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Adaptive 2amaald ; -optimal

If you want to count
using MCMC then
statistical physics
Is useful.

(Georgia Tech)
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independent sets
spanning trees
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perfect matchings

k-colorings
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Compute the number of

spanning trees o




Compute the number of

spanning trees o

Kirchhoff’s Matrix Tree Theorem: det(D — A)vv
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Compute the number of

spanning trees o

polynomial-time
algorithm

number of spanning trees of G




Counting

independent sets
spanning trees
matchings
perfect matchings

k-colorings




Compute the number of

independent sets
(hard-core gas model)

independentset _  subset S of vertices,

of a graph no two in S are neighbors




# independent sets =7
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independent set = subset S of vertices
no two in S are neighbors
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# independent sets = 5598861

independent set = subset S of vertices
no two in S are neighbors




Compute the number of

independent sets O

polynomial-time
algorithm

number of independent sets of G




Compute the number of

independent sets O

number of independent sets of G




graph G — # independent sets in G

¢ ®

#P-complete .@

#P-complete even for 3-regular graphs

(Dyer, Greenhill, 1997)




graph G — # independent sets in G

¥

approximation

randomization




graph G — # independent sets in G

¥

which is

zle]o]ged [ F-1{[e]a MM more important?

randomization




etsinG

~ My world-view:

(true) randomness is important
conceptually but NOT computationally
(i.e., | believe P=BPP).

approximation makes problems
easier (i.e., | believe #P#BPP)

important?




We would like to know Q

Goal: random variable Y such that

P((1-c)Q <Y <(1+2)Q)>1-5

“Y gives (1+e)-estimate”




We would like to know Q

Goal: random variable Y such that

P((1-c)Q <Y <(1+2)Q)>1-5

I polynomial-time R Y
G’S’S algorithm
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We would like to know Q

1. Get an unbiased estimator X, . e.,

E[X] =Q

2. “Boost the quality” of X:

X, + X, + ...+ X
N

n




The Bienaymé-Chebyshev inequalit

We would like to know Q

Goal: random variable Y such that

P( (1 -S)Q <Y< (1 +8)Q ) >1-5

“Y gives (1+¢)-estimate”

P(Y gives (1+c)-estimate )

viy] 1
E[Y]? &2

>1 -




The Bienaymé-Chebyshev inequalit

We would like to know Q

Goal: random variable Y such that

P((1-€)Q<Y<(1+£)Q) > 1-6

“Y gives (1+¢)-estimate”

P(Y gives (1+c)-estimate )

viY] 1
E[Y]? &2

>1 -

VIY] VIX]
E[Y]? E[X]?

—




The Bienayme-Chebyshev inequality

Let X,,...,X,,X be independent, identically
distributed random variables,
Q=E[X]. Let

X, + X, + ...+ X
n

n

Y=

Then
P(Y gives (1tc)-estimate of Q)

VIX] 1

n E[X]? &

>1 -




Chernoff’s bound

Let X,,...,X,,X be independent, identically
distributed random variables, 0 < X <1,
Q=E[X]. Let

X, + X, + ...+ X
n

n

Y=

Then
P(Y gives (1tc)-estimate of Q)

oq_ o-.n.E[X]/3




The Bienaymé-Chebyshev inequality

Let X,,...,X ,X be independent, identically
distributed random variables,
Q=E[X]. Let

X, + X, + ... + X
n

]

Y=

Then

P(Y gives (1+c)-estimate of Q)
q. VX1 Chernoff’s bound

n E[X]? &

Let X,,...,X ,X be independent, identicall
distributed random variables, 0 <X <1,
Q=E[X]. Let

X, + X, + ... + X
n

]

Y=

Then
P(Y gives (1+c)-estimate of Q)

_ o2
Lq1_ o-2-n.E[X]/3




1 3
E[X] &2

In (1/5)







Median “boosting trick”

1 4 X, X, ...+ X

E[X] ¢ n

BY BIENAYME-CHEBYSHEV:

P(oc ) > 3/4

(1-¢)Q (1+c)Q

|
O |
Y




Median trick — repeat 2T times
(1-¢)Q (1+2)Q
0—0—0 010000000

BY BIENAYME-CHEBYSHEV:

P(oc ) > 3/4

N
o > T out of 2T )>1_e'T/4
o-0—0 B

U
P median is in) > 1 - e'T/4
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Creating “approximator” from X
£ = precision
o = confidence
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(approx) counting < sampling
Valleau,Card’72 (physical chemistry), Babai’79 (for matchings and
colorings), Jerrum,Valiant,V.Vazirani’86

the outcome of the JVV reduction:
random variables: X X Xt

such that
1) E[X; X, ... X,] = “WANTED"

2) the X are easy to estimate
V[X]

E[X])%

=0(1)




(approx) counting < sampling
1) E[X, X, ... X,] = “WANTED"

2) the X are easy to estimate
VIX]

=0(1)

E[X;]?
Theorem (Dyer-Frieze’91)

O (t2/82) samples (O(t/e?) from each X))

give
1+e estimator of “WANTED” with prob>3/4




JVV for independent sets

GOAL: given a graph G, estimate the
number of independent sets of G

<

# independent sets =

P P)




JVV for independent sets  P(ATBI=P(A)P(BIA)

V[X]
E[X ]2

X. €[0,1] and E[X]>"> =




JVV for indeppnnlnn'l' cote P(A~B)=P(A)P(B|A)

(approx) counting < sampling
Valleau,Card’72 (physical chemistry), Babai’79 (for matchings and
colorings), Jerrum,Valiant,V.Vazirani’86

|the outcome of the JVV reduction:

random variables: X1 X2 Xt
such that

1) E[X; X, ... X,] = “WANTED”

2
P ‘.e F 2) the X; are easy to estiws’(cs :))
0 =0(1)

E[X]?
X. X,
V[Xi]

X. €[0,1] and E[X]>"> = E[Xi]2= O(1)




Self-reducibility for independent sets

P() C@Q
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Self-reducibility for independent sets




Self-reducibility for independent sets
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Self-reducibility for independent sets
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Self-reducibility for independent sets




Self-reducibility for independent sets




we have a sampler oracle:

random

SAMPLER - independent
ORACLE setof G

FPRAS using O(n?) samples.




we have a sampler oracle:

random

SAMPLER - independent
ORACLE setof G

FPRAS using O(n?) samples.

we have a sampler oracle:

SAMPLER set from

ORACLE " gas-model
Gibbs at

FPRAS using O"(n) samples.




Application — independent sets

O*( |V| ) samples suffice for counting

Cost per sample (Vigoda’01,Dyer-Greenhill’01
time = O’(|V|) for graphs of degree < 4.

Total running time:
O™ (IVI?).




Other applications

matchings O*(n%m)
(using Jerrum, Sinclair’89)

spin systems:

Ising model 0*(n?) for B<P,
(using Marinelli, Olivieri’95)

k-colorings 0*(n?) for k>2A
(using Jerrum’95)

total running time
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Big set=Q

Hamiltonian
H:Q - {0,...,n}

Goal: estimate |H-1(0)|

[H(0)| = E[X,] ... E[X;]




Distributions between and

inverse temperature

p=
=0 = = uniform on Q
B=o =

= uniform on H-1(0)
tg (x) o< exp(-H(x)p)

(Gibbs distributions)




Distributions between and

1y (x) o exp(-H()P)
| exp(-H(x)B)

tg (%) =
: Z(p)
Normalizing factor = partition function

Z(B)= 2. exp(-H(x)p)




Partition function

Z(B)= 2 exp(-H(x)p)

Xe()




Partition function - example

Z(P)= 2 exp(-H(x)B)

