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—— Abstract

Recent results establish for the hard-core model (and more generally for 2-spin antiferromagnetic
systems) that the computational complexity of approximating the partition function on graphs
of maximum degree A undergoes a phase transition that coincides with the uniqueness/non-
uniqueness phase transition on the infinite A-regular tree. For the ferromagnetic Potts model
we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that
approximating the partition function of the ferromagnetic Potts model is at least as hard as
approximating the number of independent sets in bipartite graphs, so-called #BIS-hardness. We
improve this hardness result by establishing it for bipartite graphs of maximum degree A. To this
end, we first present a detailed picture for the phase diagram for the infinite A-regular tree, giving
a refined picture of its first-order phase transition and establishing the critical temperature for
the coexistence of the disordered and ordered phases. We then prove for all temperatures below
this critical temperature (corresponding to the region where the ordered phase “dominates”) that
it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree A.
The #BIS-hardness result uses random bipartite regular graphs as a gadget in the reduction.
The analysis of these random graphs relies on recent results establishing connections between
the maxima of the expectation of their partition function, attractive fixpoints of the associated
tree recursions, and induced matrix norms. In this paper we extend these connections to random
regular graphs for all ferromagnetic models. Using these connections, we establish the Bethe
prediction for every ferromagnetic spin system on random regular graphs, which says roughly
that the expectation of the log of the partition function Z is the same as the log of the expecta-
tion of Z. As a further consequence of our results, we prove for the ferromagnetic Potts model
that the Swendsen-Wang algorithm is torpidly mixing (i. e., exponentially slow convergence to its
stationary distribution) on random A-regular graphs at the critical temperature for sufficiently
large q.
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Ferromagnetic Potts model, approximate counting, spin systems, phase
transition, random regular graphs

Digital Object Identifier 10.4230/LIPIcs. APPROX-RANDOM.2014.677

* Full version [15].
The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828.
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.

¥ Research supported in part by NSF grant CCF-1318374.

8 Research supported in part by NSF grant CCF-1217458.

© Andreas Galanis, Daniel Stefankovié, Eric Vigoda, and Linji Yang;
37 licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /

18th Int’l Workshop on Randomization and Computation (RANDOM’14).

Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 677—691

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.677
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

678

Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

1 Background

1.1 Spin Systems

We study the ferromagnetic Potts model and present tools which are useful for any ferromag-
netic spin system on random regular graphs. Hence we begin with a general definition of a
spin system.

A spin system is defined, for an n-vertex graph G = (V, E) and integer ¢ > 2, on the
space 2 of configurations o which are assignments o : V' — [g]. The model is characterized
by its energy or Hamiltonian H(c) which is a function of the spin assignments to the vertices.
In the classical examples of the Ising (¢ = 2) and Potts (¢ > 3) models without external field,
the Hamiltonian H (o) is the number of monochromatic edges in 0. Each configuration has a
weight w(o) = exp(—BH (o)) for a parameter § corresponding to the “inverse temperature”
which controls the strength of edge interactions.

The Gibbs distribution is defined as u(o) = w(o)/Z where Z = Zg(B) = >
partition function. In our general setup, a specification of a g-state spin model is defined
by a symmetric ¢ x ¢ interaction matrix B with non-negative entries. The weight of a
configuration in this general setup is given by:

, w(o) is the

’LU(O') = H Bo(u),a'(v)-
{uv}eE

Many of our results also apply to models with arbitrary external fields since we will work with
A-regular graphs and in this case the external field can be incorporated into the interaction
matrix.

The Ising (¢ = 2) and Potts (¢ > 2) models have interaction matrices with diagonal
entries B := exp(—f) and off-diagonal entries 1. The models are called ferromagnetic if
B > 1 since then neighboring spins prefer to align and antiferromagnetic if B < 1. The
hard-core model is an example of a 2-spin antiferromagnetic system, its interaction matrix is
defined so that 2 is the set of independent sets of G and configuration o € ) has weight
w(o) = A for activity A > 0.

We are not aware of a general definition of ferromagnetic and antiferromagnetic models.
We use the following notions which generalize the analogous notions for 2-spin and for the
Potts model. The ferromagnetic definition captures that neighboring spins preferring to
align (see [15, Observation 1] in the full version of this paper). To avoid degenerate cases,
we assume throughout this paper that B is ergodic, that is, irreducible and aperiodic, see
[15, Section 1.2] in the full version for a detailed discussion. Hence, by the Perron-Frobenius
theorem (and since B is non-negative) the eigenvalue of B with the largest magnitude is
positive.

