2).

1 Introduction

When drawing a graph some assumptions are natural: there are only finitely
many crossings, no more than two edges cross in a point, edges do not pass
through vertices, and edges do not touch.1 Sometimes these assumptions are
relaxed (degenerate drawings allow more than two edges to cross in a point),
and sometimes more restrictions are added, for example adjacent edges may not
be allowed to cross.

The crossing number cr(G) of a graph G is the smallest number of crossings
in a drawing of G. It is easy to see that in an optimal drawing, adjacent edges

1 For a detailed discussion see [14].



of G do not cross (such crossings can always be removed). This may have led
researchers on crossing numbers to think that adjacent crossings are irrelevant
or even to prohibit them in drawings.2 Another source for ignoring adjacent
crossings may be the fact that graph drawings are often straight-line drawings
in which adjacent edges naturally cannot cross.

Pach and Tóth point out in “Which Crossing Number is It Anyway?” that
there have been many different ideas on how to define a notion of crossing num-
ber, including the following (see [6,14]):

pair crossing number: pcr(G), the smallest number of pairs of edges crossing
in a drawing of G,

odd crossing number: ocr(G), the smallest number of pairs of edges crossing
oddly (odd pairs) in a drawing of G.

Tutte introduced another type of crossing number by orienting edges arbitrarily,
then letting λ(e, f) be the difference in the number of crossings where e is pointed
to the left of f and the number of crossings where e is pointed to the right of f .
Changing the orientation of e or f will only change the sign of λ(e, f), so one
can define:

algebraic crossing number: acr(G), the minimum of
∑ |λ(e, f)| in a drawing

of G, where the sum is taken over pairs of edges e, f .

By definition we have ocr(G) ≤ pcr(G) ≤ cr(G) and ocr(G) ≤ acr(G) ≤ cr(G).
For each of these notions, one can ask whether adjacent crossings matter.

In [5], Pach and Tóth suggest a systematic study of this issue (see also [1, Sec-
tion 9.4]) by introducing two rules: “Rule +” restricts the drawings to drawings
in which adjacent edges are not allowed to cross. “Rule −” allows crossings of
adjacent edges, but does not count them towards the crossing number. Each pa-
rameter ocr, pcr, acr, and cr can be modified by either rule, but since cr+ = cr
(implied by the discussion at the beginning of the section), this yields up to
eleven possible distinct variants.

The tables below are based on a figure from [1]. The notion of ocr− was
introduced as the independent odd crossing number, iocr, by Székeley [14].3

Rule + ocr+ pcr+ cr
ocr pcr

Rule − iocr = ocr− pcr− cr−

ocr+ acr+ cr
ocr acr

iocr = ocr− acr− cr−

It immediately follows from the definitions that the values in each table in-
crease monotonically as one moves from the left to the right and from the bottom
to the top. Not much more is known about the relationships between these cross-
ing number variants. In [5], Pach and Tóth write, “We cannot prove anything
2 Székely discusses this issue in [14].
3 Székeley credits Tutte [18] with the (implicit) definition of iocr, but Tutte is re-

ally concerned with the algebraic crossing numbers only, acr and acr−; he does not
consider parity.



else about iocr(G), pcr−(G), and cr−(G). We conjecture that these values are
very close to cr(G), if not the same. That is, we believe that by letting pairs of
incident edges cross an arbitrary number of times, we cannot effectively reduce
the total number of crossings between independent pairs of edges.”4 Tutte [18]
seems to have had a similar opinion, when he explained his choice to study acr−,
writing, “We are taking the view that crossings of adjacent edges are trivial, and
easily got rid of.” Székely [14] later commented “We interpret this sentence as
a philosophical view and not a mathematical claim.” West [20] and Székely [15]
mention the specific question of whether there are graphs with iocr(G) < ocr(G).

