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Abstract

We study the effect of boundary conditions on the
relaxation time of the Glauber dynamics for the hard-
core lattice gas model on the n-vertex regular b-ary
tree of height h. The hard-core model is defined on
independent sets weighted by an activity (or fugacity) λ
on trees. Reconstruction studies the effect of a ‘typical’
boundary condition, i.e., fixed assignment to the leaves,
on the root. The threshold for when reconstruction
occurs (and a typical boundary influences the root in the
limit h → ∞) has been of considerable recent interest
since it appears to be connected to the efficiency of
certain local algorithms on locally tree-like graphs. The
reconstruction threshold occurs at ω ≈ ln b/b where
λ = ω(1 + ω)b is a convenient re-parameterization of
the model.

We prove that for all boundary conditions, the
relaxation time τ in the non-reconstruction region is
fast, namely τ = O

(
n1+ob(1)

)
for any ω ≤ ln b/b. In the

reconstruction region, for all boundary conditions, we
prove τ = O

(
n1+δ+ob(1)

)
for ω = (1+δ) ln b/b, for every

δ > 0. In contrast, we construct a boundary condition,
for which the Glauber dynamics slows down in the
reconstruction region, namely τ = Ω

(
n1+δ/2−ob(1)

)
for

ω = (1 + δ) ln b/b, for every δ > 0. The interesting
part of our proof is this lower bound result, which uses
a general technique that transforms an algorithm to
prove reconstruction into a set in the state space of the
Glauber dynamics with poor conductance.
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1 Introduction

There has been much recent interest in possible con-
nections between equilibrium properties of statistical
physics models and efficiency of local Markov chains for
studying these models (see, e.g., [3, 10, 21, 22, 23, 31]).
In this paper we study the hard-core model and estab-
lish new connections between the so-called reconstruc-
tion threshold in statistical physics with the conver-
gence time of the single-site Markov chain known as
the Glauber dynamics.

The hard-core model is studied in statistical physics
as model of a lattice gas (see, e.g., Sokal [30]), and in
operations research as a model of communication net-
work (see Kelly [16]). It is a natural combinatorial prob-
lem, corresponding to counting and randomly sampling
weighted independent sets of an input graphG = (V,E).
Let Ω = Ω(G) denote the set of independent sets of
G. Each set is weighted by an activity (or fugacity)
λ > 0. For σ ∈ Ω, its weight is Z(σ) = λ|σ| where
|σ| is the number of vertices in the set σ. The Gibbs
measure is defined over Ω as µ(σ) = Z(σ)/Z where
Z =

∑
σ∈Ω Z(σ) is the partition function.

This paper studies the hard-core model on trees, in
some cases with a boundary condition. Let Th denote
the complete tree of height h with branching factor
b. For concreteness we are assuming the root has b
children, but our results, of course, easily extend to
allow b + 1 children for the root, the so-called Bethe
lattice. Let n denote the number of vertices in Th,
and let L denote the leaves of the tree. A boundary
condition is an assignment Γ to the leaves, where in
the case of the hard-core model, Γ specifies a subset of
the leaves L that are in the independent set. Then, let
ΩΓ = {σ ∈ Ω : σ(L) = Γ} be the set of independent
sets of Th that are consistent with Γ, and the Gibbs
measure µh,Γ is defined with respect to ΩΓ, i.e., it is the
projection of µ onto ΩΓ.

The (heat bath) Glauber dynamics is a discrete
time Markov chain (Xt) for sampling from the Gibbs
distribution µ for a given graph G = (V,E) and activity
λ. We view Ω ⊂ {0, 1}V where for Xt ∈ Ω, Xt(v) = 1 iff
v is in the independent set. The transitions Xt → Xt+1

of the Glauber dynamics are defined as:



• Choose a vertex v uniformly at random;

• For all w 6= v set Xt+1(w) = Xt(w);

• If all of the neighbors of v are unoccupied, set
Xt+1(v) = 1 with probability λ/(1 + λ), otherwise
set Xt+1(v) = 0.

When a boundary condition Γ is specified, the state
space is restricted to ΩΓ. For the case of the complete
tree Th (possibly with a boundary condition Γ) it is
straightforward to verify that the Glauber dynamics is
ergodic with unique stationary distribution µh (or µh,Γ
when a boundary condition is specified). Thus, the
Glauber dynamics is a natural algorithmic process for
sampling from the Gibbs distribution. We study the
relaxation time of the dynamics, which is defined as the
inverse of the spectral gap of the transition matrix. See
Section 2 for a more detailed definition of the relaxation
time.

The Gibbs distribution describes the equilibrium
state of the system, and the Glauber dynamics is a
model of how the physical system reaches equilibrium
[11, 21]. Thus, it is interesting to understand connec-
tions between properties of the equilibrium state (i.e.,
the Gibbs distribution) and properties of how the sys-
tem reaches equilibrium (i.e., the Glauber dynamics).
Models from statistical physics are designed to study
phase transitions in the equilibrium state. A phase tran-
sition is said to occur when a small change in the mi-
croscopic parameters of the system (in the case of the
hard-core model that corresponds to λ) causes a dra-
matic change in the macroscopic properties of the sys-
tem.

A well-studied phase transition is uniqueness/non-
uniqueness of infinite volume Gibbs distributions. This
phase transition corresponds to whether there exists
a sequence of boundary conditions for which, roughly
speaking, the root is “influenced” by the leaves in the
limit h→∞. For the hard-core model on the complete
tree, Kelly [16] showed that the uniqueness threshold
is at λu = bb/(b − 1)b+1 (namely, uniqueness holds iff
λ < λu).

There are interesting connections between the
uniqueness threshold λu and the efficiency of algorithms
on general graphs. In particular, Weitz [32] showed a
deterministic fully-polynomial approximation scheme to
estimate the partition function for any graph with con-
stant maximum degree b for activities λ < λu. Recently,
Sly [29] showed that it is NP-hard (unless NP = RP )
to approximate the partition function for activities λ
satisfying λu < λ < λu + εb for some small constant εb.

We are interested in the phase transition for
reconstruction/non-reconstruction. This corresponds to

whether a “typical” boundary influences the root in the
limit h → ∞, whereas uniqueness/non-uniqueness con-
sidered the worst boundary condition. To construct a
typical boundary, we consider the independent set on
the leaves of Th generated by the following broadcast
process. This process constructs an independent set σ
on the infinite tree in a top-down manner. Let ω be the
real positive solution of λ = ω(1 + ω)b. Consider the
infinite complete tree with branching factor b, and con-
struct σ as follows. We first include the root r in σ with
probability ω/(1 + ω) and leave it out with probability
1/(1 + ω). Then for each vertex v, once the state of its
parent p(v) is determined, if p(v) /∈ σ then we add v
into σ with probability ω/(1 + ω) and leave it out with
probability 1/(1 +ω); if p(v) ∈ σ then we leave v out of
σ. Let σh denote the configuration of σ on level h, and
let νh denote the broadcast measure on Th.