» Definition 1. A model is called ferromagnetic if B is positive definite. Equivalently we
have that all of its eigenvalues are positive and also that

B =B"B, (1)
for some ¢ x ¢ matrix B.

In contrast to the above notion of a ferromagnetic system, in [17] a model is called
antiferromagnetic if all of the eigenvalues of B are negative except for the largest (which,
as noted above, is positive).
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1.2 Known Connections to Phase Transitions

Exact computation of the partition function is #P-complete, even for very restricted classes
of graphs [23]. Hence we focus on whether there is a fully-polynomial (randomized or
deterministic) approximation scheme, a so-called FPRAS or FPTAS.

One of our goals in this paper is to refine our understanding of connections between
approximating the partition function on graphs of maximum degree A with phase transitions
on the infinite A-regular tree Ta. A phase transition of particular interest in the infinite tree
Ta is the uniqueness/non-uniqueness threshold. Roughly speaking, in the uniqueness phase,
if one fixes a so-called “boundary condition” which is a configuration o, (for instance, an
independent set in the hard-core model) on the vertices distance ¢ from the root, then in the
Gibbs distribution conditioned on this configuration, is the root “unbiased”? Specifically, for
all sequences (oy) of boundary conditions, in the limit £ — oo, does the root have the same
marginal distribution? If so, there is a unique Gibbs measure on the infinite tree and hence
we say the model is in the uniqueness region. If there are sequences of boundary conditions
which influence the root in the limit then we say the model is in the non-uniqueness region.

For 2-spin antiferromagnetic spin systems, it was shown that there is an FPTAS for
estimating the partition function for graphs of maximum degree A when the infinite tree Ta
is in the uniqueness phase [28]. On the other side, unless NP=RP, there is no FPRAS for the
partition function for A-regular graphs when Tx is in the non-uniqueness phase [36] (see also
[16]). Recently, an analogous NP-hardness result was shown for approximating the number
of k-colorings on triangle-free A-regular graph for even k when k < A. In contrast to the
above inapproximability results for antiferromagnetic systems, for the Ising model with or
without external field [26] and for 2-spin ferromagnetic spin systems without external field
[22] there is an FPRAS for all graphs. The situation for ferromagnetic multi-spin models, the
ferromagnetic Potts being the most prominent example, is more intricate.

#BIS refers to the problem of computing the number of independent sets in bipartite
graphs. A series of results has presented evidence that there is unlikely to be a polynomial-
time algorithm for #BIS, since a number of unsolved counting problems have be shown to be
#BIS-hard (for example, see [13, 2, 7]). The growing anecdotal evidence for #BIS-hardness
suggests that the problem is intractable, though weaker than NP-hardness. More recently it
was shown in [6] that for antiferromagnetic 2-spin models it is #BIS-hard to approximate
the partition function on bipartite graphs of maximum degree A when the parameters of the
model lie in the non-uniqueness region of the infinite A-regular tree Ta.

2 Results for the Potts Model

2.1 #BIS-hardness for the Potts model

Goldberg and Jerrum [20] showed that approximating the partition function of the ferromag-
netic Potts model is #BIS-hard, hence it appears likely that the ferromagnetic Potts model is
inapproximable for general graphs. We refine this #BIS-hardness result for the ferromagnetic
Potts model. We prove that approximating the partition function for the ferromagnetic Potts
model on bipartite graphs of maximum degree A is #BIS-hard for temperatures above the
appropriate phase transition point in the infinite tree Ta. The appropriate phase transition
in the Potts model is not the uniqueness/non-uniqueness threshold, but rather it is the
ordered/disordered phase transition which occurs at B = B, as explained in the next section.
Formally, we study the following problem.
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Name. #B1pFERROPOTTS(q, B, A).
Instance. A bipartite graph G with maximum degree A.
Output. The partition function for the g-state Potts model on G.

We use the notion of approximation-preserving reductions, denoted as <,4p, formally
defined in [13]. We can now formally state our main result.

» Theorem 2. For all ¢ > 3, all A > 3, for the ferromagnetic q-state Potts model, for any
B > B,,

#BIS <,p #B1pPFERROPOTTS(q, B, A),

where B, is given by (4).

