

INTRODUCTION

Acquiring a second language (L2) as an adult is notoriously difficult. By understanding where individual learners make mistakes, we can improve efficiency and durability of L2 learning

• Linguistic factors:

- E.g. Cognates, concrete words are easier (de Groot & Keizer, 2000) while interlingual homographs are harder (Dijkstra, Timmermans & Schriefers, 2000)
- Memory factors:
 - Since language is learned, it must be stored in memory.
 - What improves memory in general should also improve memory for language
 - Spaced repetition: words (and other items) are remembered better when they are encountered repeatedly, with temporal gaps in between (vs. repeated all at once).
 - Longer gaps are better (e.g. Cepeda et al. 2006)
 - 2008)
 - Applies to a wide variety of materials (e.g. Donovan & Radosevich, 1999)
 - Retrieval Practice: Recalling information from memory makes that information easier to recall in the future
 - Duolingo frequently prompts users to retrieve from memory

By better understanding the factors that influence learning and retention of L2, systems like Duolingo can:

- Devote more resources to the most difficult aspects of the L2 (for each learner)
- Schedule review of learned material when it is of most benefit to the learner
- Leverage their own users' data to improve understanding of the learning process, and in
- turn improve learning outcomes

POPULATIONS

Three groups were analyzed separately:

- English-speaking learners of Spanish
- English-speaking learners of French
- Spanish-speaking learners of English

THREE SETS

The first 30 days of each users learning broken are broken down into:

- Training: each user's first 80% of sessions
- <u>Development</u>: the next 10% of each user's data
- Test: the final 10% of exercises for each user

MODEL

Random forest classifier

- Each decision tree branched a number of times equal to the square root of the total number of features
- An ensemble of 1000 trees was created for each of the three language datasets
- Each tree branched until leaves were pure (contained only a single label: "error" or "no error")
- Out-of-bag error was used to estimate prediction error of the classifier
- The classifier was trained in Python 3, using sklearn.ensemble.RandomForestClassifier()

A Memory-Sensitive Classification Model of Errors in Early Second Language Learning

Brendan Tomoschuk, Jarrett T. Lovelett

¹University of California, San Diego

	Memory		Categorical		Interactions
	Ινιεπισιγ		Categorica		
	nthOccurance	Number of times a token has been seen	pos	Part of speech	stemLag1 x stemLag2
	userTrial	Number of trials a user has seen	format	Trial format (see Figure 1)	stemLag1 x stemLag2 x lagTr1Tr2
rd neighbors	tokenLag1	Amount of time since token last seen	prevFormat	Previous trial format	lagTr1Tr2 x morphoComplexity
d neighbors	tokenLag2	Amount of time between last time a word has been seen and the time before that	client	User's client (collapsed to mobile or web)	lagTr1Tr2 x morphoLag1
ency	stemLag1	Amount of time since stemmed token has been seen	userMeanError	Average of a user's accuracy across trials	Format x prevFormat
rd frequency of	stemLag2	Amount of time between last time a stemmed token has been seen and the time before that	userVarError	Variance in a user's accuracy across trials	orthoNei x format
rd frequency of	morphoLag1	Amount of time since morphological features have last been seen			phonNei x format
en translations of	lagTr1Tr2	Amount of time between first and second trials containing that token			format x client
was identical to a language					morphoComplexity x pos
atures					
ptible an entity is			Table	1. Names and descriptions of the	he enaineered features

, Elena V.m. Lieven, and Michael Tomasello. 2006. The distributed learning effect for children's acquisition of an abstract syntactic construction. Cognitive Development, 21(2), 174–193. Harry P. Bahrick and Elizabeth Phelphs. 1987. Retention of Spanish vocabulary over 8 years. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(2), 344–349. David A. Balota, Janet M. Duchek, and Ronda Paullin. 1989. Age-related differences in the impact of spacing, lag, and retention interval. Psychology and Aging, 4(1), 3–9. Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. 2014. Concreteness ratings for 40 thousand generally known English word lemmas. Behavior research methods, 46(3), 904-911. Shana K. Carpenter. 2009. Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1563–1569. Shana K. Carpenter and Edward L. DeLosh. 2006. Impoverished cue support enhances subsequent retention: Support for the elaborative retrieval explanation Cepeda, Edward Vul, Doug Rohrer, John T. Wixted, and Harold Pashler. 2008. Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19(11), 1095-1102. William L. Cull. 2000. Untangling the benefits of multiple study opportunities and repeated Donovan and David J. Radosevich. 1999. A meta-analytic review of the distribution of practice effect: Now you see it, now you don't. Journal of Applied Psychology, 84(5), 795-805. Hermann Ebbinghaus. 1964. Memory: A contribution to experimental psychology (H.A. Ruger, C.E. Experimental Psychology-Learning Memory and Cognition, 33(4), 704-719. Thomas K. Landauer and Robert A. Bjork. 1978. Optimum rehearsal patterns and name learning In M. M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory (pp. 625-632). London: Academic Press. Viorica Marian, James Bartolotti, Sarah Chabal, and Anthony Shook. 2012. CLEARPOND: Cross-linguistic easy-access resource for phonological and orthographic neighborhood densities. PloS one, 7(8), e43230. Cornelius P. Rea and Vito Modigliani. 1985. The effect Modeling. In Proceedings of the NAACL-HLT Workshop on Innovative Use of NLP for Building Educational Applications (BEA). ACL. Michael T. Ullman and Jarrett T. Lovelett. 2016. Implications of the declarative/procedural model for improving second language learning: The role of

Contact: btomoschuk@ucsd.edu, jlovelet@ucsd.edu

UCSD

- Users make more errors on average the longer they've spent using the app (Days, userTrial).
- The more time that passed since the previous occurrence of a word, the higher the error rate
 - Contra spacing effect: perhaps more consideration of full item history is needed (or gaps too long; see Cepeda et al. 2008)
- There seems to be a cost to switching formats: error rates are higher when the current task

JROC	F1	Log-loss
7730	.1899	.3580
3286	.4242	.3191
7707	.2814	.3952
3228	.4416	.3561
7456	.1753	.3862
3027	.4353	.3571