
### Second language acquisition modeling (SLAM) This task aims to predict future mistakes for each user to help users to efficiently learn foreign language

| correct: | She | is | my | mother | and | he | is |
|----------|-----|----|----|--------|-----|----|----|
| learner: | she | is |    | mother | and | he | is |
| label:   | 0   | 0  | 1  | 0      | 0   | 0  | 0  |

## Architecture of the TMU system



Training  $\log p(y|x; heta)$  $L_{\theta} =$ The objective function  $\overline{L_{\theta}} = \alpha L_{\theta}^{new} + (1 - \alpha) L_{\theta}^{orig}$ Final loss

#### Original exercise: *I am Japanese* Replaced by *new*: *I am* <*new*>

Words that appear for the first time in an exercise are replaced by *new* word to learn *new* vector

### **Analysis of Tracking History**

It is important to consider what learner have learned in the past and how they responded to it in order to improve future predictions

Model W/ History N W/O History The history

AUROC on

# TMU System for SLAM-2018

++Tomoyuki Kajiwara + Mamoru Komachi kaneko-masahiro@ed.tmu.ac.jp +: Tokyo Metropolitan University 4: Osaka University

my father fhader

|                                   | AUROC |  |  |  |  |
|-----------------------------------|-------|--|--|--|--|
| Model                             | 0.834 |  |  |  |  |
| y Model                           | 0.648 |  |  |  |  |
| model improved<br>English subtask |       |  |  |  |  |
|                                   |       |  |  |  |  |

## Strategy of the TMU system

by that learner.

TMU system has two components:

(1) Prediction Bi-LSTM: predicts whether a learner has made a mistake for the given word in an exercise (2) History LSTM: tracks a specific learner's information regarding the learned exercises and the words that he

or she might have mistaken

### **Experiment settings**

|   | Feature  | Embeddings                                                                                                                                  | ] |
|---|----------|---------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1 | Word     | $e^i_{(j,k)} \in \mathbb{R}^{d_e \times 1}$                                                                                                 | 1 |
| 2 | POS      | $e_{(j,k)}^{i} \in \mathbb{R}^{d_{p} \times 1}$ $p_{(j,k)}^{i} \in \mathbb{R}^{d_{p} \times 1}$ $s_{j}^{i} \in \mathbb{R}^{d_{s} \times 1}$ | ŀ |
| 3 | Session  | $s_{i}^{i} \in \mathbb{R}^{d_{s} \times 1}$                                                                                                 | I |
| 4 | Format   | $f_i^i \in \mathbb{R}^{a_f \times 1}$                                                                                                       | ŀ |
| 5 | Days     | $b_j^i \in \mathbb{R}^{1 \times 1}$                                                                                                         | 1 |
| 6 | Time     | $t_j^j \in \mathbb{R}^{1 \times 1}$                                                                                                         |   |
| 7 | User     | $u^i \in \mathbb{R}^{d_u \times 1}$                                                                                                         | I |
| 8 | Language | $l^i \in \mathbb{R}^{d_l \times 1}$                                                                                                         | ŀ |
| 9 | History  | $c^{i}_{(j-1,M)} \in \mathbb{R}^{d_c \times 1}$                                                                                             | I |

#### Features used in TMU system

| Language                     | Train   | Dev   | Test    | • | A single model with three language     |
|------------------------------|---------|-------|---------|---|----------------------------------------|
| English                      | 936,782 | 3,000 | 114,586 |   | tracks, including English, Spanish and |
| Spanish                      | 824,899 | 3,000 | 93,145  |   |                                        |
| French                       | 367,402 | 3,000 | 41,753  |   | French                                 |
| Number of exercises for each |         |       | or each | • | Ensemble uses different dev and        |

language.

## **SLAM evaluation results. AUROC.**

| English         | Spanish         | French          |
|-----------------|-----------------|-----------------|
| 0.861 SanaLabs  | 0.838 SanaLabs  | 0.857 SanaLabs  |
| 0.861 singsound | 0.835 NYU       | 0.854 singsound |
| 0.859 NYU       | 0.835 singsound | 0.854 NYU       |
| 0.848 TMU       | 0.823 TMU       | 0.843 CECL      |
| 0.846 CECL      | 0.818 CECL      | 0.839 TMU       |
| 0.841 Cambridge | 0.807 Cambridge | 0.834 Cambridge |

one model.

To predict the learner's future mistakes, it is important to track a history of what and how exercises were solved

#### Description

Word Surface

Part of Speech

Lesson, Practice or Test

Reverse\_translate, Reverse\_tap, or Listen

Number of Days Since the Start for Each Learner

Amount of Time to Construct and Submit Answers for Each Learner

Unique Identifier for Each Learner

English, Spanish, French

Last Hidden Layer of History LSTM

training sets randomly sampled from the data

#### There are few teams that directly model the learning history as sequential data. SanaLabs also model as sequential data. singsound divide features into several types and build encoder for each of them. On the other hand, we consider everything in

#### **Conclusion & Future work**

Our system is based on RNN; It has two components: (1) Bi-LSTM for predicting learners' error (2) LSTM for tracking learners' learning history. In this work, we have not used any language-specific information. As future work, we plan to exploit additional data for each language, such as pre-trained word representations, n-grams, and character-based features. Additionally, we hope to incorporate word difficulty features



| Parameter                                | Value        |
|------------------------------------------|--------------|
| d <sub>e</sub> : Word Embedding Size     | 100          |
| d <sub>p</sub> : POS Embedding Size      | 20           |
| $d_s$ : Session Embedding Size           | 20           |
| $d_f$ : Format Embedding Size            | 20           |
| $d_u$ : User Embedding Size              | 50           |
| d <sub>l</sub> : Language Embedding Size | 20           |
| $d_c$ : Hidden Size (History)            | 200          |
| $d_h$ : Hidden Size (Prediction)         | 100          |
| $d_{\hat{h}}$ : Extra Hidden Size        | 50           |
| Minibatch size                           | 32           |
| BPTT                                     | 18           |
| Optimizer                                | Adadelta     |
| Learning rate                            | 0.1          |
| Initialization parameters                | [-0.1, +0.1] |
| lpha                                     | 0.01         |
| Dev                                      | 3,000        |
| Ensemble                                 | 10           |

Hyper parameters