Reconstruction addresses whether σh influences the
configuration at the root r. In words, we first generate
σ using the broadcasting measure, then we fix σh
and resample a configuration τ on Th from the Gibbs
distribution µh,Γ with boundary condition Γ = σh. Of
course, for finite h, the configuration at the root r in
τ has a bias to the initial configuration σ(r). Non-
reconstruction is said to hold if the root is unbiased
in expectation in the limit h → ∞. More precisely,
reconstruction holds if and only if:

(1.1) lim
h→∞

Eσ∼νh

[∣∣∣∣µh,σh(r ∈ τ)− ω

1 + ω

∣∣∣∣] > 0.

There are many other equivalent conditions to the above
definition of reconstruction, see Mossel [25] for a more
extensive survey.

We refer to the reconstruction threshold as the
critical ωr such that for all ω < ωr non-reconstruction
holds and for all ω > ωr reconstruction holds. The
existence of the reconstruction threshold follows from
Mossel [26, Proposition 20], and, by recent work of
Bhatnagar et al [4] and Brightwell and Winkler [6], it is
known that ωr = (ln b+ (1 + o(1)) ln ln b)/b.

Our interest in the reconstruction threshold is its
apparent connections to the threshold for the efficiency
of certain local algorithms on locally-tree like graphs,
such as sparse random graphs G(n, c/n) for constant
c > 1, planar graphs, and trees. For colorings and inde-
pendent sets, the reconstruction threshold on the tree is
believed to be intimately connected to the threshold for
the efficiency of local algorithms. The evidence in sup-
port of that belief, is that the the geometry of the space
of solutions on sparse random graphs appears to change
dramatically near (and possibly at) the reconstruction
threshold, see [1, 12, 17, 24]. The results of [13] for the
Glauber dynamics of colorings on planar graphs, sug-



gests that the reconstruction threshold may have con-
nections to the mixing time of the Glauber dynamics on
planar graphs. In addition, reconstruction for the Ising
and Potts models has applications in phylogenetics [8].

Our interest in this paper is on establishing more
detailed connections between the reconstruction thresh-
old and the relaxation time of the Glauber dynamics for
trees. Berger et al [3] proved that for the tree Th with
boundary condition Γ such that µh,Γ = νh, O(n) re-
laxation time for all h implies non-reconstruction. For
the Ising model and colorings the boundary condition
is empty, i.e., νh corresponds to the free boundary con-
dition. Hence, for these models, the result of [3] says
that reconstruction implies relaxation time ω(n). For
the hard-core model it is not clear if there is a bound-
ary condition Γ for the finite tree which has the same
measure as the broadcasting process, i.e., µh,Γ = νh.
This is discussed further in Section 3.

It was recently established for the Ising model
[3, 22, 7] and for k-colorings [31] that on the tree Th
with free boundary condition, the relaxation is O(n) in
the non-reconstruction region and there is a slow down
in the reconstruction region. Our starting point was
addressing whether a similar phenomenon occurs in the
hard-core model. Martinelli et al [23] showed that for
the hard-core model on Th with free boundary condition
the relaxation time is O(n) for all λ (and the mixing
time is O(n log n)). Hence, for the hard-core model,
unlike in the Ising and colorings models, the Glauber
dynamics on the tree with free boundary condition does
not have connections to the reconstruction threshold.
Our interest was whether there is a boundary condition
for which there is such a connection.

We prove there is a connection by constructing a
boundary condition for which the relaxation time slows
down at the reconstruction threshold. Here is the formal
statement of our results.

Theorem 1.1. For the Glauber dynamics on the hard-
core model with activity λ = ω(1 + ω)b on the complete
tree Th with n vertices, height h and branching factor b,
the following hold:

1. For all ω ≤ ln b/b:
For every boundary condition,

Ω(n) ≤ Trelax ≤ O(n1+ob(1)).

2. For all δ > 0 and ω = (1 + δ) ln b/b:

(a) For every boundary condition,

Trelax ≤ O(n1+δ+ob(1)).

(b) There exists a sequence of boundary conditions
for all h→∞ such that,

Trelax = Ω(n1+δ/2−ob(1)).

Remark 1.1. More precisely, we show that there is a
function g(b) = O(ln ln b/ ln b) = o(1) such that for
every b, the lower bound in Part 2b is Ω(n1+δ/2−g(b)),
and there is a function f(b) = O((ln ln b)2/ ln b) = o(1)
such that for every b, the upper bound in Part 1 is
O(n1+f(b)) and in Part 2a is O(n1+δ+f(b)).

The upper bound improves upon Martinelli et al
[23] who showed O(n) relaxation time (and O(n log n)
mixing time) for λ < 1/(

√
b − 1) for all boundary

conditions. Note, λ = 1/
√
b is roughly equivalent to

ω ≈ 1
2 ln b/b which is below the reconstruction thresh-

old. Our main result extends the fast mixing up to the
reconstruction threshold, and shows the slow-down be-
yond the reconstruction threshold. Our lower bound
in the reconstruction region uses a general approach
that transforms an algorithm showing reconstruction
into a set with poor conductance, which implies the
lower bound on the relaxation time. This framework
captures the proof approach used in [31].

There are two major difficulties we were facing: one
is to figure out a proper subset of the state space which
identifies a poor conductance bound of the Glauber
dynamics. The conductance of such a subset should
be sensitive to the boundary conditions, as we already
know that the Glauber dynamics is rapid mixing under
properly chosen boundary conditions (see, e.g., [23]).
And such a lower bound on the relaxation time should
closely match its upper bound. The other difficulty,
once we realized that the relaxation time of the Glauber
dynamics can be nontrivially lower bounded under a
nonuniform hard-core model (see Section 3 for details),
is to prove that, when reconstruction happens, such a
nonuniform model can be approximated (in the measure
sense), by an appropriate sequence of boundary condi-
tions. As a result, then we are able to show Theorem
2b via a conductance argument.

In Section 2 we formally define various terms and
present the basic tools used in our proofs. The lower
bound (Part 2b of Theorem 1.1) is presented in Sections
3, 4 and 5. Section 3 outlines the approach. We then
prove an analogue of Theorem 1.1 in Section 4 for the
broadcasting model and use it in Section 5 to prove Part
2b of Theorem 1.1. The argument for the upper bounds
stated in Theorem 1.1 is presented in Section 6.

2 Background

Let P (·, ·) denote the transition matrix of the Glauber
dynamics. Let γ1 ≥ γ2 ≥ · · · ≥ γ|Ω| be the eigenval-



ues of the transition matrix P . The spectral gap cgap is
defined as 1 − γ where γ = max{γ2, |γ|Ω||} denotes the
second largest eigenvalue in absolute value. The relax-
ation time Trelax of the Markov chain is then defined as
c−1
gap, the inverse of the spectral gap. Relaxation time

is an important measure of the convergence rate of a
Markov chain (see, e.g., Chapter 12 in [19]).

