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Density estimation

F = a family of densities l

density




Density estimation - example

N(u,1)

F = a family of normal
densities with c=1

+

0.418974,
0.848565,
1.73705,
1.59579,
-1.18767,
-1.05573,
-1.36625




Measure of quality:

9=TRUTH
f=OUTPUT

L, — distance from the truth
If-gl; =] If(x)-g(x)| dx

Why L., ?

1) small L, = all events estimated with
small additive error
2) scale invariant




Obstacles to “quality”:

F + DATA

bad data

weak class A?
of densities

dist,(g,F)




What is bad data? | h-g |,

g =TRUTH
h = DATA (empirical density)

A =2max |h(A)-g(A)]

AcY(F)
Y(F) = Yatracos class of F

s A={x | £(x)>F(x) }
f




Density estimation

4 # f with I9-f],

DATA (h)

assuming these are small:

A=2Zmax|n(A)-g(A)l




Why would these be small ??7?

A=2max [n(A)-g(A)

They will be if:

2) pick a small enough F
so that VC-dimension of Y(F) is small
3) data are iid from h

Theorem (Haussler,Dudley, Vapnik, Chervonenkis):

VC(Y
E[nglh(A)-g(A)ussﬁales




How to choose from 2 densities?

f




How to choose from 2 densities?

f




How to choose from 2 densities?

f, W




How to choose from 2 densities?

Scheffeé:

else = f,

Theorem (see DL'01):
If-g|, < 3dist,(g,F) + 2A




Density estimation

4 # f with I9-f],

DATA (h)

assuming these are small:

A=2Zmax|n(A)-g(A)l




Test functions
F={f1 1o, .,fN}

T;j (x) = sgn(fi(x) - 1;(x))
Ty(fi - 1) = [ (- )sgn(f-F) = If, - 1],




Density estimation algorithms

Pick the density with the most wins.

Theorem (DL’01):
If-g|,< 9dist,(g,F)+8A

Output f, € F that minimizes
max |(f.-h)- T,

Theorem (DL01):
If-g|,< 3dist,(g,F)+2A

il




Density estimation algorithms

Pick the density with the most wins.

Theorem (DL’01):
If-g|,< 9dist,(g,F)+8A

Can we do better? £

Theorem (DL01):
If-g|,< 3dist,(g,F)+2A




Our algorithm:
Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions in F
that are furthest apart (in L,)
2) eliminate the loser

Theorem [MS’08]:
If-g|,< 3dist,(g,F)+2A

Take the most “discriminative’ action.




Tournament revelation problem
INPUT:

a weighed undirected graph G
(wlog all edge-weights distinct)

OUTPUT:

REPORT: heaviest edge {u,,v,}in G

REPORT: heaviest edge {u,,v,} in G,

OBJECTIVE:

minimize total time spent generating reports




Tournament revelation problem

report the heaviest edge




Tournament revelation problem

report the heaviest edge

BC




Tournament revelation problem

report the heaviest edge

BC

report the heaviest edge




Tournament revelation problem

report the heaviest edge

BC

report the heaviest edge

AD




Tournament revelation problem

report the heaviest edge

BC

@® report the heaviest edge

AD

report the heaviest edge

CD




Tournament revelation problem
BC
/ \
AD BD
DC AC AD AB

29F) preprocessing = O(F) run-time
O(F? log F) preprocessing = O(F?) run-time

WE DO NOT KNOW:
Can get O(F) run-time with
polynomial preprocessing ?7?




Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions that are
furthest apart (inL,)
2) eliminate the loser

29F) preprocessing = O(F) run-time
O(F? log F) preprocessing = O(F?) run-time

WE DO NOT KNOW:
Can get O(F) run-time with
polynomial preprocessing ?7?




Efficient minimum loss-weight

repeat until one distribution left
1) pick the pair of distributions that are
furthest apart (inL,)
2) eliminate the loser

Theorem:
If-g|,< 3dist,(g,F)+2A

Proof: “that guy lost even more badly!”

For every f’ to which f loses

f-F], < max |-,

f’losesto f”’




Proof: “that guy lost even more badly!”

