Qi Ge Daniel Štefankovič

University of Rochester

counting/sampling independent sets in general graphs:

- polynomial time sampler for $\Delta \le 5$ (Dyer, Greenhill '00, Luby, Vigoda'99, Weitz'06).
- no polynomial time sampler (unless NP=RP) for $\Delta \ge 25$ (Dyer, Frieze, Jerrum '02).
- Glauber dynamics does not mix in polynomial time for **6**-regular **bipartite** graphs (example: union of 6 random matchings) (Dyer, Frieze, Jerrum '02).

Δ = maximum degree of G

counting/sampling independent sets in bipartite graphs:

polynomial time sampler for $\Delta \leq 5$ (Dyer,Greenhill '00, Luby,Vigoda'99, Weitz'06).

no polynomial time sampler (unless NP=RP) for $\Delta \ge 25$ (Dyer, Frieze, Jerrum VZ).

(max idependent set in bipartite graph \Leftrightarrow max matching)

Glauber dynamics does not mix in polynomial time for **6**-regular **bipartite** graphs (example: union of 6 random matchings) (Dyer, Frieze, Jerrum '02).

Δ = maximum degree of G

How hard is counting/sampling independent sets in bipartite graphs?

Why do we care?

* bipartite independent sets

equivalent to

- * enumerating solutions of a linear Datalog program
- * downsets in a poset (Dyer, Goldberg, Greenhill, Jerrum'03)
- * ferromagnetic Ising with mixed external field (Goldberg, Jerrum'07)
- * stable matchings (Chebolu, Goldberg, Martin'10)

Independent sets in a bipartite graph.

0-1 matrices weighted by $(1/2)^{rank}$ (1 allowed at A_{uv} if uv is an edge)

Independent sets in a bipartite graph.

#IS =
$$2^{|V \cup U| - |E|} \sum_{A \le B} 2^{-rk(A)}$$

0-1 matrices weighted by $(1/2)^{rank}$ (1 allowed at A_{uv} if uv is an edge)

Natural MC

flip random entry + Metropolis filter.

A = X_t with random (valid) entry flipped

if rank(A) \leq rank(X_t) then X_{t+1} = A if rank(A) > rank(X_t) then $X_{t+1} = A$ w.p. $\frac{1}{2}$ $X_{t+1} = X_t$ w.p. $\frac{1}{2}$ A different view of independent sets in bipartite graphs

Question:

Is there a polynomial-time sampler that produces matrices A ≤ B with

we conjectured it is mixing

BAD NEWS:

Goldberg, Jerrum'10: the chain is exponentially slow for some graphs.

Our inspiration (Ising model):

Ising model: assignment of spins to sites weighted by the number of neighbors that agree

Random cluster model: subgraphs weighted by the number of components and the number of edges

High temperature expansion: even subgraphs weighted by the number of edges

Random cluster model

$$Z(G,q,\mu) = \sum_{S \subseteq E} q^{\kappa(S)} \mu^{|S|}$$

number of connected components of (G,S)

(Tutte polynomial)
Ising model
Potts model
chromatic polynomial
Flow polynomial

Random cluster model

$$Z(G,q,\mu) = \sum_{S \subseteq E} q^{\kappa(S)} \mu^{|S|}$$

number of connected components of (G,S)

(Tutte polynomial)
Ising model
Potts model
chromatic polynomial
Flow polynomial

R₂ model

$$\mathbf{R_2(G,q,\mu)} = \sum_{S \subseteq E} \mathbf{q}^{\mathsf{rk_2(S)}} \mu^{|S|}$$

rank (over F₂) of the adjacency matrix of (G,S)

Matchings
Perfect matchings

Independent sets (for bipartite only!)

More?

Complexity of exact evaluation

Jaeger, Vertigan, Welsh '90

easy if
$$(x-1)(y-1)=1$$
, or $(1,1),(-1,-1),(0,-1),(-1,0)$

#P-hard elsewhere

Ge, Štefankovič '09

easy if
$$q \in \{0,1\}$$

or $\mu=0$, or $(1/2,-1)$
#P-hard elsewhere (GRH)

$$2^{|E|} \ \#BIS = \sum_{U \to \{0,1\}} \sum_{V \to \{0,1\}} \prod_{\{u,v\} \in E} (1 - \chi(\sigma(u), \sigma(v)))$$

where

$$\chi(1,1) = 1$$

 $\chi(0,1) = \chi(1,0) = \chi(0,0) = -1$

$$2^{|E|} \ \#BIS = \sum_{U \to \{0,1\}} \sum_{V \to \{0,1\}} \prod_{\{u,v\} \in E} (1 - \chi(\sigma(u), \sigma(v)))$$

where

$$\chi(1,1) = 1$$

 $\chi(0,1) = \chi(1,0) = \chi(0,0) = -1$

$$=\sum_{S\subseteq E} (-1)^{|S|} \sum_{U\to \{0,1\}} \sum_{V\to \{0,1\}} \prod_{\{u,v\}\in S} \chi(\sigma(u),\sigma(v))$$

$$2^{|E|} \#BIS = \sum_{U \to \{0,1\}} \sum_{V \to \{0,1\}} \prod_{\{u,v\} \in E} (1-\chi(\sigma(u),\sigma(v)))$$

where

$$\chi(1,1) = 1$$

 $\chi(0,1) = \chi(1,0) = \chi(0,0) = -1$

$$=\sum_{S\subseteq E} (-1)^{|S|} \sum_{U\to \{0,1\}} \sum_{V\to \{0,1\}} \prod_{\{u,v\}\in S} \chi(\sigma(u),\sigma(v))$$

$$2^{|E|} \#BIS =$$

$$= \sum_{S \subseteq E} (-1)^{|S|} \sum_{U \to \{0,1\}} \sum_{V \to \{0,1\}} \prod_{\{u,v\} \in S} \chi(\sigma(u), \sigma(v))$$

=
$$2|V|\sum_{S\subseteq E}$$
 number of u such that $u^TA = 0 \pmod{2}$

bipartite adjacency matrix of (U∪V,S)

$$= 2|V|+|U|\sum_{S\subseteq E}^{\uparrow} 2^{-\operatorname{rank}_{2}(A)}$$

"high-temperature expansion" - curious

$$f(A,\lambda) = \sum_{\lambda} \lambda^{|\nu|_1} \left(\frac{1-\lambda}{1+\lambda} \right)^{|A\nu|_1}$$

$$f(A,1) = 2^{rank_2(A)}$$

$$f(A,1) = f(A^{T},1)$$

But in fact:

$$f(A,\lambda) = f(A^T,\lambda)$$

Questions:

Is there a polynomial-time sampler that produces matrices $A \le B$ with $P(A) \propto 2^{-rank(A)}$?

$$R_2(G,q,\mu) = \sum_{S \subseteq E} q^{rk_2(S)} \mu^{|S|}$$

What other quantities does the R₂ polynomial encode ?