Introduction

• Non-scorable test: Can't be reliably scored automatically
 • Noisy, unintelligible, non-English, off-topic, etc.
• Propose new features for non-scorable detection
 • Exploit similarities between different information sources
• Achieve 21% rel. performance increase
 • When combining our features with existing ones

Proposed Features

• Human and machine scores often differ
 • Inconsistency between ASR info and pitch
• Estimate syllables using ASR result
 • Approx. number/location of vowels
• Estimate syllables from pitch/energy
 • If estimates don’t match, the test may be unscorable

Syllable Based

Language Model Based

• Explore different LMs
 • Task constrained word bigram LM
• Propose task independent phone bigram LM
 • Can handle off-topic or non English words
• Estimate ASR similarity using edit distance
 • Dissimilarity may indicate non-scorable

Phoneme level similarity features based on edit dist.
 • Edit distance (normalized)
 • Difference of insertions, deletions, substitutions
 • Sequence lengths, and difference, etc.

From the two estimates, we extract various similarity based features
 • Sequence length difference
 • Sequence lengths
 • Number of syllable pairs
 • Unpaired syllables
 • Avg., max, min distance of pairs, etc.

Detection Results

Features: AUC (avg. ± std.dev)
Base: 0.102 ± 0.007
Syllable: 0.122 ± 0.011
LM: 0.123 ± 0.008
Confidence: 0.106 ± 0.011
Classifier Decision Combination
Base+Syllable: 0.087 ± 0.008
Base+LM: 0.085 ± 0.007
Base+Confidence: 0.084 ± 0.007
All: 0.081 ± 0.006

Conferences Based

• Use proposed phone bigram LM to extract ASR confidence scores
 • 3 variants of confidence score *
 • recognition log-likelihoods
• Similar features also extracted from word LM
 * described in [Cheng and Shen, 2011]

Combination of features at test level

Average features separately between the two tasks
• Features may slightly vary
• For responses with undefined features:
 • Include percentage of responses where feature is defined

Experiments and Results

ROC curves

From the two estimates, we extract various similarity based features
 • Sequence length difference
 • Sequence lengths
 • Number of syllable pairs
 • Unpaired syllables
 • Avg., max, min distance of pairs, etc.

We extract state-of-the-art features for non-scorable and off-topic detection

Summary of ‘Base’ feature set

Feature Type | Description
Signal derived | Max and min energy, nonzero pitch frames, avg. pitch, SNR
ASR derived | Number of spoken words, pauses and hesitations, utterance durations, speech rate, avg. interword pause duration, leading pause duration
ASR derived | ASR log-likelihood, avg. LM likelihood, phonemes pruned, word lattice confidence, perc. of low confidence words and phonemes
Indicator | Repeat: number of insertions, deletions, substitutions, perc. of recognized prompt words
Open-ended: number of recognized key words

Data

Existing Features

• Automatic proficiency Assessment scoring of K-12 students
 • Test contains both repeat and open-ended tasks
• 6000 spoken tests: 4800 train, 1200 test
 • Tests double graded by professionals (scale: 0-14 points)
• Define non-scorable test: | human - machine grade | > 3 points
 • 308 tests are non-scorable (~5%)

Conclusions

• Proposed syllable and LM-based features for non-scorable detection
 • Estimate syllable locations
 • Propose task-independent phone LM
• Features lead to improvement in AUC when combined with existing ones
 • 0.102 → 0.081 (21 % rel. reduction)
• Our final system combines 4 random forest classifiers
 • one using existing features
 • three using the proposed features