There are situations when the entire system of crossing numbers collapses.
The classic Hanani-Tutte theorem states that if a graph can be drawn in the
plane so that no pair of independent edges crosses an odd number of times, then
it is planar [3,18]. In other words, iocr(G) = 0 implies that cr(G) = 0 and, thus,
that all of the eleven variants are equal (to zero). This was extended to show that
all eleven variants are equal as long as iocr(G) ≤ 2 [12]. Székely gave an explicit
criterion for when all variants are equal [16]. It is also known that all eleven
variants are within a square of each other, since cr(G) ≤ (

2 iocr(G)
2

)
[12]. For

drawings of G on the projective plane N1, we know that iocrN1(G) = 0 implies
that crN1(G) = 0, so again all variants are equal (to zero) in this case [8].

Setting aside the Rule − variants, there are some strong results for the re-
maining seven variants, ocr, ocr+, acr, acr+, pcr, pcr+ and cr. If ocr(G) ≤ 3
then all these seven variants are equal [9]. For drawings on any surface S, if
ocrS(G) = 0 then all seven variants are equal (to zero) [11]. Valtr [19] showed
that cr(G) = O(pcr2(G)/ log pcr(G)), which Tóth [17] improved to cr(G) =
O(pcr2(G)/ log2 pcr(G)).

On the other hand, we know that ocr and pcr differ: there is an infinite family
of graphs with ocr(G) < 0.867·pcr(G) [10]. Tóth improved this by giving a family
of graphs with acr(G) < 0.855 · pcr(G) [17] (so ocr(G) < 0.855 · pcr(G) as well).
For such G it immediately follows that ocr(G) < cr(G) and acr−(G) < cr(G),
answering questions of Pach and Tóth [6] and Tutte [18]; additional consequences
can be deduced from the tables above. However, none of these results address
the intuitions expressed by Tutte and by Pach and Tóth about how Rule − may
or may not affect cr, pcr, ocr, or acr.

We can finally give a result of this nature.

Theorem 1. For every n, there is a graph G with iocr(G) < ocr(G) − n.

In short, adjacent crossings matter.5

To prove Theorem 1, we will first prove a separation for monotone drawings
of ordered graphs. An ordered graph is a graph with a total ordering of its ver-
tices. For our purposes, we will assume that the vertex set of an ordered graph
is a subset of the integers, and we will only consider drawings where each vertex
4 Some authors write incident edges to mean two edges that share an endpoint, but we

will only use adjacent edges. Non-adjacent edges are also called independent edges.
5 Among other things, Theorem 1 justifies the rather baroque NP-completeness proof

for iocr in [13]. NP-completeness of ocr is simpler in comparison [7].



n has x-coordinate equal to n. A drawing of a graph is x-monotone if every
edge intersects every vertical line at most once and every vertical line contains at
most one vertex. We can generalize each crossing number variant to x-monotone
drawings of ordered graphs G, which we denote mon-cr(G), mon-ocr(G),
mon-iocr(G), etc.

Pach and Tóth proved that mon-ocr(G) = 0 implies mon-cr(G) = 0 [7]. We
strengthened this by showing that mon-iocr(G) = 0 implies mon-cr(G) = 0 [2],
which had been left as an open problem in [7]. On the other hand, in the same
paper we showed that for every n there is a graph G such that mon-cr(G) ≥ n
and mon-ocr(G) = 1. In this paper, we will show that there can also be an
arbitrary gap between mon-ocr and mon-iocr.

Theorem 2. For every n ≥ 3 there is an ordered graph G with mon-iocr(G) =
3n < n2 + n = mon-ocr(G).

Note that for such G, we have mon-iocr(G) = O(mon-ocr(G)1/2). We will use
Theorem 2 to prove Theorem 1.

2 Separating Monotone Crossing Numbers

We generalize the crossing number definitions for graphs with weighted edges.
Suppose that G is a graph and each edge e has weight w(e). A crossing between
edges e and f is assigned crossing weight equal to the product w(e)w(f). Let D
be an arbitrary drawing of G, and define

cr(D) = the sum of crossing weights, taken over all crossing in D,
ocr(D) = the sum of w(e)w(f), taken over all odd pairs e, f in D,
iocr(D) = the sum of w(e)w(f), taken over all independent odd pairs e, f in D.