To lower bound the relaxation time we analyze
conductance. The conductance of a Markov chain with
state space Ω and transition matrix P is given by
Φ = minS⊆Ω{ΦS}, where ΦS is the conductance of a
specific set S ⊆ Ω defined as

ΦS =

∑
σ∈S

∑
η∈S̄ π(σ)P (σ, η)

π(S)π(S̄)
.

Thus, a general way to find a good upper bound
on the conductance is to find a set S such that the
probability of “escaping” from S is relatively small. The
well-known relationship between the relaxation time
and the conductance was established in [18] and [27],
and we will use the form Trelax = Ω(1/Φ) for proving
the lower bounds.

3 Lower Bound Approach

First note that the lower bound stated in Part 1 of
Theorem 1.1, namely, Trelax = Ω(n), is trivial for all ω.
For example, by considering the set S = {σ ∈ Ω : r /∈ σ}
of independent sets which do not contain the root,
Φ(S) = Ω(1/n) since we need to update r to leave S.

We begin by explaining the high level idea of the
non-trivial lower bound in Part 2b of Theorem 1.1.
To that end, we first analyze a variant of the hard-
core model in which there are two different activities,
the internal vertices have activity λ and the leaves
have activity ω. The resulting Gibbs distribution is
identical to the measure νh defined in Section 1 for the
broadcasting process. Thus we refer to the following
model as the broadcasting model.

For the tree Th = (V,E), we look at the following
equivalent definition of the distribution νh over the set
Ω of independent sets of Th. For σ ∈ Ω, let

Z ′(σ) = λ|σ∩V \L|ω|σ∩L|,

where L are the leaves of Th and ω is, as before, the
positive solution to ω(1+ω)b = λ. Let νh(σ) = Z ′(σ)/Z ′

where Z ′ =
∑
σ∈Ω Z

′(σ) is the partition function. By
simple calculations, the following proposition holds.

Proposition 3.1. The measure νh defined by the hard-
core model with activity λ for internal vertices and ω
for leaves is identical to the measure defined by the
broadcasting process.

Proof. In fact, we just need to verify that in the hard-
core model with activity λ for internal vertices and ω for
leaves, the probability pv of a vertex v being occupied
conditioning on its parent is unoccupied is ω/(1 + ω).
This can be proved by induction. The base case is v
being a leaf, which is obviously true by the Markovian
property of the Gibbs measure. If v is not a leaf, by
induction, the probability pv has to satisfy the following
equation

pv = (1− pv)
λ

(1 + ω)b
,

which solves to pv = ω/(1 + ω).

The result of Berger et al [3] mentioned in Section
1 implies that the relaxation time of the Glauber
dynamics on the broadcasting model is ω(n). We will
prove a stronger result, analogous to the desired lower
bound for Part 2b of Theorem 1.1.

Theorem 3.1. For all δ > 0, the Glauber dynamics
for the broadcasting model on the complete tree Th with
n vertices, branching factor b and w = (1 + δ) ln b/b
satisfies the following:

Trelax = Ω(n1+δ/2−ob(1)),

where the ob(1) function is O(ln ln b/ ln b).

Remark 3.1. We can show a similar upper bound on
the relaxation time for the Glauber dynamics in this
setting as in Theorem 1.1. Moreover, we can show the
same upper bound for the mixing time by establishing a
tight bound between the inverse log-Sobolev constant and
the relaxation time as was done for colorings in Tetali
et al [31].

We will prove Theorem 3.1 via a general method
that relates any reconstruction algorithm (or function)
with the conductance of the Glauber dynamics. A
reconstruction algorithm is a function A : Ω(L)→ {0, 1}
(ideally efficiently computable) such that A(σh) and
σ(r) are positively correlated. Basically, the algorithm
A takes the configurations at the leaves L as the input
and tries to compute the configuration at the root.
When the context is clear, we write A(σ) instead of
A(σh). Under the Gibbs measure νh, the effectiveness
of A is the following measure of the covariance between
the algorithm A’s output and the marginal at the root
of the actual measure:

rh,A = min
x∈{0,1}

[νh(A(σ) = σ(r) = x)

− νh(A(σ) = x)νh(σ(r) = x)].

If it is the case that lim infh→∞ rh,A = c0 > 0 for some
positive constant c0 depending only on ω and b, then



we say that it is an effective reconstruction algorithm.
In words, an effective algorithm, is able to recover the
spin at the root, from the information at the leaves,
with a nontrivial success, when h → ∞. Notice that
reconstruction (defined in (1.1)) is a necessary condition
for any reconstruction algorithm to be effective, since

Eσ∼νh

[∣∣∣∣µh,σh(r ∈ τ)− ω

1 + ω

∣∣∣∣]
≥ Eσ∼νh

[(
µh,σh (r ∈ τ)− νh (r ∈ σ)

)
1(A (σ) = 1)

]
≥ rh,A,

where 1() is the indicator function. We define the
sensitivity of A, for the configuration σ ∈ Ω(Th), as
the fraction of vertices v such that switching the spin
at v in σ changes the final result of A. More precisely,
let σv be the configuration obtained from changing σ
at v. Define the sensitivity as:

SA(σ) =
1

n
#{v ∈ L : A(σv) 6= A(σ)}.

The average sensitivity (with respect to the root being
occupied) S̄A is hence defined as

S̄A = Eσ∼νh [SA(σ)1(A(σ) = 1)].

It is fine to define the average sensitivity without the
indicator function, which only affects a constant factor
in the analysis. We are doing so to simplify some of the
results’ statements and proofs.

Typically when one proves reconstruction, it is done
by presenting an effective reconstruction algorithm.
Using the following theorem, by further analyzing the
sensitivity of the reconstruction algorithm, one obtains
a lower bound on the relaxation time or mixing time of
the Glauber dynamics.

Theorem 3.2. Suppose that A is an effective recon-
struction algorithm. Then, the relaxation time Trelax

of the Glauber dynamics satisfies Trelax = Ω
(
(S̄A)−1

)
.

Remark 3.2. The above theorem can be generalized to
any spin system. To illustrate the usefulness of this
theorem, we note that the lower bound on the mixing
time of the Glauber dynamics for k-colorings in the
reconstruction region proved in [31] fits this conceptually
appealing framework.

Proof. Throughout the proof let ν := νh. Consider the
set U = {σ : A(σ) = 1}. Then,

ΦU =

∑
σ∈U ν(σ)

∑
w∈L

∑
τ :τ(w) 6=σ(w) P (σ, τ)

ν(U)(1− ν(U))

≤
∑
σ∈U ν(σ)SA(σ)

ν(U)(1− ν(U))
.

