

Listening. Learning. Leading.®

1. Introduction

- Spoken language proficiency tasks eliciting *spontaneous* speech are necessary for valid scores
- Automated scoring systems have focused on pronunciation, prosody, and fluency
- *Prompt-based* materials can be used to score content

2. Prompt-based Materials

- Listening passage (L): recorded lecture or dialogue containing information relevant to the test question
- Reading passage (R): article or essay containing additional information relevant to the test question
- **Sample response (S):** sample response provided by the test designers containing the main ideas expected in a model answer

3. Baseline Content Features

- Sim_i: the similarity score between the words in the spoken response and a content model trained from responses receiving score i
- Cosine similarity (CVA) and PMI used
- Expensive to train (requires pre-scored responses)

4. Prompt-based Content Features

Feature	Description
stimulus_cosine	cosine similarity between the spo and each of the stimulus material
token_overlap type_overlap	the number of lexical tokens / typ in both the spoken response and stimulus materials (normalized by length)
token_unique type_unique	the number of word tokens / type in both the spoken response and the materials, but do not occur in remaining material(s)

Copyright © 2013 by Educational Testing Service. All rights reserved. ETS, the ETS logo, LISTENING. LEARNING. LEARNING.

Prompt-based Content Scoring for Automated Spoken Language Assessment Keelan Evanini¹, Shasha Xie², and Klaus Zechner¹ ¹Educational Testing Service, ²Microsoft

5. Data and Methodology

oken response

pes that occur each of the y response

es that occur one or two of n the

- Spoken responses to TOEFL iBT[®]
- 4 prompts, 60 seconds per response
- Scored by expert raters on 4-point scale
- Spoken responses processed using ASR system
- ASR output used to compute content features

6. Baseline Feature Correlations

Feature Set	Feature	r
	Sim ₁	0.091
	Sim ₂	0.186
CVA	Sim ₃	0.261
	Sim ₄	0.311
	Sim ₁	0.191
	Sim ₂	0.261
PMI	Sim ₃	0.320
	Sim ₄	0.361

7. Feature Correlations (Prompt-based)

Feature Set	Feature	r		
	L	0.384	Feature Se	et
stimulus_cosine	R	0.176		
	S	0.384	token_unique	
		0.022		
token_overlap	R	0.096		
	S	0.121		
	L	0.426	type_unique	
	L			
type_overlap	R	0.142		
	S 0.128			

8. Score Prediction (Methodology)

- SpeechRaterSM

norma
numb
speaki
norma
using
durati
mean
Langu

9. Score Prediction (Results)

Feature Set	response <i>r</i> (N=395)	speaker <i>r</i> (N=97
Baseline proficiency features	0.607	0.687
+ type_overlap	0.612	0.701
+ token_overlap	0.615	0.700
+ token_unique	0.616	0.695
+ stimulus_cosine	0.630	0.716
+ type_unique	0.658	0.761
+ CVA	0.665	0.762
+ all prompt-based	0.677	0.779
+ PMI	0.723	0.818
+ CVA and PMI	0.723	0.818
+ all content	0.742	0.838

- approach using pre-scored responses
- features
- perform best

• 9 baseline speaking proficiency features extracted using

• linear regression models: 794 training, 395 evaluation.

Features

alized number of silences > 0.15 sec, normalized per of silences > 0.495 sec, average chunk length, king rate, normalized number of disfluencies alized Acoustic Model score from forced alignment a native speaker AM, average normalized phone ion difference compared to a reference corpus

deviation of distance between stressed syllables

lage Model score

LU. Summary

• Prompt-based content scoring is a viable alternative to

• Improvement in correlation over baseline proficiency

• Features measuring overlap with listening materials