Let cr(G) = minD cr(D), ocr(G) = minD ocr(D), and iocr(G) = minD iocr(D),
with each minimum taken over all drawings D of G. If we assign every edge
weight equal to 1, then these definitions revert back to their original, unweighted
versions.

Consider an ordered graph G = ([7], {13, 16, 23, 24, 25, 27, 35, 37, 46, 47, 56})
with edge weights w(16) = w(23) = w(25) = w(27) = w(46) = w(47) = 2x2,
w(24) = w(37) = x, w(13) = w(35) = w(56) = 1 (see the left of Figure 1 for a
drawing of G).

Theorem 3. For the weighted ordered graph G in Figure 1 with x ≥ 3, we have

mon-iocr(G) = 3x < x2 + x = mon-ocr(G). (1)

Proof. In the drawing on the left side of Figure 1, the only independent pairs of
edges that cross oddly are (13, 24), (24, 35), (56, 37), showing

mon-iocr(G) ≤ 3x. (2)



1 76
5

4

32 1 76
54

32

Fig. 1. Two drawings of a weighted ordered graph G with mon-iocr(G) < mon-ocr(G);
thick solid edges have weight 2x2, the thick dashed edges have weight x, and the thin
solid edges have weight 1. The left drawing shows that mon-iocr(G) ≤ 3x; the right
drawing that mon-ocr(G) ≤ x2 + x.

The drawing also shows mon-ocr(G) ≤ 4x+2x3, since for mon-ocr the odd pairs
(24, 25) and (35, 37) count. If we reroute edge 24 to go above 25, it crosses 37
(instead of 13, 35, and 25). Close to 3, we can twist 35 and 37 so they cross
evenly. This yields the drawing on the right in Figure 1. It shows that

mon-ocr(G) ≤ x2 + x. (3)

Suppose that we have a drawing D of G with mon-iocr(D) < x2 + x. Since
x2 + x < 2x2 for x ≥ 3, no thick edge (that is an edge of weight 2x2) is crossed
oddly by an independent edge. We claim that this forces most of the drawing
to be as depicted in Figure 1: Without loss of generality assume that 46 passes
above 5. Then 35 must pass below 4 (to avoid crossing 46 oddly) and 47 must
pass above 5 and 6 (to avoid crossing 35 and 56 oddly). Now 16 has to pass
below 4 (to avoid 47) and hence below 2, 3, 5 (to avoid 24, 23, 35). Since 16 goes
below 2 we have that 27 is above 6 (to avoid 16) and also above 3, 4, 5 (to avoid
56, 35, 46). Then 13 has to be below 2 (to avoid 27) and 25 has to be above 3 (to
avoid 13) and below 4 (to avoid 46). The edge 37 has to go below 5 (to avoid 25)
above 6 (to avoid 16) and hence above 4 (to avoid crossing 46 oddly). Note that
we have determined the above-below relationship for all relevant edge-vertex
pairs (when the vertex lies between the endpoints of the edge) except for those
with the edge 24, using only the fact that thick edges cannot be crossed oddly
by independent edges. Note that thus far, (37, 56) is the only independent odd
pair of edges.

Consider how the edge 24 can be drawn. If we draw it above 3 then it will
cross 37 oddly bringing the total number of odd crossings between independent
pairs of edges to x2 + x. Thus 24 has to go below 3. To summarize: we have
shown that any drawing D of G with mon-iocr(D) < x2 +x must have the same
(or mirrored) above-below relationships as in the drawing on Figure 1. Note that



24 crosses 13 and 35 oddly, bringing the total number of odd crossings between
independent pairs of edges to 3x. This proves the left equality in (1).

We next prove the right equality in (1). For this we need only show
mon-ocr(G) ≥ x2 + x, due to (3). Suppose that we have a drawing D of G
such that mon-ocr(D) < x2 + x. This implies mon-iocr(D) < x2 + x so by the
earlier argument we may assume that every relevant edge-vertex pair has the
same above-below relationship in D as in the drawing of Figure 1.