2.2 Potts Model Phase Diagram

To understand the critical point B, we need to delve into the nature of the phase transition
in the ferromagnetic Potts model on the infinite A-regular tree Ta. We focus on how the
phase transition manifests on a random A-regular graph.

For a configuration o € (2, denote the set of vertices assigned spin i by o=1(i). Let A,
denote the (¢ — 1)-simplex:

Ny = {(x1,22,...,2;) €ERY S wi=1and x; >0 fori=1,...,t}.

We refer to o € A, as a phase. For a phase o, denote the set of configurations with
frequencies of colors given by « as:

N = {U V= {1,...,q}|\0_1(i)\ = |a;n] for i = 1,...,q},
and denote the partition function restricted to these configurations by:

26 = Ygena wa(0).

Let G denote the uniform distribution over A-regular graphs. Denote the exponent of the
first moment as:
1

Uy (a) =B (a) = nl;ngo - logEg[Z&]. (2)
The expression for ¥y can be found in the full version of this paper, see [15, Section 4].

Those o which are global maxima of ¥ we refer to as dominant phases. We will see in
Section 3.2 that the candidates for dominant phases correspond to stable fixpoints of the
so-called tree recursions. There will be two phases of particular interest; we refer to these
phases as the disordered phase and the ordered phase. The disordered phase is the uniform
vector @ = (1/q,...,1/q). The ordered phase refers to a phase with one color dominating in
the following sense: one coordinate is equal to a > 1/¢g and the other ¢ — 1 coordinates are
equal to (1 —a)/(g — 1). Due to the symmetry of the Potts model, when the ordered phase
dominates, in fact, the ¢ symmetric ordered phases dominate. These ordered phases have a
specific a = a(B) which corresponds to a fixpoint of the tree recursions. The exact definition
of this marginal a is not important at this stage, and hence we defer its explicit definition
to a more detailed discussion which can be found in the full version of this paper, see [15,
Section 8].

One of the difficulties for the Potts model is that the nature of the uniqueness/non-
uniqueness phase transition on T is inherently different from that of the Ising model. The
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ferromagnetic Ising model undergoes a second-order phase transition on Ta which manifests
itself on random A-regular graphs in the following manner. In the uniqueness region the

disordered phase dominates, and in the non-uniqueness region the 2 ordered phases dominate.

In contrast, the ferromagnetic Potts model undergoes a first-order phase transition at
the critical activity 9B,,. For B < B, there is a unique Gibbs measure on Ta. For B > B,
there are multiple Gibbs measures on Ta, however there is a second critical activity B,
corresponding to the disordered/ordered phase transition: for B < 9B, the disordered phase
dominates, and for B > B, the ordered phases dominate (and at the critical point B, all of
these ¢ + 1 phases dominate).

We present a detailed picture of the phase diagram for the ferromagnetic Potts model.

Previously, Haggstrom [24] established the uniqueness threshold %, by studying percolation
in the random cluster representation. In addition, Dembo et al. [11, 12] studied the
ferromagnetic Potts model (including the case with an external field) and proved that for
B > 9B, either the disordered or the ¢ ordered phases are dominant, but they did not
establish the precise regions where each phase dominates. For the simpler case of the complete
graph (known as the Curie-Weiss model), [9] detailed the phase diagram.

Héggstrom [24] established that the uniqueness/non-uniqueness threshold for the infinite
tree T occurs at 28, which is the unique value of B for which the following polynomial has
a double root in (0, 1):

(g—1)z*+(2-B—-q 2z '+ Bx—1. (3)
The disordered phase is dominant in the uniqueness region and continues to dominate
until the following activity (which was considered by Peruggi et al. [33]):

q—2

Bo = - 1)0—2a _1' (4)

Finally, Haggstrom [24] considers the following activity 9,.., which he conjectures is a
(second) threshold for uniqueness of the random-cluster model, defined as:
_1
A—-2
Note, B, < B, < B,..

We prove the following picture for the phase diagram for the ferromagnetic Potts model
(the proof can be found in the full version [15, Section 8]). Note, to prove that a function
has a local maximum at a critical point, a standard approach is to show that its Hessian is

B,. =1+

negative definite. We often need this stronger condition in our proofs, hence we call such
a critical point a Hessian local maximum. Moreover, those dominant phases o« where the
Hessian of ¥ is negative definite are called Hessian dominant phases. Note that dominant
phases always exist but a dominant phase can fail to be Hessian (when some eigenvalue of
the underlying Hessian is equal to zero). In Section 3.2, we give an alternative formulation
of the Hessian condition in terms of the local stability of fixpoints of the tree recursions.

