Motivation

- State of the art Grammatical Error Correction (GEC) systems re annotated training data as possible.
- Language model (LM) based approaches do not require annotated training data but still performed well in the CoNLL-2014 shared task on GEC.
- **Question**: To what extent can a simple LM system compete with a state of the art system trained on millions of words of annotated data?

Methodology

Calculate the normalised log probability of the input sentence.

	Input Sentence								
I am	looking	forway	to	see	you soor				

2. Build a confusion set for each token in that sentence.

I	am	looking	forway	to	see	you	soon .	-2.71
	was	look	forward	of	seeing		sooner	
	be	looks	Norway	in	saw		soonest	-
	are	looked	foray	Ø	sees			

3. Rescore the sentence for each candidate correction in each confusion set.

I	am		looking		forway		to		see		you	soor
	was	-2.67	look	-2.91	forward	-1.80	of	-2.98	seeing	-3.09		soor
	be	-3.09	looks	-2.93	Norway	-2.36	in	-2.99	saw	-3.25		soor
	are	-3.10	looked	-2.95	foray	-2.70	Ø	-3.00	sees	-3.39		

4. Apply the single global best correction that improves the sentence probability above a threshold.

I	am	looking	forway	to	see	you	soon .	-2.71
I	am	looking	forward	to	see	you	soon .	-1.80

5. Iterate steps 1 - 4.

Ι	am	looking	forway	to	see	you	soon .	-2.71
Ι	am	looking	forward	to	see	you	soon .	-1.80
Ι	am	looking	forward	to	seeing	you	soon .	-1.65

Language Model Based Grammatical Error Correction Without Annotated Training Data

Christopher Bryant and Ted Briscoe

Confusion Set Generators

Ð	CyHunspell	
	 Spelling errors 	e.g. freind \rightarrow
	 Inflectional errors 	e.g. advices
•	Automatically Generated Inflection	Database
	 Noun number errors 	e.g. cat \rightarrow c

- Verb tense/form/agreement Adjective form
- Manually defined confusion sets

•

- Determiners: {Ø, the, a, an}
- Prepositions: {Ø, about, at, by, for, from, in, of, on, to, with}

Thresholding

Some corrections improve sentence probability more than others.

٠	forway \rightarrow forward	- 2.71 →
•	am \rightarrow was	-2.71 →

However, smaller improvements are likely to be false positives.

•	forway \rightarrow forward	- 2.71 →
•	am \rightarrow was	- 2.71 →

Solution: Set improvement thresholds based on a development set. •

 Observation: Different datasets have different optimum thresholds even with a single tuning parameter.

ely	on	as	much

- → friend \rightarrow advice
- cats e.g. eat \rightarrow ate, eat \rightarrow eating
- e.g. bigger \rightarrow biggest

- -1.80
- -2.67
- -1.80
- -2.71 → -2.67

- We train a 5-gram LM on the 1 Billion Word Benchmark corpus with KenLM.
- We compare performance with several state of the art systems.
 - POST (2014): A LM approach that came 4th in CoNLL-2014.
 - AMU16_{SMT}+LSTM and CAMB16_{SMT}+LSTM: A hybrid combination of Statistical Machine Translation (SMT) and neural sequence labelling approaches reported in Yannakoudakis et al. (2017).
 - Sakaguchi et al. (2017): A neural reinforcement learning approach.

Test Set	System	Р	R	F _{0.5}	GLEU
	POST 2014	34.51	21.73	30.88	59.50
	AMU16 _{SMT} +LSTM	58.79	30.63	49.66	68.26
CONLL-2014	CAMB16 _{SMT} +LSTM	49.58	21.84	39.53	65.68
	Our work	40.56	20.81	34.09	59.35
	AMU16 _{SMT} +LSTM	40.67	17.36	32.06	63.57
FCE-test	CAMB16 _{SMT} +LSTM	65.03	32.45	54.15	70.72
	Our work	44.78	14.12	31.22	60.04
	AMU16 _{SMT} +LSTM	60.68	22.65	45.43	42.65
IELEC toot	CAMB16 _{SMT} +LSTM	65.86	30.56	53.50	46.74
JFLEG-lesi	Sakaguchi et al. (2017)	65.80	40.96	58.68	53.98
	Our work	76.23	28.48	57.08	48.75

- We improved upon the previous best LM approach by > 3 $F_{0.5}$.
- We outperformed 2 state of the art systems on JFLEG and came surprisingly close to the top system.
- State of the art systems do not seem to generalise well and probably overfit to different datasets.
- Our results are fairly competitive with data hungry systems despite a) requiring minimal annotated data (for tuning purposes only). b) only targeting ~50% of all error types.
- Our approach suggests it is possible to build a decent GEC system for any language where annotated training data may not be available.

Results

Conclusions