If 24 leaves 2 above 23 then 23 and 24 cross oddly (since 24 goes below 3)
showing mon-ocr(D) ≥ 2x3 + 3x, a contradiction. Thus 24 leaves 2 below 23. If
24 leaves 2 below 25 then 24 and 25 cross oddly (since 25 goes below 4) showing
mon-ocr(D) ≥ 2x3 + 3x, a contradiction. Thus 24 leaves 2 above 25. Now, using
transitivity, 23 leaves 2 above 25 but that means that 23 and 25 cross oddly
(since 25 goes above 3) showing mon-ocr(D) ≥ 2x2 + 3x, a contradiction. Hence
there is no drawing D of G with mon-ocr(D) < x2 +x, finishing the proof of (1).

2.1 From Weighted Edges to Unweighted Edges

Suppose that G is a graph or ordered graph with edges of positive integer weight.
Let G′ be the graph obtained by replacing each edge of weight w with w edges
of weight 1, equivalently, with w unweighted edges. Choose any of the eleven
crossing variants mentioned in Section 1, and consider a drawing of G′ (which
is x-monotone if G is an ordered graph) that optimizes that crossing variant.
Suppose that e1 and e2 are copies of the same edge e of G. Without loss of
generality, we may assume that e1 contributes less than or equal to what e2
contributes to the chosen crossing parameter. We can redraw e2 along the side
of e1 so that they do not cross; then e2 will contribute the same to the crossing
parameter as e1, so the new drawing is still optimal. Hence, we may assume
that in an optimal drawing of G′, multiple edges are drawn in a bundle, all with
essentially the same behavior.6 It follows that all crossing parameters are the
same for G and G′.

Lemma 1. Subdividing an edge of a graph does not change ocr or iocr. Subdi-
viding an edge of an ordered graph near one of its endpoints does not change
mon-ocr or mon-iocr. These results hold for graphs with multiple edges as well.

Proof. Let G be a graph or ordered graph, possibly with multiple edges. If G is
an ordered graph, we will restrict all drawings to be x-monotone drawings.

Fix an ocr-optimal (iocr-optimal) drawing of G, and choose any edge uv.
Subdivide uv with a vertex z, which is added to the drawing of uv near the
endpoint u. Then for each edge e �= uv, e will cross zv oddly if and only if e
crossed uv oddly, and e does not cross uz at all. Hence ocr is unchanged; iocr
is also unchanged unless e shares an endpoint with uv but not with zv, which
means that e is incident to u but not v. In this case, we can deform a small
section of e until it passes over z (while maintaining its monotonicity, if G is
6 This argument was probably first made in Kainen [4] for the standard crossing

number.



ordered); do this for all such e. This yields a drawing with iocr no bigger than
in the initial drawing.

Now consider any drawing of the new graph. We can erase z from that drawing
to obtain a drawing of the original, unsubdivided graph. If G is ordered, then we
erase z from an x-monotone drawing where z lies strictly between u and v, so
we obtain an x-monotone drawing of G. Erasing z moves all odd pairs of edges
with uz or zv to become odd pairs with uv (and if an edge crosses both uz and
zv oddly, then these cancel and it crosses uv evenly). Hence the number of odd
pairs and independent odd pairs does not increase. ��
Consider any integer x ≥ 3. Replace the weighted edges of the graph in Fig-
ure 1 by multiple edges, and then apply Lemma 1 to every edge. We obtain an
unweighted ordered graph H with mon-iocr(H) = 3x < x2 + x = mon-ocr(H).
Thus, Theorem 2 is proved.

Before moving on, note that for any drawing of a graph G, we can remove
self-intersections of edges without adding any crossing or odd pair, by redrawing
locally near the crossing as shown in Figure 2 (originally from [10]).

⇒

Fig. 2. Removing a self-intersection

3 Adjacent Crossings Are Not Trivial

Given an ordered graph G = (V,E) with V = {v1 < v2 · · · < vn} let G′ be
obtained from G by adding the following framework: start with a cycle C2n+2

formed from two paths s, u1, . . . , un, t and s, w1, . . . , wn, t; call this the outer
framework. Add paths Qi = uiviwi for 1 ≤ i ≤ n; call this the inner framework.
Assign a weight of wI = n4 +1 to the edges in the inner framework and a weight
of wO = n4 + n3wI + 1 to the edges in the outer framework. Edges originally in
G remain at weight 1 (unweighted). From the weighted graph G′ we will obtain
the unweighted graph G′′ by replacing each edge of weight w > 1 in G′ by w
copies of P3.