From the definition of rh,A, we have that ν(U) ≥
ν(A(σ) = σ(r) = 1) ≥ rh,A, and similarly (1− ν(U)) ≥
ν(A(σ) = σ(r) = 0) ≥ rh,A. Now, because the
algorithm is effective, we have lim infh→∞(rh,A) = c0 >
0 and hence for all h big enough, rh,A > 0. Therefore,
ΦU ≤ (rh,A)−2S̄A, which concludes that

Trelax = c−1
gap ≥ 1/ΦU = Ω((S̄A)−1).

To prove Theorem 3.1, we analyze the sensitivity of the
reconstruction algorithm by Brightwell and Winkler [6,
Section 5] which yields the best known upper bounds
on the reconstruction threshold. Our goal is to show
that the average sensitivity of this algorithm is small.
The analysis of the sensitivity of the Brightwell-Winkler
(BW) algorithm, which then proves Theorem 3.1, is
presented in Section 4.

Our main objective remains of constructing a se-
quence of “bad” boundary conditions under which the
Glauber dynamics for the hard-core model slows down
in the reconstruction region. An initial approach is that
if we can find a complete tree T ′ with some boundary
condition such that the marginal of the root being oc-
cupied exactly equals ω/(1 + ω), then by attaching the
same tree T ′ with the corresponding boundary condi-
tions to all of the leaves of a complete tree T , we are
able to simulate the nonuniform hard-core model on T ,
(i.e., the resulting measure projected onto T is the same
as the one in the broadcasting model) and hence we can
do the same approach to upper-bound the conductance
of the dynamics on this new tree. However, from a cardi-
nality argument, not for every ω there exists a complete
tree of finite height with some boundary condition such
that the marginal probability of the root being occupied
equals ω/(1 + ω). Alternatively, we give a constructive
way to find boundary conditions that approximate the
desired marginal probability relatively accurately. This
is done in Section 5.

Finally, at the end of Section 5 we argue that since
the error is shrinking very fast from the bottom level
under our construction of boundary conditions, we can
again analyze the sensitivity of the Brightwell-Winkler
algorithm starting from just a few levels above the
leaves. This approach yields the lower bound stated
in Part 2b of Theorem 1.1.

4 Lower Bound for Broadcasting: Proof of
Theorem 3.1

Throughout this section we work on the broadcasting
model. To prove Theorem 3.1 we analyze the aver-
age sensitivity of the reconstruction algorithm used by
Brightwell and Winkler [6], which we refer to as the BW
algorithm. For any configuration σ as the input, the al-
gorithm works in a bottom up manner labeling each



vertex from the leaves: a parent is labeled to occupied
if all of its children are labeled to unoccupied; other-
wise, it is labeled to unoccupied. The algorithm will
output the labeling of the root as the final result. For-
mally, it can be described by the following deterministic
recursion deciding the labeling of every vertex:

Rσ(v) =

{
σ(v) if v ∈ L

1−max{Rσ(w1), . . . , Rσ(wb)} otherwise

where w1, . . . , wb are the children of v. Finally, let
BW(σ) = BW(σh) = Rσ(r). Note that, BW(σ) only
depends on the configuration σh on the leaves. The
algorithm is proved to be effective in [6] when δ > 0.
Therefore, it can be used in our case to lower bound
the relaxation time. In this algorithm, by definition we
have

nS̄BW = O
(
Eσ [#{v ∈ L : BW(σ) = 1 ∧ BW(σv) = 0}]

)
,

(4.2)

where the expectation is over the probability measure
νh. Due to the symmetry of the function Rσ(v) and the
measure νh, the expectation can be further simplified as

Eσ [#{v ∈ L : BW(σ) = 1 ∧ BW(σv) = 0}](4.3)

= bhνh(BW(σ) = 1 ∧ BW(σû) = 0),

where û is now a fixed leaf. To bound the right hand
side of Eq.(4.3), let κ ∈ Ω(Th) be a fixed configuration
such that BW(κ) = 1. Let the path P from û to
the root r be u0 = û  u1  · · ·  uh = r, and
for any i > 0, let wi,j be the children of ui so that
the labeling is such that for j = 1, wi,1 = ui−1 and
for j 6= 1, wi,j is not on the path P. An important
observation is that, in order to make BW(κ) change
to 0 by changing only the configuration at û of κ, a
necessary condition for κ is Rκ(ui) = 1 − Rκ(ui−1) for
all i ≥ 1. Then for all i ≥ 1 and j ∈ {2, . . . , b}, we
have Rκ(wi,j) = 0. To calculate the probability that
a random κ ∼ νh satisfies such conditions, it would be
easier if we expose the configurations along the path
P. Since then, conditioning on the configurations on
the path, the events Rκ(wi,j) = 0 are independent for
all i, j. And if κ(ui) = 0, we have for all j > 1,
the conditional probability of Rκ(wi,j) = 0 equals
Prη∼νi−1 [BW(η) = 0], the probability BW algorithm
outputs a 0 over a random configuration η of the leaves
of the complete tree Ti−1 with height i−1. The analysis
above leads to the following lemma, which bounds the
probability νh(BW(σ) = 1 and BW(σû) = 0).

Lemma 4.1. For every i > 0, let η ∈ Ω(Ti−1) be
a configuration chosen randomly according to measure

νi−1, then

νh(BW(σ) = 1 and BW(σû) = 0) ≤

Eκ∼νh

 ∏
i>0:κ(ui)=0

Prη∼νi−1
[BW(η) = 0]

(b−1)

.
Complete proofs of lemmas in this section are de-

ferred to Section 4.1. To use Lemma 4.1, we de-
rive the following uniform bound on the probability
Prη∼νi [BW(η) = 0], for all i. Here and through out
the paper, b0(δ) is a function explicitly defined in
Lemma 4.3 in Section 4.2. This function is of order
exp(δ−1 ln(δ−1)) as δ → 0 and remains bounded as
δ →∞.

Lemma 4.2. Let δ > 0, and let ω = (1 + δ) ln b/b. For
all b ≥ b0(δ) and i ≥ 1,

Prη∼νi [BW(η) = 0] ≤ (1.01)1/b

1 + ω
.

Combining Equations (4.2), (4.3), Lemma 4.1 and
Lemma 4.2, we are able to upper bound the average
sensitivity of the BW algorithm:

S̄BW = O
(
νh(BW(σ) = 1 and BW(σû) = 0)

)
= O

(
Eκ∼νh

[(
1.01ω(1 + ω)

λ

)#{i:κ(ui)=0}
])

.

In this expectation, the number of unoccupied
vertices in the path P can be trivially lower bounded
by h/2, since it is impossible that there exists i > 0,
κ(ui) = κ(ui−1) = 1. Therefore, the above expectation
can be easily bounded by O∗(n−(1+δ)/2). This is not
good enough in our case. We sharpen the bound using
Lemma 4.4 in Section 4.2, leading to the following
theorem, whose complete proof is contained in Section
4.1.

Theorem 4.1. Let δ > 0, and let ω = (1 + δ) ln b/b.
For all b ≥ b0(δ),

Trelax = Ω
(
nd
)
, where d =

(
1 +

ln
(
λ/(1.01ωb)2

)
2 ln b

)
.

