
SOLVABILITY OF GRAPH INEQUALITIES∗
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Abstract. We investigate a new type of graph inequality (in the tradition of Cvetković and Simić
[Contributions to Graph Theory and Its Applications, Technische Hochschule Ilmenau, Ilmenau,
Germany, 1977, pp. 40–56] and Capobianco [Ann. New York Acad. Sci., 319 (1979), pp. 114–118])
which is based on the subgraph relation and which allows as terms fixed graphs, graph variables with
specified vertices, and the operation of identifying vertices. We present a simple graph inequality that
does not have a solution and show that the solvability of inequalities with only one graph variable
and one specified vertex can be decided (in nondeterministic exponential time). The solvability of
graph inequalities over directed graphs, however, turns out to be undecidable.

1. A simple graph inequality. Consider the diagram in Figure 1.
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Fig. 1. A graph inequality G1(X) ⊆ G2(X).

Is there a solution to this inequality? More precisely, is there an undirected graph
X with a vertex v such that if we construct a graph G2(X) by taking two copies of
X and connecting their v vertices by an edge, and a graph G1(X) by adding two
new vertices to X and connecting them with v, then G1(X) occurs as a subgraph of
G2(X)?

A moment’s reflection will show that the answer is yes: Take X to be a path of
length two together with an isolated vertex v. What happens if we restrict ourselves
to connected graphs? Again the answer is yes: Take a rooted infinite ternary tree
and connect its root by an edge to a new vertex v. What about finite and connected
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graphs? the patient reader will ask. The answer in this case is no, there is no finite,
connected graph X fulfilling the inequality in Figure 1, and this is the main result of
this section.

Theorem 1.1. There is no connected, finite solution of the Figure 1 inequality.
A simpler version of this theorem (for finite trees) was used in the first author’s

thesis [Sch99, Sch01] to determine the computational complexity of the arrowing rela-
tion in graph Ramsey theory: deciding F → (T,Kn) is complete for the second level
of the polynomial-time hierarchy (where F is a finite graph, T is a finite tree of size
at least two, and Kn is the complete graph on n vertices).

Graph equations (more so than graph inequalities) have been studied for a while,
and there are two survey papers dating back to the late 1970s [CS77, CS79, Cap79].
The equalities and inequalities considered in these papers are more general in that
they allow arbitrary operations on graphs such as complementation, tensor products,
and squaring. Capobianco, Losi, and Riley, for example, showed that there are no
(nontrivial) trees whose square is the same as their complement [CLR89]. The more
general question of which graphs fulfill G2 = G is still open [BST94], but it is known
that the equation has infinitely many solutions [CK95].

We conclude this section with a proof of Theorem 1.1. Section 2 contains a gen-
eralization of this result: The solvability of graph inequalities with only one variable
having one specified vertex can be decided. In section 3 we show that a natural gener-
alization of graph inequalities leads to an undecidable solvability problem. Section 4
contains stronger results for graph inequalities over directed graphs: While the solv-
ability of directed graph inequalities with only one variable and one specified vertex
remains decidable, we can show that the solvability of directed graph inequalities is
undecidable (even with at most three variables and two specified vertices for each
variable).

Before we begin the proof we introduce some standard notation [Die97]. We write
G = (V,E) for a graph G with vertex set V = V (G) and an edge set E = E(G). The
edge between vertices u, v ∈ V is written as (u, v). The order of a graph is defined as
|V (G)|, and the size |G| is defined as |E(G)|. A graph is finite if it has finite order
and connected if there is a path between any two of its vertices.

Proof of Theorem 1.1. Let X be a minimal solution of the inequality. Denote the
copies of X in G2(X) by Xi, i = 1, 2. An element of X is either its edge or vertex.
Given an element x of X, we denote the corresponding element of Xi by xi.

Let φ be the embedding of G1(X) into G2(X). Clearly (v1, v2) ∈ Im φ, since
otherwise G1(X) would map into X1 or X2. Assume that there is an edge e ∈ X
such that neither e1 nor e2 is in Im φ. Let Y be the connected component of X −{e}
containing v. From the connectedness of G1(X) it follows that Im φ ⊆ G2(Y ). Now
the restriction of φ to G1(Y ) is an embedding of G1(Y ) into G2(Y ), contradicting the
minimality of X.