Xe()




we have a sampler oracle for
_ exp(-H(x)p)
pg (X) = Z(B)

graph G SAMPLER ~ SubsetotV
3 fl ORACLE from p,




we have a sampler oracle for
_ exp(-H(x)p)
pg (X) = Z(B)




we have a sampler oracle for

g (X) = exp(-H(x)B)

A(S)
W~ g~ X =exp(H(W)(p - a)




we have a sampler oracle for
_ exp(-H(x)p)
pg (X) = Z(B)

W~ pg— X =exp(H(W)(B - a)
can obtain the following ratio:

Z(o)

Se() Z(ﬁ)

E[X]= 2. py(s) X(s) =




Our goal restated

Partition function

Z(B) = 2 exp(-H(x)B)

Xe()

Goal: estimate

Z(B,) Z(B)  Z(B)
Z(B) Z(B)  Z(Be)

Bo=0<PBy<P,r<..<P=w




Our goal restated

Z(B4) Z(P2) Z(By)
Z(Bo) Z(By)  Z(Prs)
Cooling schedule:
Bo=0<PBy<Py<..<P=w

How to choose the cooling schedule?

minimize length, while satisfying
VIX] Z(;)

~0(1)  E[X] =
E[X,)? Z(B;4)




Our goal restated
— Z(B,) Z(R.) Z(R.\

Z(ﬁo) . we have a sampler oracle for i,

_ exp(-H(x)B)
Cooling schedule: g (X) = yA(3)

Bo=0<pBy <W-~ s~ X=exp(HW)({p - a)
can obtain the following ratio:

How to choose the Z(c)
E[X]= 2 uy(s) X(s) =

minimize leng %(B)U
V[X. Z(B:
[X] 0()  EX] = (B:)

E[X;]? Z(Bi4)




Outline

1. Counting problems
2. Basic tools: Chernoff, Chebyshev

3. Dealing with large quantities
(the product method)

4. Statistical physics

5. Cooling schedules (our work)

6. More...




Parameters: and N

Z(P) = 2 exp(-H(x)p)

Xe()

£(0) =

H:Q — {0,...,n}

n
Z(B)= ) aeP
k=0 a, = [H(K)|




Parameters

VA H:QQ > {0,...,n}

independent sets 2V

matchings ~ V!

perfect matchings V!

k-colorings kV




- : ®

A &\ Al

matchings = # ways of marrying them so that no
unhappy couple




|, |

A &\ Al

matchings = # ways of marrying them so that no
unhappy couple




Hamiltonian

|, |

A &\ A B

matchings = # ways of marrying them so that no
unhappy couple




|, |

oW -

marry ignoring “compatibility”
hamiltonian = number of unhappy couples




Parameters

VA H:QQ > {0,...,n}

independent sets 2V

matchings ~ V!

perfect matchings V!

k-colorings kV




Previous cooling schedules

VA H:QQ > {0,...,n}

B0=0<B1<Bz<...<Bt=oo
“Safe steps”
B—pB+1/n . )
B f 1+ A) Voo vaaianion
In A >
Cooling schedules of length

O(ninA)

(Bezakova,Stefankovic,
O( (ln n) (ln A) ) Vigoda,V.Vazirani’06)




. . Our goal restated
Previous cooling ¢ 2 ()= 202200 200

Z(Bo) Z(B1)  Z(Bea)

Z(O) — '- Cooling schedule:

Bo=0<P<Py<..<Pi=0

L How to choose the cooling schedule?
Bo=0<Py<P

minimize length, while satisfying

VI[X, Z([;
“Safe steps” o) E[X] = )
E[X]? Z(p..)