Theorem 3.1 is a simple corollary of Theorem 4.1 by
noticing that d = 1 + δ/2−O

(
ln ln b
ln b

)
. Furthermore, we

can “hide” the fact that b ≥ b0(δ) in this residual term,
by using the trivial lower bound Ω(n) for all b < b0(δ)
and b0(δ) ≈ exp(δ−1 ln(δ−1)) as δ → 0.

4.1 Proofs. Note that throughout this paper, we
will use the following notations for the relationships



between two functions f(x) and g(x) for simplicity. If
limx→∞ f(x)/g(x) = 1, we write f(x) ≈ g(x); if f(x) =
O(g(x)), we write f(x) . g(x) and if f(x) = Ω(g(x)),
we write f(x) & g(x).

Proof. [Proof of Lemma 4.1] Let x = {0, 1}h be a
valid configuration on the path P. Conditioning on
κ(ui) = x(i) for all i, we know that the events
Rκ(wi,j) = 0 are independent for all i and j. Given
κ(ui) = 0, the probability of the event Rκ(wi,j) = 0
equals Prη∼νi−1 [BW(η) = 0]; and given κ(ui) = 1, the
probability of this event can be trivially upper bounded
by 1 (this bound is “safe”, in the sense that the actual
quantity is close to 1 for big λ). By this, we can conclude
that

νh(BW(κ) = 1 and BW(κû) = 0)

≤
∑
x

νh(κ : ∀i, κ(ui) = x(ui))

·
∏

i>0:κ(ui)=0

Prη∼νi−1
[BW(η) = 0]

(b−1)

= Eκ

 ∏
i>0:κ(ui)=0

Prη∼νi−1 [BW(η) = 0]
(b−1)

.
Proof. [Proof of Lemma 4.2] In the proof, we will use

the fact that exp
(

2(1.01)(ωb)2

λ

)
≤ 1.01, whenever b ≥

b0(δ) (Lemma 4.3). Now, for simplicity, denote fi =
Prη∼νi−1

[A(η) = 0]. First of all, notice the recurrences

fi+1 =
ω

1 + ω

(
1−

(
1− f bi−1

)b)
+

1

1 + ω

(
1− f bi

)
,

f1 =
1

1 + ω
, f2 =

1

1 + ω

(
1−

(
1

1 + ω

)b)
.

The result follows by an easy induction: For h = 1, 2,
the result is clear. On the other hand, from the previous

recurrences, if it is the case that fi ≤ (1.01)1/b

1+ω , then

f bi+1 ≤
[

ω

1 + ω

(
1−

(
1− f bi−1

)b)
+

1

1 + ω

]b
≤

[
ω

1 + ω

(
1−

(
1− 1.01ω

λ

)b)
+

1

1 + ω

]b

≤

(
1 + 1.01ω2b

λ

1 + ω

)b
≤ exp(1.01(ωb)2/λ)

(1 + ω)b

≤ 1.01

(1 + ω)b
,

where the third inequality follows from the fact that
(1−u)b ≥ 1−ub for u < 1, the fourth inequality follows
from (1 + u) ≤ eu, and the last inequality follows from

the fact that exp
(

2(1.01)(ωb)2

λ

)
≤ 1.01 for b ≥ b0(δ).

Proof. [Proof of Theorem 4.1] From Lemma 4.4 in
Section 4.2, we have that

E

[(
1.01ω(1 + ω)

λ

)#{i:σ(ui)=0}
]
≈

(
1 +

1− ε
2ε(1 + ω)

)
(1 + ε)

2

(
1.01ω

2λ

[
1 +

√
1 + 4λ/1.01

])h
where ε =

[√
1 + 4λ/1.01

]−1

. The previous term is

asymptotically dominated by
(
1.01 ω

λ1/2

)h
. Therefore,

S̄A = O

([
1.01ω

λ1/2

]h)
= O

n−
[

1+
ln(λ/(1.01ωb)2)

2 ln b

] .

Now, from [6, Section 5], it is known that the BW
algorithm is effective for ω > (1+δ) ln b/b and b > b0(δ),
therefore Theorem 3.2 applies. The conclusion follows.

4.2 Some Technical Lemmas. The proofs of the
following lemmas will be included in the full version of
this paper.

Lemma 4.3. Define

b0(δ) = min{b0 : exp

(
2(1.01)(ωb)2

λ

)
≤ 1.01, ∀b ≥ b0},

then b0(δ) is a continuous function such that

1. b0(δ) <∞ for all δ > 0 (that is, it is well defined).

2. b0(δ) ≈ exp
(
(1 + o(1))δ−1 ln(δ−1)

)
as δ → 0.

3. b0(δ) ≈ b0(∞) as δ → ∞, where b0(∞) is a fixed
constant ≤ 2.

Lemma 4.4. Let ζ0, ζ1, . . . be a Markov process with
state space {0, 1}, such that ζ0 = 0 and with transition
rates p0→0 = p, p0→1 = q, p1→0 = 1, p1→1 = 0. Let
Nh = # {1 ≤ i ≤ h : ζi = 0}, then

E
[
aNh

]
≈
(

1 +
p (1− ε)

2ε

)
(1 + ε)

2

·
(pa

2

[
1 +

√
1 + 4q/ (ap2)

])h
.

where ε = 1√
1+4q/(ap2)

. Moreover, if the transition rate

p0→0 is inhomogeneous but such that
∣∣∣p− p(i)

0→0

∣∣∣ ≤ δ,



then

E
[
aNh

]
.

(
1 +

(p+ δ) (1− ε̄)
2ε̄

)
(1 + ε̄)

2

·

(
(p+ δ) a

2

[
1 +

√
1 + 4 (q + δ) /

(
a (p+ δ)

2
)])h

,

where ε̄ = 1√
1+4(q+δ)/(a(p+δ)2)

.

5 “Bad” Boundary Conditions: Proof of
Theorem 1.1.2b

First, we will show that for any ω, there exists a
sequence of boundary conditions, denoted as Γω :=
{Γi}i>0, one for each complete tree of height i > 0, such
that if i→∞, the probability of the root being occupied
converges to ω

1+ω . Later in this section we will exploit
such a construction to attain in full the conclusion of
Part 2b of Theorem 1.1.

