

ALWAYS LEARNING

Angeliki Metallinou (angeliki.metallinou@pearson.com), Jian Cheng (jian.cheng@pearson.com) Knowledge Technologies, Pearson, Menlo Park, California

- Use proposed phone bigram LM to extract ASR confidence scores 3 variants of confidence score *

 - recognition log-likelihoods
- Similar features also extracted from

Automatic proficiency Assessment scoring of K-12 students Test contains both repeat and open-ended tasks

Data

- 6000 spoken tests: 4800 train, 1200 test
 - Tests double graded by professionals (scale: 0-14 points)
- **Define non-scorable test**: | human machine grade | > 3 points
- 308 tests are non-scorable (~5%)

Confidence Based

* described in [Cheng and Shen, 2011]

Combine response-level features at test level

Average features separately over repeat, open-ended tasks Features may slightly vary between the two tasks

For responses with undefined features:

- Include percentage of
- responses where feature is defined

Top 10 selected features

Description		
diff_length_nrm (avg,r)	diff_length_nrm (av,op)	
min_pair_dist (avg,op)	diff_length (avg,r)	
n_pairs_nrm (avg, op)	diff_length (avg,op)	
avg_pair_dist (avg,r)	min_pair_dist (avg,r)	
n_pairs_nrm (avg,r)	max_pair_dist (avg,op)	
edit_dist_nrm (avg,r)	diff_length_nrm (avg,r)	
n_insert_nrm (avg,r)	edit_dist_nrm (avg,op)	
diff_length_nrm(avg,op)	n_insert_nrm (avg,op)	
n_subst_nrm (avg,op)	min_length (avg,op)	
min_length (avg,r)	n_subst (avg,op)	
avg_conf_pLM(avg,op)	min_lglik_pLM (avg,r)	
min_lglik_pLM (avg,op)	max_lconf_pLM (avg,r)	
min_conf_pLM (avg,op)	std_lglik_pLM (avg,op)	
min_lglik_wLM (avg,r)	min_conf_pLM (avg,r)	
std_lglik_pLM (avg,r)	avg_lglik_pLM (avg,r)	

Existing Features

We extract state-of-the-art features for non-scorable and off-topic detection

Summary of 'Base' feature set

Feature Type	Description
Signal derived	Max and min energy, nonzer frames, avg. pitch, SNR
ASR derived	Number of spoken words, particular hesitations, utterance durations speech rate, avg. interword particular duration, leading pause duration
	ASR log-likelihood, avg. LM likelihood, phonemes pruned lattice confidence, perc. of lo confidence words and phone
	Repeat: number of insertions deletions, substitutions, perc recognized prompt words Open-ended: number of reco key words
Indicator	Number of zero pitch frames >threshold, while ASR recog silence

Conclusions

- Proposed syllable and LM-based features for non-scorable detection
- Estimate syllable locations
- Propose task-independent phone LM
- Features lead to improvement in AUC when combined with existing ones
- $0.102 \rightarrow 0.081$ (21 % rel. reduction)
- Our final system combines 4 random forest classifiers
- one using existing features
- three using the proposed features

PEARSON