B—p+1/n . :
BB (1+1nA) S vamranton
In A >

Cooling schedules of length

O(ninA)

(Bezakova,Stefankovit,
O( ('n n) (ln A) ) Vigoda,V.Vazirani’06)




“Safe steps”
B_)B-I-“n (Bezakova,Stefankovic
ezakova,Stefankovic,
B — B (1 + 1/ A) Vigoda,V.Vazirani’06)

In A >

W~ g~ X =exp(H(W)(p - a)

n

Z(B) = Zak ek

k=0 1le <X <1

VIX] 1
E[X]? = E[X]

<e




“Safe steps”
B_)B-I-“n (Bezakova,Stefankovic
ezakova,Stefankovic,
B — B (1 + 1I|n A) Vigoda,V.Vazirani’06)

In A > o

W~ g~ X = exp(R(W)(B - o)

VAN a, ebKk
Z ‘ Z(o)=ay> 1

A Z(In A) < a, + 1

E[X] >1/2




“Safe steps”
B_)B-I-“n (Bezakova,Stefankovic
ezakova,Stefankovic,
B — B (1 + 1I|n A) Vigoda,V.Vazirani’06)

In A >

W~ g~ X = exp(R(W)(B - o)

Z(B) = Zak ek

k=0
E[X] >1/2e




Previous cooling schedules

Our goal restated
Z(,) Z(B, Z(B,
Z(oo)= (B Z(B.)  Z(BY
Z(Bo) Z(B4) Z(Br4)
1/n, 2/In, 3/n, ...., (In A)In, .... , IN A Cooling schedule:
Bo=0<P<P,<..<P=c

How to choose the cooling schedule?

minimize length, while satisfying

V[X Z@B,
XD oy epeg = 290

“Safe steps” e )

B—pB+1/n . )
BB (1+1nA)  ECE vamranton
In A >

Cooling schedules of length

O(ninA)

(Bezakova,Stefankovit,
O( (ll‘l n) (ln A) ) Vigoda,V.Vazirani’06)




No better fixed schedule possible

VA H:QQ > {0,...,n}

THEOREM:
A schedule that works for all

Z.(P) =

(with a<[0,A-1])

has LENGTH > Q( (In n)(In A) )

ﬁ+aéﬁn)

1+a




Parameters

Z(0)=A  H:Q—{0,...,n)

Our main result:

can get adaptive schedule

of length O” ( (In A)'2)

Previously:

non-adaptive schedules
of length Q' (InA)




Related work

can get adaptive schedule
of length O™ ( (In A)1/2)

Lovasz-Vempala
Volume of convex bodies in O(n%)
schedule of length O(n'/?)

(non-adaptive cooling schedule, using specific properties
of the “volume” partition functions)




Existential part

Lemma:

for every partition function there exists
a cooling schedule of length O ((In A)'?2)

can get

nere o

aagaptive schedule
of length O” ( (In A)'2)




Cooling schedule (definition refresh)

Z(B4) Z(P2) Z(By)
Z(Bo) Z(By)  Z(Prs)
Cooling schedule:
Bo=0<PBy<Py<..<P=w

How to choose the cooling schedule?

minimize length, while satisfying
V[X. Z(;
[X:] _0(1)) EX] = (Bi)

E[X])2 Z(Bi1)




Express SCV using partition function
VALY
Z(P)

(going from ftoa) E[X]=

W~ g~ X = exp(R(W)(B - o)

EX) | 2(20-B)Z() _
E[X]2 Z(01)2 )

VIX] |
E[X]?

1




EDX) | 2(20-B)Z(B) _
E[X)? ()

p o 2ob f(y)=In Z(y)

o
araph ot (F(20-p) + F(3))/2 <
(In C)/2 + f(a)




Properties of partition functions

f is decreasing
f(~)=ln Z fis convex
(v) (v) oo
f(0)<In A




Properties of partition functions
f is decreasing

f(y)=|n Z(y) fis convex
£(0) > -n
f(0)<In A

f = | Pk n
(B)=1In kz=:0 ay € _Z ke
PB) =%

> ayen




GOAL: proving Lemma: fis decreasing

for every partition function there exists .
a cooling schedule of length O*((In A)"2) fis convex