» Theorem 3. For all ¢ > 3 and A > 3, for the ferromagnetic Potts model the following
holds at activity B:

B < B,: There is a unique infinite-volume Gibbs measure on Ta. The disordered phase is
Hessian dominant phase, and there are no other local mazima of V1.

B, < B < PB,.: The local mazrima of Vi are the disordered phase u and the q ordered
phases (the ordered phases are permutations of each other). All of these ¢+ 1 phases are
Hessian local mazxima. Moreover:
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B, < B <B,: The disordered phase is Hessian dominant.
B =B,: Both the disordered phase and the ordered phases are Hessian dominant.
B, < B <B,.: The ordered phases are Hessian dominant.

B > 9B,.: The q ordered phases (which are permutations of each other) are Hessian
dominant. For B > B, there are no other local mazxima of V.

2.3 Swendsen-Wang Algorithm

An algorithm of particular interest for the ferromagnetic Potts model is the Swendsen-Wang
algorithm. The Swendsen-Wang algorithm is an ergodic Markov chain whose stationarity
distribution is the Gibbs distribution. It utilizes the random-cluster representation to
overcome potential “bottlenecks” for rapid mixing that are expected to arise in the non-
uniqueness region. As a consequence of the above picture for the phase diagram on the
infinite tree Ta and our tools for analyzing random regular graphs, we can prove torpid
mixing of the Swendsen-Wang algorithm at activities near the disordered/ordered phase
transition point B,. (Torpid mixing means that the mixing time is exponentially slow.)

The Swendsen-Wang algorithm utilizes the random cluster representation of the Potts
model to potentially overcome bottlenecks that obstruct the simpler Glauber dynamics. It is
formally defined as follows. From a configuration X; € €:

Let M be the set of monochromatic edges in X;.

For each edge e € M, delete it with probability 1/B. Let M’ denote the set of monochro-
matic edges that were not deleted.

In the graph (V, M), for each connected component, choose a color uniformly at random
from [¢] and assign all vertices in that component the chosen color. Let X;;; denote the
resulting spin configuration.

There are few results establishing rapid mixing of the Swendsen-Wang algorithm beyond
what is known for the Glauber dynamics, see [37] for recent progress showing rapid mixing
on the 2-dimensional lattice. However, there are several results establishing torpid mixing of
the Swendsen-Wang algorithm at a critical value for the g-state ferromagnetic Potts model:
on the complete graph (¢ > 3) [21], on Erdos-Rényi random graphs (¢ > 3) [8], and on the
d-dimensional integer lattice Z¢ (¢ sufficiently large) [3, 4].

Using our detailed picture of the phase diagram of the ferromagnetic Potts model and
our generic second moment analysis for ferromagnetic models on random regular graphs
which we explain in a moment, we establish torpid mixing on random A-regular graphs at
the phase coexistence point 93,.

» Theorem 4. For all A > 3 and q > 2A/log A, with probability 1 —o(1) over the choice of a
random A-regular graph, for the ferromagnetic Potts model with B = 9B, the Swendsen- Wang
algorithm has mizing time exp(Q(n)).

3 Results for Ferromagnetic Models

3.1 Second Moment and Bethe Prediction Results

We analyze the Gibbs distribution on random A-regular graphs using second moment
arguments. The challenging aspect of the second moment is determining the phase that
dominates, as we will describe more precisely momentarily. In a straightforward analysis
of the second moment, this reduces to an optimization problem over ¢* variables for a
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complicated expression. Even for ¢ = 2 tackling this requires significant effort (see, for
example, [32] for the hard-core model).

In a recent paper [17] we analyzed antiferromagnetic systems on bipartite random A-
regular graphs, to use as gadgets for inapproximability results. In that work we presented a
new approach for simplifying the analysis of the second moment for antiferromagnetic models
using the theory of matrix norms. In this paper we extend that approach using the theory of
matrix norms to analyze the second moment for random A-regular graphs (non-bipartite)
for ferromagnetic systems. We obtain a short, elegant proof that the exponential order of
the second moment is twice the exponential order of the first moment.