Thus for every e ∈ X either e1 or e2 is in Im φ. Note that this implies that
for every vertex u ∈ X either u1 or u2 is in Im φ. Let Yi be the subgraph of X
corresponding to Im φ∩Xi (as a subgraph of Xi). Then for each e ∈ X either e ∈ Y1

or e ∈ Y2. We know that

Y1 ∪ Y2 = X,(1)

|V (Y1)| + |V (Y2)| = |V (Im φ)| = |V (G1(X))| = |V (X)| + 2,(2)

|E(Y1)| + |E(Y2)| = |E(Im φ)| − 1 = |E(G1(X))| − 1 = |E(X)| + 1.(3)

The first equality in (3) follows from the fact that (v1, v2) ∈ Im φ, but (v1, v2) �∈ Im φ∩
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Fig. 2. Im φ and G1(X).

(X1 ∪X2). From (1), (2), (3) we conclude that |V (Y1 ∩Y2)| = 2 and |E(Y1 ∩Y2)| = 1,
which implies that the intersection of Y1 and Y2 is a single edge f . We know that
v ∈ V (Y1) ∩ V (Y2), and hence f = (v, u) for some u ∈ V (X). Figure 2 illustrates the
situation.

Let ai be the number of vertices from V (Yi) \ {u, v} which have degree 1 in X.
Let b be 1 if u has degree 1 in X and 0 otherwise. The number of vertices of degree
1 in G1(X) is a1 + a2 + b + 2. The number of vertices of degree 1 in Im φ is at most
a1 + a2 + b + 1. Hence Im φ and G1(X) are not isomorphic, a contradiction.

2. Decidability of graph inequalities. We could now start considering all
kinds of diagrams involving graphs, vertices, edges, and the subgraph relationship.
How hard is it to settle these questions? In this section we will show that the solvability
of graph inequalities of the type presented in the previous section, i.e., having only
one graph variable with one specified vertex, is decidable. This will follow from an
(exponential) upper bound on the size of a minimal solution (if there is one). This
result will be complemented by the undecidability result of the next section.

Let us formalize the question. A graph variable X with a set of specified vertices
v1, . . . , vm represents an unknown finite, connected graph whose vertex set includes
vertices v1, . . . , vm. Given several graph variables X1, . . . , Xn and a graph G, we can
construct a graph term G(X1, . . . , Xn) (called gterm) by taking several copies of each
Xi and identifying some specified vertices of the copies with some vertices of G. Since
we are working with connected graphs we require G(X1, . . . , Xn) to be connected
(for any assignment of connected graphs to X1, . . . , Xn). Note that G itself does not
have to be connected and that if G(X1, . . . , Xn) is connected for some assignment of
connected graphs to X1, . . . , Xn, then it is connected for all assignments.

Given two such gterms G1(X1, . . . , Xn), G2(X1, . . . , Xn), we can ask whether
there exists an assignment of connected finite graphs to the variables X1, . . . , Xn such
that G1(X1, . . . , Xn) is a subgraph of G2(X1, . . . , Xn). We call a question of this type
a graph inequality.

For the rest of this section we will consider the simplest possible case of a graph
inequality: only one variable, X, with one specified vertex v. Let G1(X) be a gterm
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Fig. 3. Inequality G1(X) ⊆ G2(X).

consisting of a connected graph H and a copy of X attached with v to each vertex
of a multisubset I = {i1, . . . , i�} of vertices of H. Similarly construct G2(X) from a
connected graph F and a multisubset J = {j1, . . . , jk} of vertices of F . The copy of
X in G2(X) attached to jr (1 ≤ r ≤ k) is called X(r), and the copy of X in G1(X)
attached to ir (1 ≤ r ≤ �) is called X[r]. If there is only one copy of X in G1(X), we
call it X.

Theorem 2.1. If the inequality in Figure 3 has a solution X, then it has a
solution of size at most |F |(1 + k)|H|.

The upper bound on the size of a minimal solution is exponential in the size of
the equality; hence to decide solvability we just have to test all graphs up to that size,
something which can be done in nondeterministic exponential time (NEXP).

Corollary 2.2. The solvability of graph inequalities of the type in Figure 3 can
be decided in NEXP.