Lemma 2. With G′ as defined above we have ψ(G′′) = mon-ψ(G) + c for any
connected graph G, where ψ is one of the crossing numbers {iocr, ocr, cr} and
c = wI

∑
vivj∈E(G),i<j(j − i− 1).

Lemma 2 and Theorem 2 immediately yield Theorem 1. In [2] we showed that for
every n there is an ordered graph G such that mon-cr(G) ≥ n and mon-ocr(G) =
1. Together with Lemma 2, this yields a new graph G′ with ocr(G′) < cr(G′),



joining the earlier examples from [10] and [17]. In the journal version of this
paper, we show that Lemma 2 can be made to work for other crossing numbers
as well, so that it has the potential to lead to further separations.

For the proof of Lemma 2, we need the following lemma. An even edge is
an edge that crosses every other edge an even number of times (possibly zero
times).

Lemma 3 (Pelsmajer, Schaefer, and Štefankovič [9]). If D is a drawing
of G in the plane and E is the set of even edges in D, then G has a redrawing
in which all edges in E are crossing-free, there are no new pairs of edges that
cross an odd number of times, and the cyclic order of edges at each vertex does
not change.

Proof (of Lemma 2). First note that ψ(G′′) ≤ mon-ψ(G) + c is immediate: take
a monotone drawing realizing mon-ψ(G) and overlay it with a planar drawing
of the framework, call the resulting drawing D′ (see Figure 3 for an example).
Then ψ(D′) = mon-ψ(G)+c since the only crossings are single crossings between
pairs of non-adjacent edges that count the same whatever ψ is. From D′ we can
obtain a drawing D′′ of G′′ by replacing the weighted edges in the drawing by
parallel P3s; then ψ(D′′) = ψ(D′) (since the framework edges are not involved
in any adjacent crossings), so ψ(G′′) ≤ ψ(D′′) = mon-ψ(G) + c.
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Fig. 3. Overlay of G from Figure 1 with framework (note that in the construction, G
will be an unweighted graph)

It remains to prove ψ(G′′) ≥ mon-ψ(G) + c for ψ ∈ {cr, ocr, iocr}. It is easy
to see that ψ(G′′) ≥ ψ(G′): fix an ψ-optimal drawing of G′′. Consider w parallel
paths P3 that were used to replace an edge of weight w in G′. Pick one of
these paths P that contributes the smallest amount to ψ(G′′). Now redraw the
remaining w − 1 paths to run very close to P and without crossing each other.
This redrawing cannot increase the value of ψ of the drawing. But now we can



bundle the parallel paths into a single weighted edge to obtain a drawing D′ of
G′ with ψ(D′) ≤ ψ(G′′). So ψ(G′) ≤ ψ(G′′).

Hence, to establish the lemma it is sufficient to show that ψ(G′) ≥ mon-ψ(G)+
c. We proceed in three steps; we first show that there is a ψ-minimal drawing
of G′ in which the edges of the outer framework are crossing-free. In the second
step we show that we can assume that the edges of the inner framework do not
cross each other. In the third step we show that from such a drawing of G′, we
can construct a monotone drawing of G with at most ψ(G′) − c crossings. It
follows that mon-ψ(G) ≤ ψ(G′) − c.

For the first step, fix an ψ-minimal drawing of G′. For ψ = cr the claim
is immediate: any edge crossing an edge of the outer framework contributes
at least wO to ψ(G′). However, we already proved that ψ(G′) ≤ mon-ψ(G) +
c ≤ n4 + n3wI < wO, so all edges of the outer framework must be crossing-
free. If ψ = ocr then edges of the outer framework cannot be involved in any
odd pairs, since any such odd pair would contribute wO to ocr and, as above,
ψ(G′) ≤ mon-ψ(G) + c ≤ n4 + n3wI < wO. So all the edges in the outer
framework are even. We can then apply Lemma 3 to make all edges in the outer
framework crossing-free without introducing any new pair of edges crossing oddly
(in particular, ψ does not increase). This leaves the case ψ = iocr. The argument
here is similar to ocr. In any iocr-minimal drawing, edges of the outer framework
cannot be involved in any independent odd pairs, so all odd pairs involving these
edges must have adjacent edges. However, all vertices in the outer framework
have degree 2 or 3, so we can modify the drawing near each of these vertices
to ensure that all the edges in the outer framework are actually even. We then
proceed as in the case of ocr.