Denote the leading term of the second moment as

Uy(a) == U3 (a) = lim llog Eg[(Zg)Q]. (5)
n—oo N

Our main technical result is the analysis of the second moment. In particular, we will relate
the maximum of the second moment to the maximum of the first moment. To analyze the
second moment we need to determine the phase a that maximizes ¥y. We first show how to
reexpress the maximum of ¥, in a form that can be readily expressed in terms of matrix
norms. The details are given in [15, Section 5.1] of the full version of this paper. Then, using
the Cholesky decomposition of the interaction matrix B and properties of matrix norms
we show that the maximum of ¥y equals the value of a function at a tensor product of the
dominant phases of the first moment. From there, we obtain the following theorem, whose
proof can be found in [15, Section 5.2] of the full version.

» Theorem 5. For a ferromagnetic model with interaction matriz B,
max Uy () = 2max ¥ (o).
« [a73

In particular, for dominant o, ¥a(a) = 20 (x).

Combining Theorem 5 with an elaborate variance analysis known as the small subgraph
conditioning method allows us to prove concentration for Z& (see Lemma 10). In particular,
we verify the so-called Bethe prediction for general ferromagnetic models on random A-regular
graphs, which is captured in our setting by equation (6) in the following theorem.

» Theorem 6. Let B specify a ferromagnetic model. Then, if there exists a Hessian dominant
phase, it holds that

1 1
Jim —Egllog Zg] = lim —logEg[Zg]. (6)

Note that for a ferromagnetic model the interaction matrix B is positive definite and
hence the entries on the diagonal are all positive. Thus Zg is always positive for every
graph G.

Theorem 6 can be extended to general models (not necessarily ferromagnetic) on random
A-regular graphs under the stronger assumption that there is a unique semi-translation
invariant Gibbs measure on Ta. In this setting, one also obtains the analogue of Theorem 5
and as a consequence concentration for Z& for the (unique) dominant phase o, which can
be used to verify (in complete analogy) equation (6), see [15, Section 11.2] in the full version
for details and a more thorough discussion.
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3.2 Connection to Tree Recursions

As a consequence of Theorem 5, to analyze ferromagnetic models on random regular graphs,
one only needs to analyze the first moment. To simplify the analysis of the first moment, we
establish the following connection to the so-called tree recursions. An analogous connection
was established in [17] for antiferromagnetic models on random bipartite A-regular graphs.

A key concept are the following recursions corresponding to the partition function on
trees, and hence we refer to them as the (depth one) tree recursions:

R (iBinj)A_l (7)

j=1

The fixpoints of the tree recursions are those R = (Ry, ..., R,) such that: E,- x R; for all 7 €
[q]. We refer to a fixpoint R of the tree recursions as Jacobian attractive if the Jacobian at
R has spectral radius less than 1. We prove the following theorem detailing the connections
between the tree recursions and the critical points of the partition function for random
regular graphs.

» Theorem 7. Assume that the model is ferromagnetic. Jacobian attractive fixpoints of the

(depth one) tree recursions are in one-to-one correspondence with the Hessian local mazima
Of \Ifl .

The above connection fails for antiferromagnetic models, e.g., for the antiferromagnetic
Potts model the uniform fixpoint is a global maximum but it is not a stable fixpoint of the
tree recursions for small enough temperature. (In fact, for antiferromagnetic models every
solution of the tree recursions is a local maximum, see [15, Remark 3] in the full version.)

Using the above connection we establish the detailed picture for the dominant phases of
the ferromagnetic Potts model as stated in Theorem 3.

3.3 Organization

In the following section we prove Theorem 2 showing #BIS-hardness for the Potts model
in the ordered region. We also give the proof of Theorem 6 for the Bethe prediction in
ferromagnetic models on random A-regular graphs in Section 5. The proofs of Theorems
3,4, 5, 7 are given in the full version of this paper [15]. Specifically, in [15, Section 5] we
analyze the second moment and thereby prove Theorem 5 for ferromagnetic models. In [15,
Section 10] we prove Theorem 4 establishing torpid mixing of the Swendsen-Wang algorithm
at the critical value B = B,. We prove the connection between Jacobian attractive fixpoints
of the tree recursions and the Hessian local maxima of ¥, in [15, Section 6] and hence obtain
Theorem 7. We then use this connection to prove Theorem 3 detailing the phase diagram in
[15, Section 8.