As a first observation, note that, the Gibbs measure
for the hard-core model on Ti with boundary condition
Γ is the same as the Gibbs measure for the hard-core
model (with the same activity λ) on the tree T obtained
from Ti by deleting all of the leaves as well as the parent
of each (occupied) leaf v ∈ Γ. It will be convenient to
work directly with such “trimmed” trees, rather than
the complete tree with boundary condition. Having
this in mind, our construction will be inductive in the
following way. We will define a sequence of (trimmed)
trees {(Li, Ui)}i≥0 such that Li+1 is comprised of si+1

copies of Ui and b − si+1 copies of Li with {si}i≥1

properly chosen. Similarly, Ui+1 is comprised of ti+1

copies of Ui and b − ti+1 copies of Li, with {ti}i≥1

properly chosen.
We will show that, for either T ∗i = Li, or T ∗i = Ui,

it is the case that the ‘Q’-value, defined as:

Q(T ∗i ) =
µT∗

i
(σ(r) = 1)

ωµT∗
i

(σ(r) = 0)
,

where µT∗
i

(·) is the hard-core measure on the trimmed
tree T ∗i , satisfies Q(T ∗i ) → 1. Note that if Q(T ∗i ) =
1, then the probability of the root being occupied is
ω/(1 + ω) as desired. To attain this, we will construct
Li and Ui in such a way that Q(Ui) ≥ 1 and Q(Li) ≤ 1.

The recursion for Q(Li+1) can be derived easily as

Q(Li+1) =
(1 + ω)b

(1 + ωQ(Ui))si+1(1 + ωQ(Li))b−si+1
,

and a similar equation holds for Q(Ui+1) by replacing
si+1 with ti+1.

To keep the construction simple, we inductively
define the appropriate ti and si, so that once Li and

Ui are given, we let ti+1 be the minimum choice so that
the resulting Q-value is ≥ 1, more precisely, we let:

ti+1 = arg min
`
{Q =

(1 + ω)b

(1 +Q(Ui))`(1 + ωQ(Li))b−`
: Q ≥ 1}.

And similarly, we let

si+1 = arg max
`
{Q =

(1 + ω)b

(1 +Q(Ui))`(1 +Q(Li))b−`
: Q ≤ 1}.

The recursion starts with U1 being the graph of a single
node and L1 being the empty set, so that Q(U1) =
λ/ω and Q(L1) = 0. Observe that, by definition,
si+1 ∈ {ti+1, ti+1 + 1} and that the construction
guarantees that the values Q(Li) are at most 1, and
the values Q(Ui) are at least 1. The following simple
lemma justifies the correctness of our construction.

Lemma 5.1.

lim
i→∞

Q(Ui)/Q(Li) = 1.

Proof. It is easy to see that either ti = si (meaning that
Q(Li) = Q(Ui) = 1), or ti = si − 1, which implies that

Q(Ui)

Q(Li)
=

1 + ωQ(Ui−1)

1 + ωQ(Li−1)
<
Q(Ui−1)

Q(Li−1)
.

So the ratio is shrinking. Suppose the limit is not 1 but
some value q > 1. Then,

Q(Ui−1)

Q(Li−1)
− Q(Ui)

Q(Li)
=

Q(Ui−1)−Q(Li−1)

(1 + ωQ(Li−1))Q(Li−1)
.

Since Q(Ui)/Q(Li) > q and Q(Li) ≤ 1, we have

Q(Ui−1)−Q(Li−1)

(1 + ωQ(Li−1))Q(Li−1)
≥ (q − 1)Q(Li−1)

Q(Li−1)(1 + ω)
=
q − 1

1 + ω
,

which is a constant.
Therefore as long as q > 1, we show that the

difference between the ratios for each step i is at
least some constant which is impossible. Hence the
assumption is false.

By this lemma, it is easy to check that if we let
T ∗i to be equal to either Ui or Li, then Q(T ∗i ) → 1.
Indeed, we can show that the additive error decreases
exponentially fast. The following lemma indicates that
this is the case for ω < 1 (although a similar result holds
for any ω).

Lemma 5.2. Let ε+i be the value of Q(Ui) − 1 and let
ε−i be the value of 1−Q(Li), then

ε+i+1 + ε−i+1 ≤ ω(ε+i + ε−i ).



Proof. We can rewrite the expression

(1 + ω)b/(1 + ωQ(Ui))
j(1 + ωQ(Li))

b−j

as
1

(1 + ω
1+ω ε

+
i )j(1− ω

1+ω ε
−
i )b−j

.

Now, let k be the biggest index over [b] such that the
denominator of the previous expression is less than
1 (thus, k + 1 will be the least index such that the
denominator is greater than 1). Then,

ε+i+1 + ε−i+1 =
1

(1 + ω
1+ω ε

+
i )k(1− ω

1+ω ε
−
i )b−k

− 1

(1 + ω
1+ω ε

+
i )k+1(1− ω

1+ω ε
−
i )b−k−1

=
ω

1+ω (ε+i + ε−i )

(1 + ω
1+ω ε

+
i )k+1(1− ω

1+ω ε
−
i )b−k

≤
ω

1+ω (ε+i + ε−i )

1− ω
1+ω ε

−
i

≤ ω(ε+i + ε−i ).

Coming back to the original tree-boundary nota-
tion, let Γ1

h be the boundary corresponding to the trim-
ming of the tree Uh and let Γ2

h be the boundary cor-
responding to the trimming of the tree Lh. By our
construction, for any vertex v on the tree of height h,
the measure from µh,Γ1

h
(or µh,Γ2

h
) projected onto the

space of the independent sets of the subtree rooted at v
with the boundary condition corresponding to the cor-
rect part of Γ and the parent of v being unoccupied is
either µi,Γ1

i
or µi,Γ2

i
, where i is the distance of v away

from the leaves on Th. Conditioning on the parent of
v being unoccupied, in the broadcast process defined in
the Introduction, we would occupy v with probability
ω/(1 + ω). Therefore, in the above construction, the
probability v is occupied (or rather unoccupied) is close
to the desired probability, and the error will decay ex-
ponentially fast with the distance from the leaves. This
is formally stated in the following corollary of Lemma
5.2.

Corollary 5.1. Given any ω < 1 and the complete
tree of height i, for Γ equal to Γ1

i or Γ2
i inductively

constructed above, we have∣∣∣∣µi,Γ(σ(r) = 0)− 1

1 + ω

∣∣∣∣ ≤ ωi−1λ/b.

Throughout the rest of this section it is assumed
that we are dealing with the boundary conditions
{Γ1

h}h∈N and {Γ2
h}h∈N constructed above. We will

then show that for every ω = (1 + δ) ln b/b under these
two boundary conditions, the Glauber dynamics on the
hard-core model slows down, whenever δ > 0. As we
know from Corollary 5.1, the error of the marginal goes
down very fast, so that roughly we can think of the
marginal distribution of the configurations on the tree
from the root to the vertices a few levels above the leaves
as being close to the broadcasting measure. In fact, by
following the same proof outline as we did in Section
4, we are able to prove the same lower bound in the
hard-core model for these boundaries. To do that we
need a slight generalization of the reconstruction algo-
rithm and extensions of the corresponding lemmas used
in that section to handle the errors in the marginal prob-
abilities.

