CSC 282

Heaps,
heapsort

Daniel Stefankovic,
Girts Folkmanis



Insertion / Merge / Heapsort

* [nsertion sort:
- O(n?)
- Sorts in place.
* Merge sort:
- O(n Ig n)
- Needs O(n) extra space.
* Heap sort:
- O(n Ig n)
- Sorts in place!
- In practice usually slower than Quicksort.
- Not a stable sort.




Heaps, huh?

* Heap - data structure used in heapsort.

* Different concept that in memory
management.

* Useful for priority queues as well.

* Heap (almost always) is a “nearly”
complete binary tree —gets filled on all
levels, except on lowest. Then —from left
to right.

* Each node in the tree contains a value.



Heaps!

* Nodes of heaps satisfy heap property.
* Max-heap property:

- For every node i:

A[PARENT ()] >= A[i]

- Root - largest.
* Min- heap property:

- For every node i:

- A[PARENT(i)] <= A[i]

- Root —smallest.
* We will use max- heaps.

* Example.




Implementing a heap

* Storage —array, with the following
iIndexing:
- PARENT(i) = floor(i/ 2)
- LEFT- CHILD(1) = 2 * |
- RIGHT-CHILD()= 2 *i+ 1
- Quick to calculate (by shifting).
* Example.




Height of a heap

* Height of a node —number of edges on
the longest downward path to a leaf.

* Height of the heap — height of root node.

e Height = ©(g n), where n —number of

elements

* We will use heap-size[A] <= length[A] In
our algorithms.




Our building blocks

* MAX- HEAPIFY(A, 1) —fix anode i In heap
A by “floating down” the value — O(Ig n)

e BUILD- MAX- HEAP(A) — produces max-
heap from unordered array — O(n)

* HEAPSORT(A) —sorts array In place — O(n

g n)



MAX- HEAPIFY (A, i)

* A —possibly “broken” heap, 1 - index.

e Assumption: children LEFT(i) and
RIGHT (1) are max- heaps, A[i] might be
smaller.

e Goal: “float down” the value at A[i] to it's
correct place down to heap- size[A].

* |[dea: determine the largest of AJi],
A[LEFT ()], A[RIGHT(1)]. If that is not A[i],
swap, and recurse.

* Running time O(Ig n). Example.



BUILD- MAX- HEAP(A)

* Goal: convert an array into a max- heap.
* |dea: “float up” values that are in wrong
places.
e BUILD- MAX- HEAP(A):

heap- size[A] = length[A]

FOR | = floor(length[A]/2) DOWNTO 1

MAX- HEAPIFY (A, 1)
* Example.
* Running time: O(n), using clever
summation (see the book for details).




HEAPSORT (A)

* BUILD- MAX- HEAP(A)

FOR 1 = length[A] DOWNTO 2
Exchange A[l] <-> Ali]
heap- size[A] = heap-size[A] - 1
MAX- HEAPIFY(A, 1)

* |[dea: build a max- heap, pull out the top
element, replace with last, re-run heapify,
repeat. Example.

* Running time: O(n) + n-1* O(lg n) = O(n
g n)



Priority queues

* Priority queue —set Sof elements, each
associated with a key.
* Max- priority-queue:
- INSERT (S, x)
- MAX(S)
- EXTRACT- MAX(S)
* Example: scheduling jobs.




Priority queue implementation

* MAX(A): return A[1]
* EXTRACT- MAX(A):
- ldea: remember the root, move't

he last

element to first, shrink the heap by 1, heapify.

- O(lg n)
* INSERT (A, X):

- ldea: increase heap, add the element as last,

move A[i] up while A[i] > A[PAR

=ENT(1)]