4  #BIS-hardness for Potts

We first give a rough description of our reduction. We will construct a gadget G which is
a balanced, bipartite graph on (2 + o(1))n vertices. There will be m’ = O(n'/®) vertices
on each side of G which will have degree A — 1, the remainder have degree A. The key
is that G behaves similarly to a random bipartite A-regular graph. Hence, the ¢ ordered
phases will dominate (for B above 98,). We will take an instance H for #FERROPOTTS(q,B)
where H has m’ vertices. We then replace each vertex in H by a gadget G. Then we will
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use the degree A — 1 vertices in these gadgets to encode the edges of H, while preserving
bipartiteness. The resulting graph HS will have bounded degree A and the Potts model on
HS will “simulate” the Potts model on H.

The gadget G is defined by two parameters 6,1 where 0 < 6,v < 1/8. The gadget

is identical to that used by Sly [35]. The construction of the gadget G has two parts.

First construct the following bipartite graph G with vertex set V* UV ~. For s € {+, -},
|[V#| = n+m' where m’ will be defined precisely later. Take A random perfect matchings
between VT and V~. Then remove a matching of size m’ from one of the A matchings. Call
this graph G. In the second stage, for each side of G, partition the degree A — 1 vertices into

n? equal sized sets and attach to each set a (A —1)-ary tree of depth £ where £ = |1 logx_; n].

(Use the vertices of G as the leaves of these trees.) Hence each side contains n? trees of size
n¥. (More precisely, (A — 1)l91°8a-17] trees of size (A — 1)l¥1°8a-17] ) This defines the
gadget G. For s € {4+, —}, let R* denote the roots of the trees on side s. Notice that the roots

R? have degree A — 1 and these will be used to encode the edges of H as described above.

Note that m’ = (A — 1)l00sa—in]+l¥losasn] and m/ = O(n'/®). Finally, let Ut U U~
denote the vertices of degree A in the initial graph G and W+ U W~ denote the vertices of
degree A — 1 in G.

Denote by G = (V, E) the final graph. Recall, for a configuration o € €, the set of
vertices assigned spin i is denoted by o~ !(i). The phase of a configuration o : V — [q] is
defined as the dominant spin among vertices in U = UT UU~:

Y (o) := argmax|o~ (i) N U|,
i€[q]
where ties are broken with an arbitrary deterministic criterion (e.g., the lowest index).

The gadget G behaves like a random bipartite A-regular graph because m’ < n, as we will
detail in the upcoming Lemma 8. Hence, since B > B, Theorem 3 implies that the ¢ ordered
phases are dominant. Therefore, we will get that for a sample ¢ from the Gibbs distribution,
the phase of o will be (close to) uniformly distributed over these ¢ ordered phases. Let phase
i refer to the ordered phase where spin ¢ is the majority. Once we condition on the phase for
the vertices in U, say it is phase ¢, then each of the roots, roughly independently, will have
spin ¢ with probability ~ p and spin j # i with probability ~ (1 — p)/(¢ — 1) where p is the
probability that the root of the infinite (A — 1)-ary tree has spin i in the ordered phase i. !
Hence, for each of the g possible phases, we define the following product distribution on the
configurations o : R — [q]. For i € [q], let

Qilon) =i o1 (L22) MO

q—1
The following lemma gives the precise formulation of the aforementioned properties of the
gadget and is proved using methods in [35]. The proof is given in [15, Section 9.1] of the full
version.

» Lemma 8. For every q,A > 3 and B > B, there exist constants 0,1 > 0 such that the
graph G satisfies the following with probability 1 — o(1) over the choice of the graph:

! The ordered phase a = (a, (1 —a)/(¢ —1),...,(1 —a)/(q — 1)) specifies the marginal probabilities for
the root of the infinite A-regular tree. To account for the root having degree A — 1 one obtains that:

o(Ba-1/A

P /U= ) B8 5 (g = )7

685

APPROX/RANDOM’14



686

Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

1. The phases occur with roughly equal probability, so that for every phase i € [q], we have
‘MG(Y(O') =) — f‘ <n~%,

2. Conditioned on the phase i, the spins of vertices in R are approximately independent, that
18,

Y =i
e | e loR1Y =1) 1| <n,
OR Q R(U R)
With Lemma 8 at hand, we can now formally state the reduction that we sketched

9/4 and 0 is as in

earlier. Let B > B,. Let H be a graph on n’ vertices, where n’ < n
Lemma 8. Assuming an FPRAS for the ferromagnetic Potts model on max degree A graphs
and temperature B, we will show that we can approximate Zy(B*), the partition function
of H in the ferromagnetic Potts model with temperature B*, where B* will be determined
shortly.