We do not know the precise computational complexity of the decision problem.
It is at least NP-hard, since we can ask whether a graph contains a clique.

At the core of the proof are Lemmas 2.5 and 2.7, which show that for a minimal
solution to the graph inequality (if it exists) we can assume that all of the vertices of I
are mapped to vertices of F . This reduces the problem to a simpler variant (namely,
the images of vertices from I are prescribed) dealt with by Lemma 2.4 (based on the
representation result of Lemma 2.3).

First we characterize solutions of inequalities (with prescribed mapping) where
on the left-hand side there is only one copy of X and v has to map to a vertex w of
F on the right-hand side.

If w ∈ J , then any connected graph is a solution. Now assume w �∈ J . Let Σ
be the alphabet consisting of the numbers 1, . . . , k. For each word α from Σ∗ take a

copy F (α) of F . For every α ∈ Σ∗ and a ∈ Σ identify w(αa) and j
(α)
a . The resulting

infinite graph is called F∞ (see Figure 5).
Lemma 2.3. Assume that w �∈ J = {j1, . . . , jk}. Then the solutions of the

inequality in Figure 4 are precisely the subgraphs X of F∞ with v = w() such that

for any edge e in F , any α ∈ Σ∗, a ∈ Σ,
if the edge e(aα) is in X, then e(α) is in X.

(4)

Proof. If X is a subgraph of F∞ satisfying condition (4), then X is a solution of
the inequality via mapping φ:

φ(x()) = x,
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Fig. 4. Inequality X ⊆ G2(X), v → w.
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φ(x(aα)) = x
(α)
(a) .

If X is a solution of the inequality via mapping φ : X → G2(X), then define

Y () = φ−1(F ),

Y (aα) = φ−1(Y
(α)
(a) ),

where Y
(α)
(a) is the copy of Y (α) in X(a) in G2(X). If e is an edge of X with distance

d from v, then it must map either to F or to some edge f in some X(r) which has
strictly smaller distance from v(r) than d. Edges adjacent to v must be mapped to F ,

and hence they are in Y (). By induction it follows that

X =
⋃

α∈Σ∗

Y (α).

Clearly Y (α) is a subgraph of F via φ|α|+1 for any α ∈ Σ∗. The element of Y (α)

corresponding to x ∈ F is called x(α). By induction it follows that w(αa) = j
(α)
a for

any α ∈ Σ∗, a ∈ Σ. From the definition of Y ’s, if e(aα) is in X, then the edge e(α) is
also in X for any α ∈ Σ∗, a ∈ Σ. Hence X is a subgraph of F∞ satisfying (4).



Solving systems of simple graph inequalities is useful in solving more complicated
inequalities.

Lemma 2.4. If a system of inequalities with prescribed mappings

H1 ⊆ X, h1 → v; . . . ;Hm ⊆ X, hm → v,(5)

X ⊆ F1(X), v → w1; . . . ;X ⊆ Fn(X), v → wn(6)

has a solution, then it has a solution of size at most |F1|(1 + k1)
M , where k1 is the

number of copies of X in F1 and M := max{|H1|, . . . , |Hm|}, assuming that the graphs
H1, . . . , Hm are connected.

Proof. Let X be a minimal solution of the system. Let e be an edge of X whose
distance d from v is maximal. Assume that d > M . If we remove the edge e, then
X ′ = X − {e} still satisfies inequalities (5), because no edge of any Hi (1 ≤ i ≤ m)
can map to e. If X satisfies the inequality in Figure 4 for F = Fi (1 ≤ i ≤ n), then
by Lemma 2.3 it is a subgraph of F∞ with v = w() and it satisfies condition (4). Let
e = f (α). Clearly X ′ is also a subgraph of F∞ and the condition is still satisfied,
because dist(v, f (aα)) > dist(v, f (α)) and hence f (aα) �∈ X ′ for any a ∈ Σ. Therefore
X ′ satisfies inequalities (6), a contradiction to the minimality of X.

Thus dist(v, e) ≤ M . The size of the subgraph of F∞
1 consisting of edges within

distance M from v is bounded by |F1|(1 + k1)
M .

