Skip to main content

Faculty

Fatemeh Nargesian

Fatemeh Nargesian

  • Assistant Professor of Computer Science

PhD, University of Toronto

f.nargesian@rochester.edu


Bio

Fatemeh Nargesian’s research in data management focuses on the discovery and integration of data in very large repositories of heterogeneous and raw data. Her research applies probabilistic and learning techniques to data management problems. Her previous work studies automated machine learning including feature engineering and model selection. Fatemeh received her PhD from the University of Toronto.

Selected Publications

  • Data Lake Management: Challenges and Opportunities. (Tutorial) Nargesian, E. Zhu, R. J. Miller, Ken Q. Pu. In Proceedings of the VLDB Endowment (VLDB), 2019.
  • Optimizing Organizations for Navigating Data Lakes. F. Nargesian, K. Q. Pu, E. Zhu, B. G. Bashardoost, R. J. Miller. Revise and Resubmit, https://arxiv.org/abs/1812.07024, PVLDB, 2019.
  • A Set Overlap Search Algorithm for Finding Joinable Tables in Massive Data Lakes. E. Zhu, D. Deng, F. Nargesian, R. J. Miller. SIGMOD: 847-864, 2019.
  • Making Open Data Transparent: Data Discovery on Open Data. R. J. Miller, F. Nargesian, E. Zhu, Christina Christodoulakis, K. Q. Pu, Periklis Andritsos. IEEE Data Engineering Bulletin, 2018.
  • Table Union Search on Open Data. F. Nargesian, E. Zhu, K. Q. Pu, R. J. Miller. In Proceedings of the VLDB Endowment, (PVLDB) 11(7): 813-825, 2018.
  • Dataset Evolver: An Interactive Feature Engineering Notebook. F. Nargesian, U. Khurana, H. Samulowitz, D. S. Turaga, T. Pedapati. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2018. Demonstration.
  • Interactive Navigation of Open Data Linkages. (Best Demo Award) E. Zhu, K. Q. Pu, F. Nargesian, R. J. Miller. In Proceedings of the VLDB Endowment (VLDB), 2017. Demonstration.
  • Learning Feature Engineering for Classification. F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, D. S. Turaga. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2017.
  • Automating Feature Engineering. U. Khurana, F. Nargesian, H. Samulowitz, D. S. Turaga, E. B. Khalil. Artificial Intelligence for Data Science Workshop, NIPS, 2016.
  • LSH Ensemble: Internet-Scale Domain Search. E. Zhu, F. Nargesian, K. Q. Pu, R. J. Miller. In Proceedings of the VLDB Endowment, (PVLDB) 9(12): 1185-1196, 2016.
  • LinkedCT Live: Platform for Online Curation of Clinical Trials Data. O. Hassanzadeh, R. J. Miller, F. Nargesian, E. Zhu. In International Semantic Web Conference ISWC, 2015. Demonstration.
  • SOFIA: An Analytics Recommendation System. F. Nargesian, A. Biem, P. Jain, S. Parthasarathy, D. S. Turaga. In International Semantic Web Conference (ISWC), 2015. Demonstration.
  • Data-driven Recommendations for Exploratory Query Formulation. F. Nargesian. SIGMOD PhD Symposium: 31-35, 2014.
  • Supporting Conceptual and Storage Multidimensional Integration for Data Warehouse Creation. F. Nargesian, F. Rizzolo, I. Kiringa, R. Pottinger. Technical Report, SITE, University of Ottawa, 2011.
  • Managing and Mapping Data Lineage for Business Intelligence and Analytics Applications in Health Care. M. Azarm, F. Nargesian, L. Peyton, i-Society: 120-126, 2011.
  • Tool Support and Data Management for Business Analytics Applications in Healthcare. M. Azarm, F. Nargesian, L. Peyton, International Journal for Infonomics (IJI) 4(4): 484-493, 2011.
  • LHTNDT: Learn HTN Method Preconditions using Decision Tree. F. Nargesian, G. Ghassem-Sani, ICINCO-ICSO: 60-65, 2008.
  • Center of Confusion Estimation for Out-of-Focus Images Based on Bispectrum. F. Nargesian, A. A. Darabi, M. Jamzad, IEEE ICCIMA (3): 501-506, 2007.