To do this, we first construct a graph HY. First, take |H| disconnected copies of the
gadget G in Lemma 8 and identify each copy with a vertex v € H. Denote by HE the
resulting graph, G,, the copy of the gadget associated to the vertex v in H and by R, R, , R,
the images of R™, R~, R in the gadget G, respectively. Finally, we denote by Ry the set of
vertices U, R,. We next add the edges of H in HG. To do this, fix an arbitrary orientation
of the edges of H. For each oriented edge (u,v) of H, we add an edge between one vertex
using mutually distinct vertices for distinct edges of H. The

v

resulting graph will be denoted by H. Note that HS is bipartite and has maximum degree
A.

For a graph H and activity B > 1, recall that Zg(B) is the partition function for the
ferromagnetic Potts model at activity B on the graph H. We have the following connection:

in R} and one vertex in R

» Lemma 9. Let A,q > 3 and B > B,. There exists B* such that the following holds

qanHG(B) . SZH<B*) S (1+O(n—0)> qanHG(B)

1—0(n %))+ ==/ -y
(-o >)CH(ZG<B))” Cu(Za(B))"

where Cy = D'FUD gnd D =1+ (B —1) (ﬁ@;f? +(¢— 2)78:11);2)

Using Lemma 9 we can now prove that for all A > 3, all B > 9B, it is #BIS-hard to
approximate the partition function for the ferromagnetic Potts model on bipartite graphs of
maximum degree A.

Proof of Theorem 2. Goldberg and Jerrum [20] showed that for every B it is #BIS-hard to
approximate the partition function of the ferromagnetic Potts on all graphs. Fix A, ¢ > 3 and
B > 9, for which we intend to prove Theorem 2. Let B* be defined by Lemma 9. We first
show that an FPRAS for approximating the partition function with activity B on graphs with
maximum degree A implies an FPRAS for approximating the partition function with activity
B* on all graphs. It will then be clear that our reduction is in fact approximation-preserving
and hence the theorem will be proven.

Suppose that there exists an FPRAS for approximating the partition function with
activity B on graphs with maximum degree A. Take an input instance H for which we
would like to estimate the partition function of the Potts model at activity B*. First
generate a random gadget G using the construction defined earlier. This graph G satisfies
the properties in Lemma 8 with probability 1 — o(1). Approximate the partition function
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of G at activity B within a multiplicative factor 1 + ¢/10n’ using our presumed FPRAS.
Also, using the presumed FPRAS approximate the partition function of H® at activity B
within a multiplicative factor 1+ &/2. The bounds for Zy(B*) in Lemma 9 are then within
a factor 1 + ¢ for sufficiently large n, giving an FPRAS for approximating the partition
function at activity B*. This, together with the result of [20], implies an FPRAS for counting
independent sets in bipartite graphs. |

Proof of Lemma 9. Recall that HC are the disconnected copies of the gadgets, as defined in

the construction of HE. Note, Zyc(B) = (Zg(B))nl. Hence to prove the lemma it suffices

to analyze ZHGEgg

For a configuration o on HY, for each v € H, let Y, (o) denote the phase of o on G,.
Denote the vector of these phases by V(o) = (Y,(0))ven € [q)f, we refer to V(o) as the
phase vector for o.

For U € [q]T, let 4 denote the set of configurations ¢ on H where V(o) = U. Let
Zyo(U) be the partition function of HY restricted to configurations o € 4, that is,

ZyaU) =Y B™7)

c€Qu

where for a configuration o, m(c) is the number of monochromatic edges under . We may
view U as an assignment V(H) — [¢q] where V(H) are the vertices in the graph H. Hence,

we can consider the number of monochromatic edges in the graph H under the assignment U,

Which we denote by m(U). Recall the goal is to analyze gH Ggg; To this end we will analyze

c )
cU)
Wﬁl follow from Property 1 in Lemma 8. Notice that once we fix an assignment to all of the

for every U and then we will use that every U is (close to) equally likely in HE which

roots in Ry then the gadgets GG, are independent of each other. Hence we have that:

T = S gelong Vo) =y [[ pHem =,
He TRy (u,0)EB(HO)\E(HC)

Note that (o, | V(o) =U) = (1+0(n"") ITev Q% (or,) since HY is a union of
disconnected copies of G and in each copy of G we have Property 2 of Lemma 8. It follows
that