Now we return to the inequality in Figure 3.
Lemma 2.5. If there is more than one copy of X on the left side of the inequality

in Figure 3, then every ir = v[r] (1 ≤ r ≤ �) must map to a vertex of F .
Proof. Suppose, for example, that i1 maps into some X(r) − {jr}. Let P be a

path from i1 to i2. Graphs X[1] and X[2] ∪P share only vertex i1. Hence the image of
at least one of them does not contain jr and since jr is a cutvertex of G2, that image
must be contained in X(r) − {jr}, which is impossible, since there are more vertices
in X1 or in X2 ∪ P than in X(r) − {jr}.

Lemma 2.6. If X is a solution of the inequality in Figure 3 via mapping ψ :
G1(X) → G2(X), then there exists a mapping φ : G1(X) → G2(X) such that φ(i) =
ψ(i) and as many copies of X in i as possible are mapped to copies of X in φ(i) for
every i ∈ I.

Proof. Consider a bipartite graph B with partitions I and J , where ir is connected
to js if and only if ψ(ir) = js. Without loss of generality assume that {(ir, jr); 1 ≤
r ≤ t} is a maximal matching of B.

We need to show that there exists φ such that X[r] maps to X(r) for 1 ≤ r ≤ t.
Let Y 1, . . . , Y q be the connected components of X − {v}. Let φ be a mapping such
that

t∑

r=1

q∑

j=1

∣∣∣φ(Y j
[r]) ∩ Y j

(r)

∣∣∣(7)

is maximal. If for some r, j,

φ
(
Y j

[r]

)
�= Y j

(r),

then clearly φ(Y j
[r]) ∩ Y j

(r) = ∅; otherwise φ(Y j
[r]) would have to contain jr. Now we

can change φ in such a way that Y j
[r] will be mapped to Y j

(r) and φ−1(Y j
(r)) will be

mapped to φ(Y j
[r]). This increases the value of (7), a contradiction. Hence φ maps

X[r] to X(r) (1 ≤ r ≤ t).
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We prove an analogue of Lemma 2.5 for inequalities where X occurs only once
on the left-hand side of the inequality in Figure 3.

Lemma 2.7. If the inequality in Figure 6 has a solution, then it has a solution
X via a mapping φ which maps v = i1 to a vertex of F .

Proof. Suppose that there is no solution of the inequality in Figure 6 such that
v maps to a vertex of F , but there is a solution in which v maps into a vertex of
X(1) − {j1}. Then clearly the inequality in Figure 7 with the additional condition
that v must map to some u ∈ X(1) has a solution (see Figure 7).
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If u = j1, then by Lemma 2.6 there is φ such that X is mapped to X(1). Therefore
we can replace K∞’s in the inequality in Figure 7 by K|H|’s, since only H is mapped
to G2(X)−X(1). This, however, implies that X = K|H| is a solution of the inequality
in Figure 6 in which v maps to a vertex of F , a contradiction.

Thus u �= j1 for every solution of the inequality in Figure 7. Let X be a minimal
solution of this inequality. Graphs H and X share only v; moreover j1 is a cutvertex
of G2 and hence either H or X must be mapped inside X(1) − {j1}. Since the latter
is not possible, H must be mapped inside X(1) − {j1}.
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Now let Y = φ−1
(
X(1)

)
∩X and Z = φ−1

(
G2(X) − (X(1) − {j1})

)
. The common

vertex of Y and Z is called q = φ−1(j1). The inequality in Figure 7 implies the
inequalities in Figure 8.

The second inequality follows directly from the definition. To see the first inequal-
ity, note that the graph on the left-hand side is a subgraph of X(1) with q mapping
to j(1), and that by definition of Y and Z the right-hand side contains X(1) with j(1)
of X(1) mapping to v of Y .

If in the first inequality v was mapped outside of Y(1), then the shortest path
from q to v would have to map to a longer path, which is not possible. Hence v maps
inside Y (1). Combining the two inequalities in Figure 8, we get that Y satisfies the
inequality in Figure 7. This contradicts the minimality of X.

We can now complete the proof of Theorem 2.1 by showing a bound on the size
of a minimal solution (if there is one) of graph inequalities with one variable and one
specified vertex.

Proof of Theorem 2.1. From Lemmas 2.5 and 2.7 it follows that we need to
consider only solutions in which every ir (1 ≤ r ≤ �) maps to a vertex of F . For
each such mapping φ, using Lemma 2.6, we can assume that if i ∈ I maps to a vertex
j ∈ J , then as many copies of X in i as possible map to copies of X in j.