To generalize the notion of a reconstruction algo-
rithm to the case of a boundary condition we need to
add an extra parameter ` depending only on ω and b.
We will essentially ignore the bottom ` levels in the
analysis, and we will use that for the top h−` levels the
marginal probabilities are close to those on the broad-
casting tree. We define a reconstruction algorithm with
a parameter ` for the tree Th with boundary condition Γ
as a function A` : Ω(Lh−`)→ {0, 1}. The algorithm A`
takes the configurations of the vertices at height h − `
as the input and tries to compute the configuration at
the root. For any σ ∈ Ω(Th,Γ), the sensitivity is defined
as: S`,A(σ) = 1

n#
{
v ∈ Lh−` : A`(σ

v
h−`) 6= A`(σh−`)

}
.

The average sensitivity of the algorithm at height h− `
with respect to the boundary Γ is defined as: S̄Γ

`,A =
Eσ [S`,A(σ)1(A`(σh−`) = 1)]. And the effectiveness is
defined as:

rΓ
`,A = min

x∈{0,1}
[µh,Γ(A`(σh−`) = x and σ(r) = x)−

µh,Γ(A`(σh−`) = x)µh,Γ(σ(r) = x)].

We can show the analog of Theorem 3.2 in this setting.

Theorem 5.1. Suppose that A` is an effective recon-
struction algorithm. Then, it is the case that the spec-
tral gap cgap of the Glauber dynamics for the hard-core
model on the tree of height h with boundary condition Γ,
satisfies cgap = O(S̄Γ

`,A), and hence the relaxation time

of this Glauber dynamics satisfies Trelax = Ω(1/S̄Γ
`,A).

To bound the average sensitivity for the boundary
conditions Γ1

h and Γ2
h constructed above, we again

use the same BW algorithm as we analyzed for the
broadcasting tree. As in Eq.(4.2) and (4.3), it is again
enough to bound the probability

PΓ
`,BW := µh,Γh(BW`(σh−`) = 1 and BW`(σ

û
h−`) = 0)



for a fixed vertex û at a distance ` from the leaves,
although in this case, this probability will not be the
same for all û. Let the path P from û to the root r be
u0 = û  u1  · · ·  uh−` = r, and for each i > 0
and j ∈ {1, . . . , b}, let wi,j be defined similarly as in
Section 4. Further, let Γi,j be the boundary condition
Γh restricted to the subtree Twi,j of Th rooted at the
vertex wi,j . These subtrees are of height i + ` − 1
for each i. Note that, by our construction of the
boundary conditions, for each fixed i, Γi,j = Γ1

i+`−1 or

Γi,j = Γ2
i+`−1. The probability PΓ

`,BW can be calculated
by the following lemma, which is the analog of Lemma
4.1 for the broadcasting tree.

Lemma 5.3.

PΓ
`,BW ≤ Eσ

 ∏
i>0:σ(ui)=0

b∏
j=2

Prη∼µi+`−1,Γi,j
[A`(η) = 0]

,
where the expectation is over the measure µh,Γh , and
for each i, j, η is a random configuration on the subtree
rooted at wi,j with the probability measure µi+`−1,Γi,j .

The proofs of Theorem 5.1 and Lemma 5.3 use the
same proof approach as for Theorem 3.2 and Lemma
4.1 respectively. However, to bound Prη [A`(η) = 0] for
every i > 0, in spite of going along the lines of Lemma
4.2, the proof does require extra care to deal with the er-
rors in the marginal probabilities which were bounded in
Corollary 5.1. In particular, we will establish the follow-
ing lemma to upper bound Prη∼µi+`−1,Γi,j

[A`(η) = 0]

for each i > 0. Here and throughout the text, we define
`(λ, b) to be the minimum ` such that for all i ≥ `,

Prη∼µ
i,Γ2
i

[η(r) = 0] ≤ 1

1 + ω
exp

(
1.01(ωb)2

λ

)
.

The existence of such constant `(λ, b) is guaranteed by
Lemma 5.1, also from Corollary 5.1 we can deduce a
explicit value for `(λ, b), provided that ω < 1.

Lemma 5.4. Given any δ > 0, and i ≥ `(λ, b) = `, then
both Prη∼µ

i,Γ1
i

[A`(η) = 0] and Prη∼µ
i,Γ2
i

[A`(η) = 0] are

upper bounded by 1.011/b

1+ω for any b ≥ b0(δ).

And also it is not hard to show that the BW algorithm
under this setting is effective.

Proposition 5.1. The BW reconstruction algorithm is
effective to recover the configuration at the root from the
configurations at distance `(λ, b) from the leaves.

Then, we are able to again bound S̄Γ
`,BW for Γ = Γ1

h

or Γ2
h, proving the following theorem, which completes

the proof of Part 2b in Theorem 1.1. Interested readers
can look up the full version for the complete proofs.

Theorem 5.2. Let δ > 0, and let ω = (1 + δ) ln b/b.
For all b ≥ b0(δ), it is the case that

Trelax = Ω
(
nd
)
, where d =

(
1 +

ln
(
λ/(1.01ωb)2

)
2 ln b

)
.

6 Upper Bounds of the Relaxation Time
via the Coupling Method

We will use the coupling technique to prove our upper
bounds on the relaxation time. Coupling implies an
upper bound on the mixing time. The mixing time
Tmix for the Glauber dynamics is defined as the number
of steps, from the worst initial state, to reach within
variation distance ≤ 1/2e of the stationary distribution.
It is an elementary fact that the mixing time gives a
good upper bound on the relaxation time (see, e.g., [19]
for the following bound), we will use this fact in our
upper bound proofs:

(6.4) Trelax ≤ Tmix + 1.

Given two copies (Xt) and (Yt) of the Glauber
dynamics, a coupling is a joint process (Xt, Yt) such
that the evolution of each component viewed in isolation
is identical to the Glauber dynamics (c.f., [19] for an
introduction to the coupling technique). The Coupling
Lemma [2] (c.f., [19, Theorem 5.2]) guarantees that if,
there is a coupling and time t > 0, so that for every pair
(X0, Y0) of initial states, Pr [Xt 6= Yt | X0, Y0] ≤ 1/2e
under the coupling, then Tmix ≤ t.

Before we show the main idea for our upper bound
proofs, we first introduce some notation we use in this
section. For a b dimensional vector ρ where 0 ≤ ρi ≤ 1
for every 1 ≤ i ≤ b, let τρ be the relaxation time of the
following Glauber dynamics of the hard-core model on
the star graph G? with b + 1 vertices. The dynamics
on the star graph G? is defined as follows. From an
independent set Xt,

1. Choose a random vertex v.

2. If v is the root of G, then set

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ).

3. If v is a leaf of G, then set

X ′ =

{
Xt ∪ {v} with probability ρi

Xt \ {v} with probability 1− ρi.

4. If X ′ is an independent set, then set Xt+1 = X ′,
otherwise set Xt+1 = Xt.



Let τ? := maxρ{τρ} be defined as the worst case
relaxation time over all possible choices of ρ. Using
the block dynamics approach of Martinelli [21], as used
in Section 2.3 of [3] (see also [20] and [31] for similar
results), it is not hard to show that the relaxation time
of the above Glauber dynamics is exactly the same as
that of the natural block dynamics which updates the
configurations of a whole subtree of the root in one step,
and hence the following lemma holds.