£(0) > -n
f(y)=In Z(y) £(0) < In A

N either for f

changes a lot

0.4+

1' Let K:=Af
Then
1

o A(In |FP]) >—
(In[F)) =—2

0.2+

e 1 2 3 4 5 3 7



Let K:=Af
Then

1
A(In |f]) >
(In[F)) =—2

c :=(a+b)/2, A :=b-a
have f(c) = (f(a)+f(b))/2 - 1

| (f(a) - f(c)) IA <P (a)
fis convex mmp (f(c) - f(b)) /A > f(b)




Let K:=Af
Then

A(In |f]) >

c :=(a+b)/2, A :=b-a
have f(c) = (f(a)+f(b))/2 - 1

| (f(a) - f(c)) /A < F(a)
fis convex =) (f(c) — (b)) /A > P (b)




f:[a,b] > R, convex, decreasing
can be “approximated” using

P(a)
7oy (f(@)-(b)

segments




Technicality: getting to 2a-3

ZOL-B

Express SCV using partition function
Z(o)
Z(B)

W~ pg— X = exp(H(W)(B - o)

EX] _ Z(20-B)Z(B) _
E[X]? Z(?

(goingfrompBtoa) E[X]=

V[X]

ez




Technicality: getting to 20-




Technicality: getting to 20-




Technicality: getting to 20-




Existential —» Algorithmic

can get aagaptive schedule
of length O” ( (In A)'2)

|

can get adaptive schedule
of length O” ( (In A)'2)




Algorithmic construction

Our main result:
using a sampler oracle for

pg (X) =

exp(-H(x)P)
Z(B)

we can construct a cooling schedule of length

<38 (In A)"2(In In A)(In n)

Total number of oracle calls

<107 (In A) (In In A+In n)’ In (1/3)




Algorithmic construction

current inverse temperature

ideally move to a such that

2 Z
E[X?) .8, EIX] = ()

E[X]? Z(B)




Algorithmic construction

current inverse temperature

ideally move to a such that

E[X?] yA(oY

E[X] =
E[X]? Z(B)

X is “easy to estimate”




Algorithmic construction

current inverse temperature

ideally move to a such that
Z(o)
Z(pB)

E[X] =

we make progress (where B,>1)




Algorithmic construction

current inverse temperature

ideally move to a such that

E[X?] yA(oY

<B E[X] =
E[X]? =52 Z(p)

Y

need to construct a “feeler” for this




Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

<B, E[X] =
E[X]? yA(S)
S Z(B) Z(2B-a)

Z(a)  Z(a)

need to construct a “feeler” for this




Algorithmic construction

current inverse temperature 3

ideally move to a such that

E[X?] yA(v)

<B, E[X] =
E[X]? yA(S)
S Z(B) Z(2B-a)

Z(a)  Z(a)

need to construct a “feeler” for this




estimator for Z®
Z(a)

n

Z(p)= ) aeP

k=0
For W ~ ji; we have P(H(W)=k) =

a, ePk

4(5)




estimator for 2
Z(a)
If H(X)=K likely at both o, B = estimator
n

Z(B) = Zak ek

a, ebk
Z(p)
ak e k
VALY

For W ~ i, we have P(H(W)=k) =

For U~ we have P(H(U)=k) =




estimator for 2V
Z(a)
If H(X)=K likely at both o, B = estimator

CVIX] 11
- E[X]2 & &

Number of samples to achieve precision € with confidence 6.