Let

G′
1(X) ⊆ G′

2(X), v = i1 → φ (i1) , . . . , i� → φ (i�)(8)

be the inequality with prescribed mappings obtained by removing those X[r]’s and

X(r)’s which are already taken care of by Lemma 2.6. Notice that now no i′r, (1 ≤
r ≤ �′) maps to a j′s (1 ≤ s ≤ k′).

Let X ′ be a solution of (8) with mapping ψ. If ψ
(
X ′

[r]

)
∩ X ′

(s) �= ∅, then some

vertex from X ′
[r] − {i′r} must map to j′s. Since j′s is a cutvertex, no other part of

G′
1(X

′) can map to X ′
(s). If for each X ′

[r], 1 ≤ r ≤ �′, and H we take the set of

objects (edges and X ′
(s)’s) to which it is mapped, then these sets are disjoint.

There are only finitely many partitions of the objects of G′
2(X) into �+1 disjoint

sets. For each such partition we get a system of inequalities with prescribed map-
pings as in Lemma 2.4, which has a solution of size at most |F |(1 + k)|H| (if it has
one).

Note that by using previous lemmas we can easily prove Theorem 1.1. If there
was a solution of the inequality in Figure 1, then by Lemma 2.7 there is a solution



such that v from G1(X) maps to one of the v’s in G2(X). By looking at the degrees
of v’s we see that this is not possible.

We conclude this section with a technical result that allows us to combine several
inequalities with prescribed mappings. This lemma will be needed in the next section.

Lemma 2.8. For any system of inequalities with prescribed mappings

H1 ⊆ X, h1 → v; . . . ;Hm ⊆ X, hm → v,

X ⊆ F1(X), v → w1; . . . ;X ⊆ Fn(X), v → wn,

there is a single inequality which has the same set of solution as the system.
Proof. Consider the inequality in Figure 9.
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By Lemma 2.5, a0 and at have to map to F . Clearly the a0, at path of H in G1(X)
has to map to a path in F in G2(X). If t > 2(m + n + max{F1, . . . , Fn}), then the
only path of length t in F is the b0, bt path. It follows that ai maps to bi (0 ≤ i ≤ t)
because at−1 cannot map to a1. Hence X is a solution of the inequality in Figure 9 if
and only if it is a solution of the system.

3. Undecidability of graph inequalities. The result of the last section might
suggest that there is a general method to decide the solvability of graph inequalities.
While we have to leave this question open for the time being, we do want to sketch
a proof that a natural generalization of the problem turns out to be undecidable.
We consider a logical language whose atoms are graph inequalities as above, i.e.,
diagrams involving graphs with labeled vertices, additional edges and vertices, and
one occurrence of the subgraph relationship. We then build more complex formulas
by allowing logical operators ∧ (and) and ¬ (not) and quantifiers over graphs (and
labeled vertices). We will not formally describe the semantics of this language since
it is straightforward; the only point worth mentioning is that we assume vertices with
different labels in the same graph to be different.

We will next show that formulas of this type are not decidable. More precisely
we will show that this is even the case if we restrict the quantifiers in the formulas
to be only existential or bounded (i.e., of the form (∀F ⊆ G) or (∃F ⊆ G)). Since
formulas involving only bounded quantifiers are decidable (the bounds have to be
explicit graphs; hence we can try all possible combinations), this is a reasonably sharp
result on the complexity of graph inequalities. The main open problem of interest,
of course, is whether the problem is undecidable in case we allow only existential
quantifiers (and no bounded quantifiers at all). We will mention some interesting
related problems in the conclusion.

Theorem 3.1. The solvability of graph diagrams with Boolean operators, exis-
tential quantifiers, and bounded quantifiers is not decidable.
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Fig. 10. Representing the word 21130.

Proof. We will show the undecidability of the solvability problem by reducing
the word problem for semi-Thue systems to it (see, for example, [HU79]). Over an
alphabet A, a semi-Thue system is a set of productions x ⇒ y (x, y ∈ A∗), meaning
that x can be transformed into y. The word problem for a semi-Thue system is to
decide whether, given two words x and y, there is a series of productions which, when
applied to substrings of the words, transforms x into y.