This completes the first step: we know that we can assume that the outer
framework is entirely free of crossings. Since we assumed that G is a connected
graph, all vertices of G must lie in the same face of C2n+2, without loss of
generality, the inner face. Since every edge not in the outer framework is incident
to a vertex of G this also implies that all edges lie in the inner face and the outer
face is therefore empty.

In the second step we show that we can assume that edges of the inner frame-
work do not cross each other. Recall that Qi = uiviwi is the inner framework
path passing through vi with endpoints ui and wi on C2n+2, for 1 ≤ i ≤ n.

For ψ = cr the claim is immediate again, since any such crossing would
contribute w2

I = wI(n4 + 1) = n4wI + wI > n3wI + n4 + 1 = wO to ψ(G′),
but we already know that ψ(G′) ≤ wO.

For ψ = ocr, we can similarly conclude that any two edges of the inner frame-
work cross evenly, and for ψ = iocr, we know that any independent pair of edges
in the inner framework crosses evenly. Suppose that ψ = iocr and two adjacent
edges of the inner framework, uivi and viwi, cross oddly. In that case, we per-
form a (uivi, vi)-move (that is, we deform a small section of uivi, bring it close
to vi and then make it pass over vi); this does not affect iocr and ensures that
uivi and viwi cross evenly. We conclude that for ψ ∈ {ocr, iocr} any two edges



of the inner framework cross an even number of times. We next show how to
remove crossings between edges of the inner framework.

To this end, let us consider Q1 = u1v1w1. Let e be an edge of the inner
framework that crosses u1v1 (we allow the case e = v1w1). Deform e near each
such crossing so that it follows along u1v1 toward v1 and then over v1. Since
e must have crossed u1v1 an even number of times, this procedure will not
change the value of ψ for the drawing. Performing this for all such edges e of the
inner framework leaves u1v1 free of crossings with edges of the inner framework.
This redrawing process may have introduced self-crossings of v1w1 which can
be removed without affecting ψ, as described at the end of Section 2. So u1v1
crosses no edge of the inner framework and v1w1 crosses every other edge of the
inner framework evenly. Without loss of generality, we can assume that t is in
the exterior of su1v1w1s. Then the interior of su1v1w1s does not contain any
vertices: every vertex (other than t) has a path consisting of edges of weight at
least wI to t, contributing at least w2

I to ψ, which we know to be impossible. Now
cut each edge e of the inner framework where it crosses v1w1. We can partition
the crossings of e and v1w1 into pairs since they cross evenly, and then for each
pair we add curves that run along each side of v1w1 that connect the severed ends
of e. Thus, e is replaced by a curve that may have more than one component, all
but one of which are closed curves with no vertex, and none of the components
intersect v1w1. Because of the way the connecting curves are added in pairs, the
value of ψ is unchanged. The components lying within su1v1w1s are all closed
curves without vertices. Moreover, since there is no vertex within that region,
they can be deleted without affecting ψ. Any two of the curves on the other side
of Q1 can be merged by erasing a tiny bit of each curve and adding two parallel
curves within the region that join the erased bits of opposite curves, giving a
wide berth to all vertices, which ensures that ψ is unchanged. Repeating this
process merges all curve components in that region into a single curve, and after
removing self-intersections we obtain a valid drawing of e within that region.
We can now repeat this argument with Q2 and su1u2v2w2w1s, and so on, to
establish that none of the Qi, 1 ≤ i ≤ n have crossings with any edges of the
inner framework. This completes the second step.

Hence, for the third step, we can assume that every crossing is between two
edges of G or between an edge of G and an edge of the inner framework.