For W~ pi;w

ne — 4+ 3 1n @)

E[X] ¢’

ForU~p w
0<X<1




estimator for #?
Z(a)

a, ePk
Z(B)
a, ek
VALY

For W ~ i, we have P(H(W)=k) =

For U~ we have P(H(U)=k) =

PHU)=k) . Z0)
P(H(W)=k) Z(o)




estimator for #?
Z(a)

a, ePk

Z(p)
a, ek
Z(a)

For W ~ i, we have P(H(W)=k) =

For U~ we have P(H(U)=k) =

PHU)=k) . Z0)
P(H(W)=k) Z(o)

PROBLEM: P(H(W)=k) can be too smalli




Rough estimator for 2
Z(a)

n

Z(B) = Zak ebk

k=0

For W~ i, we have
P(H(W)e )

For U ~p_ we have
P(HW)elc.dl)




Rough estimator for 2
Z(a)

If |a-B|- |[d-c| < 1 then
1.20) _ P(HW)ele,d]) qoup . , 2P
e 7  P(HW)<[c,d]) °Z@)




We will:

Split {0,1,...,n}into h <4(In n)\In A
intervals

[01,[11,[2],....[c,c(1+1NIn A)],...

for any inverse temperature 3 there
exists a interval with P(H(W)< |) > 1/8h

We say that | is HEAVY for




We will: Rough estimator for Z®

Z(a)
[Fla=p| [d-c| <1 then
Sp'lt {0,1 ,...,n} in 120 _ PHWU)cle.d]) ocup

. e z() P(H(W)e[c,d])
intervals

[O]a[1]3[2]a’[( d

Z ak e-(l k
k=c

d
> a, e-B (k-c)
k=c

k=c

for any inverse temperature 3 there
exists a interval with P(H(W)< |) > 1/8h

We say that | is HEAVY for




Algorithm

repeat

find an interval | which is heavy for
the current inverse temperature 3

see how far | is heavy (until some [37)

Z(B) Z(2p-a)

use the interval | for the feeler

Z(a)  Z(a)

ANALYSIS:
either
* make progress, or
* eliminate the interval |
* or make a “long move”




Algorithm

repeat

find an interval | which is heavy for
the current inverse temperature 3

see how far | is heavy (until some (%)
Z(3) Z(2p-a)
Z(a) Z(o)

use the interval | for the feeler

distribution of h(X) where X~

| = a heavy interval at




Algorithm

repeat

lis NOT find an interval | which is heavy for
heavy the current inverse temperature 3

see how far | is heavy (until some (%)
Z(3) Z(2p-a)
Z(a) Z(o)

O—
b

use the interval | for the feeler

of h(X) where X~p.,

no longer '
heavy aty e

| = a heavy interval at




Algorithm

repeat

lis NOT find an interval | which is heavy for
heavy the current inverse temperature 3

O—
b

see how far | is heavy (until some (%)
Z(3) Z(2p-a)
Z(a) Z(o)

use the interval | for the feeler

distribution of h(X) where X~..

heavy aty’

| = a heavy interval at




Algorithm

repeat

lis lis NOT find an interval | which is heavy for
heavy heavy the current inverse temperature

see how far | is heavy (until some (%)
Y Z(3) Z(2p-a)

use the interval | for the feeler
Z(a) Z(a)

+1/(2
lils3N:T ( n) I=[a,b]

heavy

use binary search to find B’

a = min{1/(b-a), In A}




Algorithm

repeat

lis lis NOT find an interval | which is heavy for
heavy heavy the current inverse temperature

see how far | is heavy (until some (%)
Y Z(3) Z(2p-a)

use the interval | for the feeler
Z(a) Z(a)

+1/(2
lils3N:T ( n) I=[a,b]

heavy

use binary search to find B’
o = min{1/(b-a), In A}




lis NOT lis lis lis NOT
heavy heavy heavy heavy

Lemma: the set of temperatures for which |
IS h-heavy is an interval.

| is h-heavy at p 4@ P(h(X)< 1) > 1/8h for X~




=

Descarte’s rule of signs:

CoXP+c xT+c,x2+....+c X"

w number of < number of

sigh change positive roots — Sign changes




1 +XEX2EXS+E, . +X"
1+x+x20

Descarte’s rule of signs:

CoXP+c xT+c,x2+....+c X"

w number of < number of

sigh change positive roots — Sign changes




=

Descarte’s rule of signs:

CoXP+c xT+c,x2+....+c X"

w number of < number of

sigh change positive roots — Sign changes




Algorithm

repeat

find an interval | which is heavy for

the current inverse temperature 3 &

see how far | is heavy (until some (%) ki

Z(B) Z(2p-a)

use the interval | for the feeler

B"+1/(2n)

lis NOT Rough estimator for Z*
heavy Z(a)

Z2(@) Z(o)

If =B [d-c| < 1 then

1.20) _ PHU)cle,d]) oo
can roughly s 20 S PRWoa) = =

compute ratio of
Z(oc)/Z(oc’)

d d
>.a, ek Y a, e ko)

fOl‘ (O = [B B ] k=c aclop) = _K=C

d d
> a, ebk Y a, eB ko




1. success

2. eliminate interval
*

. 3. long move

lis NOT
heavy

find largest o such that can roughly
Z(B) 2Z(2p-0) c compute ratio of
<

Z(o)lZ(a’)
Z(a) Z(a) for o, a’e [B,B]
if |a-a|.|b-al< 1




input : A black-box sampler for X' ~ pg for any 5 = 0, starting inverse temperature .
output: A cooling schedule for Z.

Bad — ()
print
if Jy < In A then
I —FIND-HEAVY( 5y, Bad)
w «— the width of T
L +— min{5F + 1/w,In A}; (where 1,/0 = oc)
#* «— binary search on 3* & |7y, L] with precision 1/(2n), using predicate
Is-HEAVY(3*, 1)
7 «— binary search on 3 € [y, (5* 4+ ) /2] with precision 1/(4n),
using predicate EST(I, 5y, 3)-EST(I,253 — fg, 3) < 2000
if 3 < (5" + 4)/2 then

PRINT-COOLING-SCHEDULE( 7) (optimal move)
else
if =L then
PRINT-COOLING-SCHEDULE(/?) (long move)
else

v+ (8% — Po)/2
print 5o + 7y, o + (3/2)7, Bo+ (7/4)7, ..., fo+ (2 — 27 Mmindly,
Bad — Bad U T
PRINT-COOLING-SCHEDULE(5") (interval move)
end
end

else
print oo
end




if we have sampler oracles for
then we can get adaptive schedule
of length t=0" ( (In A)"2)

independent sets  O7(n?)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems:
Ising model O’(n?) for B<P.
(using Marinelli, Olivieri’95)
k-colorings 0O"(n?) for k>2A
(using Jerrum’95)




Outline

1. Counting problems
2. Basic tools: Chernoff, Chebyshev

3. Dealing with large quantities
(the product method)

4. Statistical physics

5. Cooling schedules (our work)

6. More...




Outline
6. More...

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts




Appendix — proof of:
1) E[X; X, ... X{] = “WANTED”

2) the X. are easy to estimate
VIX]

= 0(1)

E[X])%

Theorem (Dyer-Frieze’91)

O (t2I 82) samples (O(t/s?) from each X))

give
1+e estimator of “WANTED” with prob>3/4




How precise do the X, have to be?

First attempt — term by term
Main idea:

c c e c
() (AE-D)(AE=5)... (15 -0) = 12

1
< In (1/5))

each term Q (t?) samples = Q (t3) total




How precise do the X, have to be?

Analyzing SCV is better
(Dyer-Frieze’1991)

X=X, X, ... X,

GOAL: SCV(X) < £2/4

P( X gives (1tc)-estimate )

vix] . 1
E[X]°/ &2

>1 -




How precise do the X, have to be?

Analyzing SCV is better
(Dyer-Frieze’1991)

Main idea:

c%/4

SCV(X)) <—— = SCV(X) g ¥4

proof:
SCV(X) = (1+SCV(X,)) ... (1+SCV(X,)) - 1

VI[X] E[X?]
SCV(X)=—gnr = Epaz !




i X, X, independent = E[X, X,] = E[X,]E[X,]

Analy X,, X, independent = X,2,X,2 independent

(D
X,,X, independent =
Main idea SCV(X1X2)=(1+SCV(X,))(1+SCV(X,))-1

proof:
SCV(X) = (1+SCV(X,)) ... (1+SCV(X,)) - 1

V([X] E[X?]
SCV(X)= EIX]? = EDX?