For every f’ to which f loses

f-F], < max ||,

f’ loses to f”’

(Fi-F5) Tyo < (fo-f3) To3
(f4-h) Ty <A
(f-f.)-(Ti-Tw)= 0

bad loss ‘
BEST=f, [fi-9l, < 3|f,-g|,+2A




Application:

kernel density estimates
(Akaike’54,Parzen’62,Rosenblatt’56)

= kernel

h = density kernel used to smooth empirical g
(X4,X5,...,X, I.1.d. samples from h)

n
> Kiy-x)
=1

1]
g*K




What K should we choose?
g*K

n
1 2
— Z K(y-x;)) h* K
n i=1 asS N— ‘

Y

Dirac 6 is not good Dirac 6 would be good
Something in-between: bandwidth selection
for kernel density estimates

K (X)= K(XIS) ass— 0
° S K.(x)— Dirac &




Data splitting methods for
kernel density estimates

How to pick the smoothing factor ?

—Z( )

(n m)s

choose s using
density estimation




Kernels we will use:

s 2 (22)

piecewise uniform

piecewise linear




Bandwidth selection for uniform
CIOER E.g. Nxn'?

N distributions
each is piecewise uniform with n pieces

m datapoints

m ~ n5/4

Goal: run the density estimation algorithm efficiently
MD EMLW




Bandwidth selection for uniform
GO EIR

N distributions
each is piecewise
m datapoints

Goal: run the density estinyation algorithm efficiently
MD EMLW




Bandwidth selection for uniform
GO EIR

N distributions
eachis plece v

Can speed ikl




Approximating L,-distances
between distributions

N piecewise uniform densities (each n pieces)




Dimension reduction for L,
Johnson-Lindenstrauss Lemma (’82) |S|=n

¢: L, — L, t=0(c?Inn)

(V x,y € S)
d(x,y) < d(¢(x),9(y)) < (1+€)d(x,y)

N(0,t/2)




Dimension reduction for L,
Cauchy Random Projection (Indyk’00) |S|=n

o: Ly —> LY t=0(c?In n)

(V x,y € S)
d(x,y) < esi(d(x),(y)) < (1+&)d(x,y)

C(0,1/t)

(Charikar, Brinkman’03 : cannot replace est by d)




Cauchy distribution C(0, 1)
density function:

FACTS:

X~C(0,1)
— aX~C(0,|al)

X~C(0,a), Y~C(0,b)
— X+Y~C(0,a+b)




Cauchy random projection for L,
(Indyk’00)

A 1 B
1 |
X Xy Xy X XX X7 Xg Xg

X,~C(0,2)
- AXFX;) + B(Xs+X X, +Xg)

Zl IZ

Z




Cauchy random projection for L,
(Indyk’00)

A 1 B
1 |
X Xy Xy X XX X7 Xg Xg

X,~C(0,2)
- AXFX;) + B(Xs+X X, +Xg)

Zl IZ

Z

~ Cauchy(0,| - |4




All pairs L,-distances
piece-wise linear densities




All pairs L,-distances
piece-wise linear densities

B=(3/4)X, + (1/4)X,

/

R-B~C(0,1/2)

~ C(0,1/2)




All pairs L,-distances
piece-wise linear densities

Problem: too many intersections!

Solution: cut into even smaller pieces!




Brownian motion

L
— exp(-x"2/2)
(27-5)1/2

Cauchy motion

1
7 (14x)2




Brownian motion

L
— exp(-x"2/2)
(27-5)1/2

computing integrals is easy
f:R—>Rd
JfdL=Y ~N(0,S)




‘ Cauchy motion
1

L 7 (14x)2

computing integrals is easy
f:R—>Rd
JfdL=Y ~ C(0,s) for d=1
computing integrals is hard d>1




1| |
X, X, X3 XoXcXoX, Xg Xo

What were we doing?

J ( ,12,f3) dL = (wy)4,(W3)4,(W3);




1| |
X, X, X3 XoXcXoX, Xg Xo

What were we doing?

J ( ,T2,f3) dL = (wy)4,(W3)4,(W3),

Can we efficiently compute
integrals dL for piecewise linear?




Can we efficiently compute
integrals dL for piecewise linear?

d: R—> R?
d(z2)=(1,z)

(X,Y)=] ¢ dL




d: R—> R?
0(z)=(1,2)

(X,Y)=| ¢ dL

u+v,u-v
2

m + 2i arctanh(v/v/4 + u? — 4iv)
27 (4 + u? — 4iv)3/2

(2(X-Y),2Y) has density at




All pairs L -distances for mixtures of
uniform densities in time

All pairs L,-distances for piecewise
linear densities in time




QUESTIONS

¢: R—> R3
1) 6@2)=(1,2,22) @
(X,Y,2)=] ¢dL °

m((4 + u?)? + 16v?) 2r(d 1 U — 4iv) 3/

2) higher dimensions ?