At this point, let us deform the whole drawing so that C2n+2∪{Q1, Qn}−{s, t}
is a rectangle and all the Qi are parallel straight-line segments orthogonal to the
outer framework.

For ψ = cr we are nearly done: a G-edge e connecting vi to vj must cross
all Qk with i < k < j, forcing at least c crossings. This leaves ψ(G′) − c ≤
mon-ψ(G) ≤ n4 < wI crossings counting towards ψ(G′). Since a crossing with
an edge of the inner framework contributes at least wI to ψ(G′) this accounts
for all crossings with edges of the inner framework. So an edge e = vivj crosses
all Qk with i < k < j and no other Qks. The actual behavior of e between
two neighboring Qks is irrelevant and within each such region we can replace
e by a straight-line segment connecting its crossings between neighboring Qks.



This does not affect ψ and results in a monotone drawing of G with ψ(G′) − c
crossings, proving that mon-ψ(G) ≤ ψ(G′) − c which is what we had to prove.

For ψ ∈ {ocr, iocr} we need to do a bit more work. A G-edge e connecting vi

to vj must cross all Qk with i < k < j oddly. So the crossings of G-edges with
the inner framework contribute at least c to the value of ψ. This leaves at most
ψ(G′) − c ≤ mon-ψ(G) < wI in ψ(G′) unaccounted for. So there are no non-
adjacent odd pairs with edges of the inner framework except those absolutely
necessary to connect the endpoints of every edge in G. The only case in which
odd pairs with inner framework edges can still occur is in the iocr case (where
such crossings do not count) if an edge vivj , i < j crosses an adjacent inner
framework edge (uivi, viwi, ujvj , or vjwj) oddly. In this case we redraw vivj

near each endpoint (if necessary) so that the ends of vivj at vi and vj lie between
Qi and Qj ; this does not affect iocr and results in vivj crossing both Qi and Qj

an even number of times. It is possible at this point that vivj crosses both ukvk

and vkwk oddly, where k ∈ {i, j}. In that case we perform a (vivj , vk)-move; this
does not affect iocr and ensures that vivj crosses both ukvk and vkwk evenly.

Thus for ψ ∈ {ocr, iocr} we can now assume that if an edge e = vivj crosses
ukvk or vkwk with k ≤ i or k ≥ j it must do so evenly. As we did above for
the inner framework edges, we push all crossings of e with ukvk along ukvk and
over vk to vkwk so that ukvk does not cross e at all; pushing e off ukvk does
not affect ψ, since e crossed ukvk evenly. For all k ≤ i and k ≥ j cut e at vkwk;
pair up crossings of e with vkwk and reconnect severed ends of e on both side
of vkwk for all k ≤ i, k ≥ j. Closed components of e between Qi and Qj can be
reconnected to the arc-component of e without affecting ψ. Every other closed
component of e is entirely contained in a region which does not contain a vertex,
so all such components are even and can be dropped without affecting ψ. In the
end, all of e lies in the region formed by C2n+2 and Qi and Qj .

Now for any i < k < j we have either ocr(e, ukvk) = 0 and ocr(e, vkwk) = wI

or ocr(e, ukvk) = wI and ocr(e, vkwk) = 0 (since we have already accounted for
all crossings with edges of weight at least wI). For every k push all crossings of
e with Qk from the edge with ocr = 0 to the other edge (not affecting the value
of ψ); that is, e avoids one of the edges of Qk for every i < k < j. Let e′ be any
other curve in the region in C2n+2 bounded by Qi, Qj that shares ends with e
(here, an end is an endpoint together with a small, crossing-free part of the edge
incident to the endpoint); furthermore, suppose that e′ avoids the same edge in
each Qk as does e. Then ocr(e, g) = ocr(e′, g) for every edge g (other than e),
since e can be continuously deformed to e′ without passing over any vertex. In
particular, we can replace e with a monotone polygonal arc without changing
the value of ψ. Repeating this for all edges of G gives us a monotone drawing of
G with mon-ψ crossings. This completes the argument for ψ ∈ {ocr, iocr}. ��
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