-1




How precise do the X, have to be?

Analyzing SCV is better
(Dyer-Frieze’1991)

Main idea:

X=X, X,...X

c%/4

SCV(X) <=

— SCV(X) < /4

each term O(t /¢?) samples = O(t?%/¢?) total




Outline
6. More...

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts




Hamiltonian
<> 4

Q2
@O

CLE




Hamiltonian - many possibilities

Q<
ORI X

LD

(hardcore lattice gas model)




What would be a natural hamiltonian
for planar graphs?




What would be a natural hamiltonian
for planar graphs?

H(G) = number of edges

natural MC

pick u,v uniformly at random

try G - {u,v}

1/(1y
} try G + {u,v}

M (1




1/(1+1)

M(1+1)

natural MC

pick u,v uniformly at random

try G - {u,v}

1/(1+1)




1/(1+1)

M(1+1)

R(G) ocC }Lnumber of edges

satisfies the detailed balance condition

©(G) P(G,G’) = =n(G’) P(G’,G)

(% = exp(-p))




Outline
6. More...

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts
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Mixing time:
T = Smallestt such that
|- lrys1le

S Ty S

In (1/n

min)

(discrepancy may be substantially bigger for, e.g., matchings




Mixing time:
T = smallest t such that
| -7 lry<1le

Estimating n(S)

mix

METHOD 1
x1

0 otherwise X,
E[Y]=n(S) X3
X

S




Mixing time:
T = smallest t such that
| -7 lry<1le

Estimating n(S)

mix

METHOD 1
x1

0 otherwise X,
E[Y]=n(S) X3
X

METHOD 2

(Gillman’98, Kahale’96, ...)

S

X

S




Mixing time:
Ty = Smallest t such that
| -7 lry<1le

Further speed-up

- 7 ry < €xp(-tic,g) Var (1))

(2 m(x)(uo(x)ix(x)-1)2) 12

small = called warm start

METHOD 2

(Gillman’98, Kahale’96, ...)




sample at 3 can be used as a
warm start for 3’

N

Further speed-up

cooling schedule can step
from B’ to (3

g - 7 ry < exp(-tit.q) Var, (1o/m)

(2 m(x)(uo(x)ix(x)-1)2) 12

small = called warm start

METHOD 2

(Gillman’98, Kahale’96, ...)




evious cooling schedules
sample at 3 can be used as a 9

warm startfor Z(0) = H:Q - {0,...,n}
e Bo=0<P <P,y<...<P=c0

“Safe steps”

cooling schedule can step 8 5B+ 1in

(Bezakova,Stefankovic,

from B "to B B—>B(+1/nA) Vigoda,V.Vazirani’06)
InA > wx
Cooling schedules of length

O(ninA)
m=0( (|n n)(|n A) ) 0( (In n) (In A)) (Bezakova,Stefankovié,

Vigoda,V.Vazirani’06)

Bo

O = “well mixed” states




= “well mixed” states

run the our cooling-schedule
algorithm with METHOD 2
using “well mixed” states

as starting points

METHOD 2

XK — X,




k=0"( (In A)'2)

Output of our algorithm:

Bo B+ Bk
@ O @

sample from current 3 as a warm start at next)

l small augmentation (so that we can use
still O”( (In A)1/2)

Bo

Use analogue of Frieze-Dyer for independent samples
from vector variables with slightly dependent coordinates.




if we have sampler oracles for
then we can get adaptive schedule
of length t=0" ( (In A)"2)

independent sets  O7(n?)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems:
Ising model O’(n?) for B<P.
(using Marinelli, Olivieri’95)
k-colorings 0O"(n?) for k>2A
(using Jerrum’95)