We will represent the letters of the alphabet as paths of different lengths. A word
will be coded as a path to which are attached further paths coding the letters of the
word. A sequence of words will be coded in a similar way. We will then have to find a
way to verify that such a sequence results from legal applications of the productions.

Fix a semi-Thue system (xi ⇒ yi)i≤n over some alphabet A, and suppose we are
given two words x and y. The following diagram gives an example of how we represent
words, in this case the word 21130 (Figure 10).

The initial vertex w is used to link the word up in a sequence of words. In the
manner depicted by the diagram we associate graphs Xi, Yi, X, and Y with the words
xi, yi, x, and y.

Assume that for all A ⊆ G the following diagram (Figure 11) is true.

GA

Fig. 11. Forcing a tree.

Then G does not contain any cycles and therefore is a tree. Furthermore, by
excluding K1,4 we can easily assure that G has maximal degree at most 3. We now
set up G to code the initial and final words. We do this by saying that there is an
A ⊆ G which fulfills the diagram in Figure 12.

Note that for the diagram to be true wX has to be mapped to u and wY to v
(G is a tree). Hence G will contain a path from u to v. For each vertex w on that
path let Gw be the graph attached to the path (if none, then Gw is just w). With the
previous diagram we have ensured that GwX

codes x and GwY
codes y. Now we have

to verify only that the transitions between words as coded by G are legal according
to the system of productions given. We do this by saying that for any A,B,C,D ⊆ G
for which the diagram in Figure 13 is true, there are S,E,B′, C ′ ⊆ G for which the
diagram in Figure 14 is true, and such that B′ = Xi and C ′ = Yi for some i ≤ n.

It is straightforward to check that in this manner we have encoded the original
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word problem: There is a G fulfilling all these conditions if and only if there is a
solution to the word problem. Hence the word problem can be written as a graph
inequality with one existential quantifier and some bounded quantifiers.

4. Directed graph inequalities. So far we have considered only undirected
graphs. What happens if we change the universe of graph inequalities to directed (or
colored) graphs? Call these variants directed (or colored) graph inequalities, respec-
tively.



In the case of one variable with one specified vertex we can obtain the same
result as in Theorem 2.1. As a matter of fact, the lemmas and proofs needed for that
theorem can be used without modification.

Theorem 4.1. For directed (or colored) graphs, if the inequality in Figure 3 has
a solution X, then it has a solution of size at most |F |(1 + k)|H|.

As above, this implies that the problem is decidable in NEXP.

The complexity of the undecidability proof in section 3 stemmed from the diffi-
culty of coding the alphabet: We had to use special devices to code letters and then
use bounded quantifiers to verify that the coding was correct. Allowing the edges in
the graph to be directed, however, makes these constructions unnecessary.

Theorem 4.2. The solvability of directed (colored) graph inequalities is undecid-
able.

The problem remains undecidable even if we limit it to three variables with two
specified vertices each. We consider only directed graphs, since the treatment for
graphs with two colors is identical.

Proof. We will translate Post’s correspondence problem (PCP) into a directed
graph inequality. Since the former problem is known to be Turing-complete [HU79],
this shows the undecidability of directed graph inequalities.

PCP asks whether, given a list of pairs of words (pi, qi)1≤i≤n, there is a list of
indices i1, . . . , im such that pi1 · · · pim = qi1 · · · qim . PCP can be translated into a
question about context-free grammars as follows: Consider two grammars

(i) S1 → i S1pi | i pi (1 ≤ i ≤ n),
(ii) S2 → i S2qi | i qi (1 ≤ i ≤ n),

where i is a prefix-encoding of the number i. The original problem has a solution if
and only if the two grammars have a word in common, i.e., there is a word w such
that S1 →∗ w and S2 →∗ w.

Consider a context-free grammar with productions over the alphabet {0, 1} and
one nonterminal symbol S. Every production has S on the left-hand side and a
(nonempty) string of letters and at most one occurrence of S on the right-hand side.

We will code 0’s and 1’s by the direction of edges, an outgoing edge coding a 0
(for a string starting in the vertex) and an incoming edge coding a 1. Let Ga be the
path corresponding to the string a (for an example, see Figure 15).

Fig. 15. G01001.

A production is either of the form S → aSb, where ab ∈ {0, 1}+, or of the form
S → a, where a ∈ {0, 1}+. We assume that there is always a production of the second
kind.