Lemma 6.1. The relaxation time Trelax of the Glauber
dynamics of the hard-core model on the complete tree of
height H is upper bounded by (τ?)H for any boundary
condition on the leaves.

Note that, the relaxation time on the complete
tree is quite sensitive to the boundary conditions. For
example, as mentioned in the introduction, Martinelli
et al [23] show that when the boundary condition is
all even (or similarly for all odd), i.e., all of the leaves
are occupied when the height is even (respectively, odd)
and all of the leaves are unoccupied when the height
is odd (even), then the mixing time is O(n lnn) for
all λ. In this paper we are dealing we are considering
all boundary conditions, and in our lower bound, we
show there are boundary conditions that slow down the
Glauber dynamics. The lower bound on the relaxation
time for the Glauber dynamics under those boundary
conditions which we show suffer the slow-down roughly
matches up with the upper bound we prove here.

We need to bound the relaxation time of the
Glauber dynamics on the star graph for different cases
with respect to ρ. To do this, we first use a simple cou-
pling to bound the mixing time and then by Equation
(6.4) we get an upper bound on the relaxation time. The
coupling (Xt, Yt) of the two chains is done by choosing
the same random vertex v for changing the states at
step t and maximizing the probability of the two chains
choosing the same update for the state of v. Thus, if all
of the neighbors of v are unoccupied in both Xt and Yt,
then v will be occupied in both chains or unoccupied
in both chains at time t + 1 with the correct marginal
probability. In all other cases, the update choices for
Xt+1(v) and Yt+1(v) are coupled arbitrarily. Let � be
a partial order on the state space Ω such that:

• σ = {r} is the maximum element.

• if σ1 ⊆ σ2 and r /∈ σ1, σ2, then σ2 � σ1.

Then the hard-core model on the star graph is a
monotone system (See, e.g., [19] for more details about
monotone systems.), and the coupling we define has the
following monotonicity property:

Proposition 6.1. (Monotonicity) If at time t we
have Xt � Yt, then we have Xt+1 � Yt+1.

We will analyze this simple coupling by partitioning the
analysis into several cases based on ρ.

Lemma 6.2. If
∑
ρi ≤ 4 ln ln b, and for all 1 ≤ i ≤ b,

ρi ≤ 1 − 1/ ln b, then τρ = O(b1+o(1)), where o(1) is a
term that goes to zero as b goes to infinity.

Lemma 6.3. If
∑
ρi ≥ 4 ln ln b, then τρ = O((λ +

1)b ln b).

Lemma 6.4. If there exists an 1 ≤ i ≤ b such that
ρi > 1− 1/ ln b, then τρ = O((λ+ 1)b ln b).

The intuition behind the above lemmas is that the
typical behavior of the Glauber dynamics changes with
respect to the marginal probabilities ρ of the leaves.
When ρ is tiny for all leaves then Lemma 6.2 applies,
and in this case the stationary distribution of the
chain has a large probability that all the leaves are
unoccupied, and hence Xt and Yt can be coupled at
the state where the root is occupied. When the sum
of the marginal probabilities for the leaves is large then
Lemmas 6.3 and 6.4 apply. In this case, it is likely
that at least one of the leaves is occupied, hence the
coupling analysis waits for the root to get unoccupied
in both chains and then attempts to get the leaves to
agree in the two chains before the root is added in to
either chain.

We defer the proofs of these lemmas to the full
version of this paper. By plugging in the results of
Lemmas 6.2, 6.3 and 6.4 into Lemma 6.1, we get that:

Trelax ≤ (τ?)logb n

= O

((
max{(λ+ 1)b ln b, b1+o(1)}

)logb n
)

= O
(
n1+ln(λ+1)/ ln b+o(1)

)
for any λ > 0. Recall that the relationship between
ω and λ is λ = ω(1 + ω)b, and in this paper we are
mainly interested in the cases when ω = (1 + δ) ln b/b
for any constant δ > −1. Hence, in terms of ω, if
−1 < δ ≤ 0 the relaxation time is upper bounded
by n1+o(1), and if δ > 0 the relaxation time is upper
bounded by n1+δ+o(1). This proves Theorem 1.1.
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mixing Markov chains. Séminaire de Probabilités
XVII, Springer Lecture Notes in Mathematics 986, 243-
297, 1983.

[3] N. Berger, C. Kenyon, E. Mossel, and Y. Peres.
Glauber dynamics on trees and hyperbolic graphs.
Probability Theory and Related Fields, 131(3):311–340,
2005.

[4] N. Bhatnagar, A. Sly, and P. Tetali. Recon-
struction Threshold for the Hardcore Model.
Preprint, 2010. Available from arXiv at:
http://arxiv.org/abs/1004.3531

[5] N. Bhatnagar, J. Vera, E. Vigoda, and
D. Weitz. Reconstruction for colorings on
tree. Preprint, 2008. Available from arXiv at:
http://arxiv.org/abs/0711.3664

[6] G. R. Brightwell and P. Winkler. A second threshold
for the hard-core model on a Bethe lattice. Random
Struct. Algorithms, 24(3):303-314, 2004.

[7] J. Ding, E. Lubetzky, and Y. Peres. Mixing time of
critical Ising model on trees is polynomial in the height.
Communications in Mathematical Physics, 295(1):161-
207, 2010.

[8] C. Daskalakis, E. Mossel and S. Roch. Optimal Phy-
logenetic Reconstruction, in Proceedings of the 38th
Annual ACM Symposium on Theory of Computing
(STOC), 159-168, 2006.

[9] D. Dubhashi and D. Ranjan. Balls and bins: A study
in negative dependence. Random Struct. Algorithms,
13(2):99–124, 1998.

[10] M. E. Dyer, A. Sinclair, E. Vigoda and D. Weitz.
Mixing in time and space for lattice spin systems:
A combinatorial view. Random Struct. Algorithms,
24(4):461-479, 2004.

[11] H. O. Georgii. Gibbs Measures and Phase Transitions,
de Gruyter Studies in Mathematics, vol. 9, 1988.

[12] A. Gerschenfeld, A. Montanari. Reconstruction for
models on random graphs, In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 194-204, 2007.

[13] T. Hayes, J. Vera, and E. Vigoda. Randomly coloring
planar graphs with fewer colors than the maximum
degree. In Proceedings of the 39th ACM Symposium
on Theory of Computing (STOC), 450–458, 2007.

[14] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13-30, 1963.

[15] M. Jerrum. A very simple algorithm for estimating the
number of k-colorings of a low-degree graph. Random
Struct. Algorithms, 7(2):157–166, 1995.

[16] F. Kelly. Loss networks. Annals of Applied Probability.
1(3):319-378, 1991.

[17] F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G.
Semerjian and L. Zdeborová. Gibbs States and the
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