Lol (oY T] Q) [[ s
HCG ORy vEV(H) (u,0)EE(HCG)\E(HC)
— (14 O(n~?)) A& DIEGDI -mitt)

where A (resp. D) is the expected weight of an edge for two gadgets which have the same
(resp. different) phases. Simple calculations show that

_ (2, (=p)? B o (2p(1—p) o (1=p)?
A=1+(B 1)(p +7q_1 ),D_1+(B 1)<7(q_1)2 +(q 2)7((1_1)2).
Letting B* = A/D and Cy = DIFUI we obtain

ZHG(Z/{)

Tl (1+0mn™%)(B")"W(Cy. (8)

Property 1 in Lemma 8 gives that for every U/ it holds that

— 0=~ l_n—ze " ZgsU)
(1=0@™)g™ < (L -n7*) < ===

1 o0\ —ov\ —n
e S(;+n )" < (10 )g . (9)
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We also have

Ny NP,
ZHG(B),;ZH ) > Zﬁc(u)ZHG(u) Zye —~ ZpaU) Zye

(10)

Using the estimates (8), (9) in (10), we obtain

(1-0m )¢ ™ CuZu(B*) < Zzg < (1+0(m ) g " CuZu(BY).

The result follows after observing that Z ¢ (B) = (Zg(B))n and rearranging the inequality.
<

5 Bethe Prediction for Ferromagnetic Models on Random A-regular
Graphs

5.1 Small Subraph Conditioning Method

By Theorem 5, we have that for the random variable Z&, when « is a global maximizer of
U, the exponential order of its second moment is twice the exponential order of its first
moment. This is not sufficient however to obtain high probability results, since it turns out
that, in the limit n — oo, the ratio of the second moment to the square of the first moment
converges to a constant greater than 1. Hence, the second moment method fails to give
statements that hold with high probability over a uniform random A-regular graph. More
specifically, to obtain our results we need sharp lower bounds on the partition function which
hold for almost all A-regular graphs. In the setting we described, the second moment method
only implies the existence of a graph which satisfies the desired bounds and even there in a
not sufficiently strong form.

For random A-regular graph ensembles, the standard way to circumvent this failure is
to use the small subgraph conditioning method of Robinson and Wormald [34]. While the
method is quite technical, its application is relatively streamlined when employed in the right
framework. The method was first used for the analysis of spin systems in the work of [32]
for the hard-core model and subsequently in [35], [16]. In [17], we extended the approach
to g-spin models for all ¢ > 2, where the major technical obstacle was the computation of
certain determinants which arise in the computation of the moments’ asymptotics. While
the arguments there are for random bipartite A-regular graphs, the approach extends in a
straightforward manner to random A-regular graphs.

We defer the details of the application of the method in the present setting to the full
version of the paper, see [15, Section 11.1]. We state here the following lemma which is the
final outcome of the method.

» Lemma 10. For every ferromagnetic model B, if a is a Hessian dominant phase (c.f.
Section 3.2) with probability 1 — o(1) over the choice of the graph G ~ G(n,A), it holds that
28 > ;B[zg].

5.2 Proof of Theorem 6

Using Lemma 10, the proof of Theorem 6 is straightforward.

Proof of Theorem 6. Let a be a Hessian dominant phase, whose existence is guaranteed
by the assumptions. By Lemma 10, with probability 1 — o(1) over the choice of the graph,
we have Z& > LE[Z&], which implies 1 log Zg > ¥1(ax) + o(1).
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Moreover, since the model is ferromagnetic, for A-regular graphs G with n vertices,

%log Za > C for some constant C' > —oo (explicitly, one can take C := % log max;c(q Biis
see the remarks after Theorem 6). We thus obtain

lim inf %Eg[log Zg) > linrgioréf [(1=0(1))¥1(a) + 0(1)C] = ¥y ().

n—oo

By Jensen’s inequality, we also have

1 1
limsup —Eg[log Z¢g| < lim —logEg[Z¢].
n—oo M

n—oo N

All that remains to show is that %log Eg|Zg]) = ¥1(a) + o(1). This is straightforward; if we
decompose Zg as Zg =Y., Z& , we obtain exp(o(n))Eg[Z&] > Eg[Zg| > Eg[Z&]. Note
the exp(o(n)) is there to allow for dominant phases which are not Hessian.
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