Construct a graph inequality as follows: The left-hand side contains a graph
variable XS with two special vertices uS and vS . The right-hand side has two special
vertices u′

S and v′S . For every production of the form S → aSb, include Ga starting
in u′

S and ending in the uS vertex of a new copy of XS , and Gb starting in the vS
vertex of XS and ending in v′S . For every production of the form S → a, include Ga

starting in u′
S and ending in v′S .

If we require that u and v be mapped to u′ and v′, respectively, then a solution to
the inequality corresponds to a word in the language described by the grammar, and,
vice versa, every word in the language gives rise to a solution of the graph inequality.
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Fig. 16. Graph inequality for semi-Thue system.

For an example, see Figure 16, which shows the graph inequality belonging to the
system S ⇒ 0S100 | 10S11 | 11S00 | 0100 | 1011 | 1100.

We will first prove the claim that for every word in the language there is a cor-
responding solution of the graph inequality in a stronger form: For each n there is a
graph GS such that

(i) GS solves the inequality (with u, v mapping to u′, v′) and
(ii) there is a path Gw between uS and vS in GS for every word w that can be

derived in n steps from S.
We prove this statement by induction on n. For n = 1 let GS consist of all paths

Ga for which S → a is a production, and identify their starting vertices (calling it
uS), and their end vertices (calling it vS). For the induction step, assume we have a
graph G′

S with vertices u′
S and v′S fulfilling the induction hypothesis for n. Build GS

with vertices uS and vS by including for each production S → aSb (new) copies of
Ga, G

′
S , and Gb, and by identifying uS with the starting vertex of Ga, u

′
S with the

ending vertex of Ga, v
′
S with the starting vertex of Gc, and vS with the ending vertex

of Gc. It is easy to show by induction that the graphs so constructed fulfill (i) and
(ii).

For the other direction suppose that there is a solution GS to the graph inequality.
We will show that for any path P from uS to vS in GS there is a word w such that
S →∗ w and P = Gw. Use induction on the length of the path: Let P be a path of
minimal length between uS and vS for which the assertion has not yet been proven.
P has length at least one (since uS and vS are different vertices). Fix w such that
P = Gw. Since GS fulfills the inequality, P must be a subpath of the right-hand side
of the inequality starting in u′

S and ending in v′S . The way the right-hand side was
constructed, P must therefore be a subpath in a graph corresponding to a particular
production S → aSb, or S → a. In the latter case, a = w and we are done. In the
former case, P consists of three parts corresponding to a, S, and b, respectively. Since
a and b together have length at least one, we can apply the induction hypothesis to
the subpath of P corresponding to S.

If we are given two grammars G1,G2, we can construct the inequalities for them
as above and ask whether there exist graphs fulfilling them, as well as a path P from
uP to vP which is a subgraph of both XS1 and XS2 , where uP and vP have to be
mapped to uSi

and vSi
(i = 1, 2). Such a path corresponds to a word w which can

be derived in both grammars. We are left with the task of combining the inequalities
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into a single inequality fulfilling the additional requirements on the u and v vertices.

Consider the directed graph inequality of Figure 17.

We claim that if G and G′ are solutions of this inequality, then G is a subgraph of
G′ such that u and v are mapped to u′ and v′, respectively (and, obviously, any such
graphs are solutions to the inequality). To see this, suppose that one of the vertices
at the heart of a sunflower does not map to its corresponding vertex. It then has to
map to a labeled vertex, or into a G′ or G, say G′. This is not possible, since such a
vertex is at the heart of three copies of G′, at most two of which can map outside the
G′, so there would have to be a full copy of G′ within G′, which is impossible. Hence
the hearts of the sunflowers map to each other, and, in consequence, the copies of G
map to the corresponding copies of G′, while u and v map to u′ and v′.

We have four equations altogether: GSi
⊆ Gi (with Gi the right-hand sides

constructed from the grammars) and GP ⊆ GSi
(i = 1, 2). We can extend the

diagram above to incorporate all four inequalities: It will contain five sunflowers on
each side of the inequality, between which the terms of the four inequalities are linked
up; each sunflower will have three copies of each graph involved in the construction,
and hence the hearts of the sunflowers map to each other, as above. Thus we get a
single directed graph inequality which has a solution if and only if the two grammars
have a word in common.

5. Conclusion. Several questions remain open, the most nagging one being the
complexity of deciding the solvability of (undirected) graph inequalities (without addi-
tional quantifiers and Boolean operators). It seems hard to translate the correspond-
ing undecidability result for directed graph inequalities back to the undirected case.
Another approach would be to strengthen the proof of the undirected undecidability
result, which required one existential quantifier and several alternations of bounded
quantifiers. It seems likely that by using a different problem for the reduction (for
example, PCP) one might get the language down to existential and bounded universal
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quantifiers only. Getting rid of that last layer of bounded quantifiers, thereby settling
the complexity of Boolean combinations of graph inequalities, seems harder. The
language shown to be undecidable in section 3, for example, is powerful enough to
code the edge reconstruction conjecture (in a more or less natural fashion). Hence a
decision procedure would have come as a surprise. In the case of graph inequalities
the situation is different: We do not know of any difficult open problem that can be
phrased as a graph inequality; hence decidability might still be an option.

Question 1. Is the solvability of graph inequalities (as defined in section 2) de-
cidable?

A positive indication for decidability is that it seems difficult to force large so-
lutions. If graph inequalities were undecidable, then the solution size would have to
grow faster than any computable function. The best result we have been able to obtain
so far shows that a quadratic lower bound is possible, a far cry from undecidability.

Theorem 5.1. There is a graph inequality G1(X) ⊆ G2(X) of size O(n) such
that the size of a minimal solution is Ω(n2).

Proof. Consider the system of inequalities (Figure 18) with prescribed mappings,
where H is a path of length n connected to a complete binary tree of depth logn.
Let B be the infinite binary tree with edges naturally labeled by strings from {0, 1}+.
By Lemma 2.3 solutions of the first inequality are subgraphs X of B such that if
edge aα is in X, then edge α is also in X for any a ∈ {0, 1}, α ∈ {0, 1}+. From the
second inequality it follows that for any solution X there is some α ∈ {0, 1}n such
that for every β ∈ {0, 1}logn, edge αβ is in X. Hence for any suffix γ of α for every
β ∈ {0, 1}logn, edge γβ is in X and therefore there are Ω(n2) edges in X. Using
Lemma 2.8 we combine the inequalities in Figure 18 into a single inequality.

Question 2. Are there graph inequalities whose minimal solutions have at least
exponential size?

Our decidability result for graph inequalities with one variable (and one labeled
vertex) shows that the computational complexity of the problem lies in NEXP. As
we pointed out earlier, it is also NP-hard (since we can ask for a clique as subgraph,
without even using the existential quantifier).

Question 3. What is the computational complexity of deciding the solvability of
one-variable, one-vertex graph inequalities? Is the problem NEXP-complete?

First steps towards generalizations of the decidability result would probably try
to increase the number of specified vertices, then the number of variables. Also, can
we decide Boolean combinations of graph inequalities?

One special case of Boolean combinations can be settled with the techniques from
section 2: graph equalities with one variable and one specified vertex.

Theorem 5.2. The solvability of graph equalities with one variable and one
specified vertex is decidable.

Proof. Lemma 2.5 allows us to assume that variable X occurs at most once on each



side of the equality (otherwise we can use Lemma 2.4 as in the proof of Theorem 2.1).
If X does not occur on one of the sides, we are done. If it occurs precisely once on
each side, it is not too difficult to see that the equality is solvable if the two graphs
to which the variable is attached are isomorphic (where the labeled vertices have to
map to each other). The decision procedure outlined here is, again, in NEXP.

In the case of directed graph inequalities we have a tight separation of decidability
and undecidability: One variable with one specified vertex is decidable, and three
variables with two specified vertices are not. While it might be interesting to find out
what happens in the case of two variables, a more promising object of study should
be the computational complexity of directed graph inequalities. The direction of the
edges might help in encoding a problem complete for EXP or NEXP.

Question 4. What is the computational complexity of deciding the solvability
of one-variable, one-vertex directed (or colored) graph inequalities? Is the problem
NEXP-complete?

Finally we would like to suggest that the question of computational complexity
should also be an interesting one for the more general types of graph equalities and
graph inequalities studied in the literature [CS79].
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